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1 INTRODUCTION 

The paper is devoted to a new robust scheme for 

compensation of unknown mismatched disturbances. 

It is known, that the backstepping method is 

effective method for control of plant under 

mismatched condition.  

The first backstepping method is proposed in 

(Kokotovic, 1992). In more detail the backstepping 

method is presented in (Fradkov, Miroshnik, and 

Nikiforov, 1999; Khalil, 2002). Currently there are a 

lot of modification of the backstepping algorithm.  

In (Chang and Cheng, 2010) a methodology of 

designing the block backstepping controller for a 

class of multi-input systems with mismatched 

perturbations is proposed. Some adaptive 

mechanisms are embedded both in the virtual input 

controller and in the backstepping controllers such 

that some part knowledge of the upper bound of 

perturbation is not required.  

The paper (Ma, Schilling, and Schmid, 2005) is 

concerned with the adaptive sliding-mode control of 

a class of nonlinear systems in nonlinear parametric-

pure-feedback form with mismatched uncertainties. 

Backstepping design procedure is applied, which 

leads to a new adaptive sliding-mode control. 

Gaussian radial-basis-function networks are used to 

approximate the unknown system dynamics. More 

nodes are added to the networks progressively in 

order to improve the transient behaviour. With ideal 

sliding mode, asymptotic stability is reached.  

In (Xu and Min, 2010) for a class of strict-

feedback nonlinear systems with mismatched 

uncertainties, an adaptive backstepping fuzzy 

controller design is presented. By applying 

backstepping design strategy and online approaching 

uncertainties with fuzzy approximator, the control 

inputs and adaptive tuning rules are derived from the 

Lyapunov stability theory. To deal with the problem 

of extreme expanded operation quantity of 

backstepping method, a nonlinear tracking 

differentiator is introduced. By choosing suitable 

design parameters, the developed control scheme 

guarantees that all the signals of the closed-loop 

system are uniformly ultimately bounded and the 

system tracking error can reach to a very small 

region around zero.  

However, the above mentoined algorithms 

cannot compensate disturbances with distributed 

time-delay. For disturbances compensation there are 

a lot of methods, for example (Bobtsov and 

Kremlev, 2005; Tsykunov, 2007). The main idea of 
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disturbances compensation consists representation of 

uncontrollable disturbances as a new function in the 

control system which we can use for design of the 

control system. Among of them the auxiliary loop 

algorithm (Tsykunov, 2007.) is one of the 

effectiveness algorithm. The auxiliary loop 

algorithm based on parallel reference model 

(auxiliary loop) to the plant. The auxiliary loop is 

used for obtaining the uncertainties acting on the 

plant. The idea of this method consists in 

implementing an auxiliary loop with desired 

parameters parallel to the plant. The difference 

between the output of the plant and the output of the 

auxiliary loop gives a function which depends on 

parametric and external disturbances. This function 

gives the control law that guarantees required 

accuracy of the control system. The proposed 

algorithm provides the tracking by the output of the 

plant of the reference output with the required 

accuracy. However, mismatched disturbances may 

control system get unstable. It will be demonstrated 

in Section 4.  

In this paper we propose a new modified 

backstepping algorithm with mismatched 

disturbances compensation (MBADC), where 

disturbances are presented nonlinear functions 

depending on external bounded disturbances, 

parametric uncertainties and state vector with 

distributed time-delay. This algorithm is a 

generalization of results (Khalil, 2002; Tsykunov, 

2007) for robust control of nonlinear plants under 

mismatched parametric uncertainties and external 

disturbances. It is assumed that input signal and state 

vector of the plant are available for measurement. 

The proposed algorithm guarantees stabilization by 

the plant state vector with the required accuracy.  

The paper is organized as follows. The problem 

statement is presented in Section 2. The MBADC for 

control of nonlinear plants under mismatched 

perturbations is proposed in Section 3. In Section 4 

the efficient of MBADC is illustrated by modeling 

of an unstable nonlinear plant. Also, in Section 4 the 

comparison of the simulation results for the 

MBADC, the backstepping algorithm and auxiliary 

loop algorithm are presented. Concluding remarks 

are given in Section 5. Appendix A gives the proof 

of the MBADC. 

