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Abstract: Blood Pressure (BP) is one of the most important physiological indicator that can provide useful information 
in the medical field. BP is usually measured by a sphygmomanometer device, which is composed by a cuff 
and a mechanical manometer. In this paper, a novel algorithmic approach to accurately estimate both systolic 
and diastolic blood pressure is presented. This algorithm exploits the PhotoPlethysmoGraphy (PPG) signal 
pattern acquired by non-invasive and cuff-less Physio-Probe (PP) silicon-based SiPM device. The PPG data 
are then processed with ad-hoc bio-inspired mathematical model which estimates both systolic and diastolic 
pressure values. We compared our results with those measured using a classical sphygmomanometer device 
and encouraging results of about 97% accuracy were achieved. 

1 INTRODUCTION 

The classical medical method to measure Blood 
Pressure (BP) is the use of the stethoscope. Recent 
cuff-based digital devices approaches are invasive, 
costly and do not allow continuous monitoring. 
Innovative methods try to estimate BP by analyzing 
the waves produced upon the heart dynamic along the 
arteries. In (Kurylyak, 2013) a non-invasive 
continuous BP estimation approach based on 
Artificial Neural Networks (ANNs) is proposed. The 
ANN is trained with 21 input parameters extracted 
from PPG signals. In (Yan, 2006) the authors 
described a new set of PPG hand-crafted features 
exhibiting encouraging results. The paper reported in 
(Gu, 2008) proposes an estimation of BP by means of 
new calibration parameters related to the dicrotic 
notch of the processed PPG waveform. The papers in 
(Teng, 2003) and in (Fortino, 2010) provide detailed 
surveys on the methodologies proposed in the 
literature for estimating BP from PPG signals. 
However, all these methodologies present the 
disadvantage that are based on PTT (Pulse Transit 
Time) calculation, which requires the sampling of 
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both ECG (ElectroCardioGraphy) and PPG signals. 
Additionally, specific HW (PPG/ECG) sensors and 
SW (data extraction (PTT, PWV)) are needed. 
Finally, those methods may involve high 
computational costs against a reduced accuracy 
and/or an estimation capability limited to a common 
pressure range (70/110 - 80/120 mmHg). 

In this paper, a novel algorithmic approach to 
accurately estimate both Systolic and Diastolic blood 
pressure (SBP, DBP) is presented. This algorithm 
analyzes the PPG signal acquired by non-invasive and 
cuff-less silicon photomultiplier sensor (SiPM), 
which can be installed in a commercial medical 
device or in a simply mobile phone.  

2 THE PROPOSED BLOOD 
PRESSURE ESTIMATION 
SYSTEM 

PPG signal is becoming increasingly popular in 
extracting cardiovascular information since it is 
sampled with non-invasive optical technologies 
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Figure 1: (a) BP estimation pipeline; (b) PPG and derivatives for hand crafted features. 

(Vinciguerra, 2017). This signal has a great potential 
for the assessment of vascular diseases related to 
aging, hypertension, and atherosclerosis, providing 
information on arterial stiffness and elasticity 
(Oreggia, 2015).  

To achieve the above reported cardiovascular 
information, a robust PPG signal without artifacts is 
mandatory. In particular, a compliant PPG waveform 
must comprise systolic peak (SP), dicrotic notch 
(DN) and diastolic peak (DP). In our previous works 
(Rundo, 2018) (Mazzillo, 2018) we presented a PPG 
pattern recognition pipeline allowing to achieve high 
robust PPG compliant waveform. The obtained PPG 
signal is herein furtherly processed to achieve a 
reliable BP estimation. The pipeline we used is 
reported in Figure 1(a). It includes a Mathematical 
Analysis System block, presented in (Rundo, 2018) 
and (Mazzillo, 2018), receiving compliant PPG 
signals as input. The output of this block is then 
learned by two layer of Neural Network (NN) 
providing both SBP and DBP output signals.  
 

a) Mathematical Analysis System Block. This block is 
able to calculate a set of 18 features on the compliant 
PPG waveform and on the first and second (time) 
derivatives (Fig. 1 (b)).  The following equations F1 
to F18 are exemplary of how such first act of 
processing can be performed in the proposed 
approach: 
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where:  
ln is (natural) logarithm; NPPG are the PPF waveform 
samples over a period of the PPG signal; suffixes sys, 
dia and dic are the systolic, diastolic and dicrotic 
phases of the PPG signal  identified as the portions a–
b, a1–b1, a2–b2 (systolic), b–d, b1–d1,b2–d2 
(dicrotic), c–e, c1-e1 and c2–e2 (diastolic) in the 
diagrams (PPG and its first derivative and second 
derivative) of Figure 1(b); Lix  indicates the length of 
sub-curve of PPG waveform, for the systolic, 
diastolic and dicrotic phases sys, dia and dic, 
respectively and with i=1. NPPG; in the same way, 
Lix(∂PPG/∂t) represents the length of the sub-curve 
of the first derivative of the PPG signal, and Lix 
(∂2PPG/∂t2) represents the length of the sub-curve of 
the second derivative of the PPG signal, again for sys, 
dia and dic, respectively. For the first and second 
derivative of PPG signal, the Simpson rule can be 
adopted for computing the length of the curve 
(Matthews, 2004); - σx denotes standard deviation for 
variable Lix. 