2 PROBLEM STATEMENT 

Consider the plant model with distributed time-delay 

in the form 
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where x(t) = [x1(t), x1(t), …, xn(t)]T is a state vector, 

u(t)  R is an input, i()  R, i = 1, 2, …, n are 

unknown functions depending on parametric 

uncertainties and external disturbances, f is a vector 

of unknown parameters, b > 0 is unknown constant 

and [fT, b]T  ,  is a known bounded set, hij, 

i, j = 1, 2, …, n are unknown time delay. 

We assume that signal x(t) is available for 

measurement. 

Additionally assume that the functions i()  R, 

i = 1, 2, …, n are bounded or bounded on t and f, and 

Lipchitz in x(t), 

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n dtx  , i, j = 1, 2, …, n. 

The problem is to synthesis a control law such 

that the goal condition holds 

)(tx  for t > T,   (2) 

where  > 0 is a prespecified required accuracy, 

T > 0 is a transient time, || is Euclidean norm of the 

corresponding vector. 

3 MAIN RESULT 

Let us denote 
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The synthesis of the control system is split into n 

steps. Auxiliary loops and auxiliary controls will are 

designed on 1, …, n – 1 steps for compensation of 

unknown function i. The control law u(t) will be 

introduced on the n-th step. 

Step 1. Introduce the first auxiliary loop in the 

form 

),()()( 2111 txtzctz     (3) 

where c1 > 0 is a coefficient chosen by a designer. 
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Taking into account the first equation of system 

(1) and equation (3), rewrite the function 

1(t) = x1(t) – z1(t) as follows 

.)()( 1111   tzct    (4) 

From (4) it follows that the function 1() may be 

rewritten in the form 

).()( 1111 tzct       (5) 

Substituting (5) to the first equation of (1), we 

have 

).()()()( 11121 tzcttxtx     (6) 

Assume that the function x2(t) is a control signal 

in (6) and define x2(t) in the form x2(t) = v1(t). Since 

the function )(1 t  is not available for measurement, 

we introduce the first auxiliary control law v1(t) as 

follows 

),(ˆ)()( 1111 ttctv      (7) 

where )(ˆ1 t is an estimate of the function )(1 t . 

Substituting (7) to (6), we get 

),()()( 1111 ttxctx     (8) 

where )(ˆ)()( 111 ttt     is an error estimate. 

Step i (2 ≤ i ≤ n – 1). Since vi(t) is not real 

control law, we consider the i-th error function ei -

 1(t) = xi(t) – vi - 1(t) as follows 

),(~)()( 11 ttxte iii  
    (9) 

where ).()(~
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Introduce the i-th auxiliary loop in the form 

),()()( txtzctz iiii     (10) 

where ci > 0 is a coefficient chosen by a designer. 

Taking into account (9) and (10), rewrite the 

function i(t) = ei - 1(t) – zi(t) as follows 

).(~)()( ttzct iiii      (11) 

From (11) it follows that the function )(~ ti  may 

be rewritten in the form 

).()()(~ tzctt iiii      (12) 

Substituting (12) to (9), we have 

).()()()( 11 tzcttxte iiiii      (13) 

Assume that function xi + 1(t) is a control signal in 

(13) and define xi + 1(t) in the form xi + 1(t) = vi(t). 

Since the function )(ti
  is not available for 

measurement, we introduce the second auxiliary 

control law vi(t) as follows 

),(ˆ)()( ttctv iiii      (14) 

where )(ˆ ti is an estimate of the function )(ti
 . 

Substituting (14) to (13), we get 

),()()( 11 ttecte iiii  
   (15) 

where )(ˆ)()( ttt iii     is an error estimate. 

Step n. Since vn(t) is not real control law, 

consider the n – 1-th error function en - 1(t) = xn(t) –

 vn - 1(t) in the form 

),(~)()(1 ttbute nn 
    (16) 

where ).()(~
1 tvt nnn    

Introduce the n-th auxiliary loop in the form 

),()()( tutzctz nnn    (17) 

where cn > 0 and  > 0 are coefficients chosen by a 

designer. 

Taking into account (16) and (17), rewrite the 

function n(t) = en - 1(t) – zn(t) as follows 

  ),()(~)()( tubttzct nnnn    (18) 

From (18) it follows that the function )(~ tn  may 

be rewritten in the form 

).()()(~ tzctt nnnn      (19) 

Substituting (19) to (16), we get 

).()()()(1 tutzctte nnnn  
   (20) 

Since the function )(tn
  is not available for 

measurement, we introduce the control law u(t) as 

follows 

 ,)(ˆ)(
1

)( ttctu nnn 


   (21) 

where )(ˆ tn is an estimate of the function )(tn
 . 