The F1 – F18 features have been properly designed 
with the aim to have an exhaustive and analytical 
description of the shape of the PPG waveform. 
Indeed, beside common statistical indices described 
by features F1, F4, F10 and F16, we considered specific 
features based on the first and second derivative of 
the waveform aimed to point out the peculiarities 
related to the directions and the inflection points of 
the PPG waveform, respectively. 
 

b) Neural Systems 1 and 2. The F1 – F18 features are 
fed into the Artificial Neural Network (ANN) blocks 
to perform further processing to correlate the PPG 
signal with real SBP (systolic) and DBP (diastolic) to 
achieve a reliable model for BP estimation. Training 

values are derived from a set of measurements 
performed on 30 patients in which BP was measured 
by conventional sphygmomanometer concurrently 
with the PPG signal. The first ANN (Neural System 
1) is a Multi-Layer Perceptron (MLP) with a modified 
Polak-Ribiere back-propagation learning algorithm 
(Fletcher, 1964) (Hagan, 1996). This ANN performs 
a preliminary reconstruction of the blood pressure of 
a subject both for systolic (SBP) and diastolic (DBP) 
values, providing an estimation denoted as f1(*) and 
f2(*) for SBP and DBP respectively. The second ANN 
is an advanced modified version of the SOM Motor 
Map (Ortis, 2013), able to complete such a 
reconstruction of both SBP and DBP values by 
detecting a second estimation or component K1(*) and 
K2(*).  

Below are reported the mathematical models used 
in the ANN layers: 
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Consequently, the pressure values 
SBPrec/DBPrec comprise a non-linear portion (f1/f2) 
and a linear portion (K1/K2).  

Concerning the SOM Motor Map NN, the 
following equations describe the typical “Winner 
Take All” algorithm used for clustering the described 
input hand crafted PPG features: 
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where (xmin,ymin) represents the coordinates of the 
neurons which minimize the Euclidian distance 
between the input weights and the related hand 
crafted input vector while “ ߴ ” and “ ,ݔሺߩ ,ݕ ሻݐ ” 
represents the learning rate and neighborhood 
function (gaussian) of the WTA algorithm. This 
winner neuron produces the related output per 
following equation: 
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Table 1: DBP and SBP Results. 

Patient 
Number

Age Pathologies Actual Blood Pressure (DBP/SBP)Estimated Blood Pressure (DBPrec/SBPrec) 

1 32 No 85/123 83.21/121.11 

2 24 No 80/120 79.22/122.53 

3 53 Yes 85/125 83.98/123.24 

4 65 Yes 90/135 91.09/132.99 

5 46 No 70/120 68.92/119.87 

6 33 No 80/115 78.81/115.09 

7 21 No 70/105 69.04/104.98 

8 52 Yes 90/130 89.01/132.21 

9 25 No 80/130 78.99/131.09 

10 58 No 85/130 83.93/129.91 
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We compute the following learning errors: 
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If the above error functions are progressive 
decreasing (i.e., the conditions in Equation (27) and 
Equation (28) are satisfied), the related weights 
update will be confirmed and then we have Equation 
(29) and Equation (39). Otherwise, both input and 
output weight updates will be discarded. 
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3 RESULTS 

This study was conducted in accordance with the 
Helsinki Declaration of 1975. All patients provided 
written informed consent before enrollment. The 

study was approved by the Ethical Committee 
Catania 1 (Authorization No. 113/2018/PO).  

Table 2: Average errors of the proposed algorithm. 

Blood Pressure Average Error 
DBP 2.718 mmHg 
SBP 2.853 mmHg 

 

We engaged 30 patients having different genders 
(male and female), ages (between 20 and 70 years 
old) and pathologies (we collected healthy subjects 
and sick ones with different issues such as cardiac 
problems, hypertension, diabetes, etc.).  

Table 1 and Table 2 show SBP and DBP values 
and the average error the obtained by the proposed 
approach, respectively. The average error for both 
estimation (SBP and DBP) is less than 3 mmHg 
corresponding to about 10/15 % of real measure. This 
is an acceptable result from a medical point of view 
and with respects to prior state of the art above 
mentioned. 

4 CONCLUSIONS 

In this paper we proposed a novel algorithmic for 
non-invasive cuff-less BP estimation, easily 
embedded in several kind of devices from mobile to 
portable medical systems. This algorithm takes the 
PhotoPlethysmoGraphy (PPG) signal as input, 
acquired by miniaturized silicon photomultiplier 
SiPM devices. The PPG data are processed with ad-
hoc bio-inspired mathematical model which 
estimates both systolic and diastolic pressure values. 
We compared our results with the measures obtained 
by using a classical sphygmomanometer device, 
achieving a mean accuracy of 97%. Hence, the 
performances achieved by the proposed method are 
suitable for clinical use. 
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Future works aim to improve better the estimation 
increasing the training set number and the type of 
neural system we used. Further efforts will be also 
devoted to the extension of the experiments, by a 
comparative evaluation among a set of state-of-the-
art methods on a proper large-scale benchmark 
dataset. 
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