Substituting (21) to (20), we get 

),()()( 11 ttecte nnnn  
   (22) 

where )(ˆ)()( ttt nnn     is an error estimate. 

The signals )(ti
 , i = 1, 2, ..., n are not available 

for measurement, because it depends on derivatives 

of x(t). Therefore, we introduced the estimate 

functions )(ˆ ti , i = 1, 2, ..., n of the functions )(ti
 , 
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i = 1, 2, ..., n at each step. For implementation of 

)(ˆ ti , i = 1, 2, ..., n use the following observers 
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where  > 0 is enough small number. 

Theorem: There exist constants ci > 0, i = 1, 2, ..., n 

and µ0 > 0 such that for µ ≤ µ0 the control system 

consisting of auxiliary loops (3), (10), (17), auxiliary 

control laws (7), (14), control law (21), observers 

(23) provides goal (2) for plant (1). 

The proof of Theorem is given in Appendix. 

It is shown that the proposed algorithm based on 

multi-agent system design, where each equation is 

associated as appropriate agent. The additional 

investigation have shown that the proposed 

algorithm is effective for dynamical networks with 

unknown distributed time-delays and mismatched 

parametric and external disturbances. 

4 EXAMPLE 

Consider the plant model with distributed time-delay 

in the form 
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where f = [f1, f2]T The set  is defined by the 

following inequalities: 

–10 ≤ f1 ≤ 10, –10 ≤ f2 ≤ 10. 

The problem is to synthesis the control system 

providing goal condition (2). 

Let us design the control system. Consider 

auxiliary loops in the following form 

,, 2222111 uzczxzcz     (25) 

where c1 = c2 = 1 and  = 1. 

Introduce the auxiliary control law v1(t) and the 

control law u(t) as follows 
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where 1(t) = x1(t) – z1(t), 2(t) = e1(t) – z2(t) and 

e1(t) = x2(t) – v1(t). 

Introduce the observers in the forms 
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where p = d / dt, µ = 0.01. 

Let all initial conditions be zero in the control 

system. 

Let us choose the functions of (24) as follows 
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For comparison we also consider the synthesis of 

control systems using the backstepping algorithm 

(Khalil, 2002) and the auxiliary loop algorithm 

(Tsykunov, 2007). According to (Khalil, 2002) the 

backstepping algorithm is presented by the 

following equations 
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where e1(t) = x2(t) – v1(t). Algorithm (29) depends on 

functions i, i = 1, 2, therefore, implementations of 

(29) requires that functions i, i = 1, 2 must be 

known. 

According to (Tsykunov, 2007), the auxiliary 

loop algorithm is presented by the following 

equations: 

equation of the auxiliary loop 
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equation of the control law 
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where (t) = x(t) – xa(t). Algorithm (30), (31) can 

compensate only function 2 and coefficient b and 

cannot compensate function 1. Therefore, algorithm 

(30), (31) may be unstable for appropriate values of 

the function 1. 

Consider two cases. 

Case 1. Let f1 = 1 and f2 = 1 in (24) and functions 

i, i = 1, 2 are known. 

Case 2. Let f1 = 2 and f2 = 3 in (24) and functions 

i, i = 1, 2 are unknown. 

In Fig. 1-6 the transients are presented for the state 

vector x(t) which is obtained by proposed MBADC, 

the backstepping algorithm and the auxiliary loop 

algorithm for each of two cases. In Fig.1-6 black 

curve and red curve correspond to the signals x1(t) 

and x2(t) respectively. 
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Figure 1: The transients of the vector state x(t) with 

MBADC for case 1. 

 

Figure 2: The transients of the vector state x(t) with 

MBADC for case 2. 

 

Figure 3: The transients of the vector state x(t) with the 

backstepping algorithm for case 1. 

 

Figure 4: The transients of the vector state x(t) with the 

backstepping algorithm for case 2. 

The analysis of simulation results shows that the 

proposed MBADC guaranties the fulfillment of goal 

(2). The backstepping algorithm is stable if all 

functions in (24) are known, but the control system 

is sensitive to parametric uncertainty and 
external disturbances. 

 

Figure 5: The transients of the vector state x(t) with the 

auxiliary loop algorithm for case 1. 

 

Figure 6: The transients of the vector state x(t) with the 

auxiliary loop algorithm for case 2. 

The auxiliary loop algorithm may be unstable 

even we known all functions in the plant model. 

We also can note that the proposed algorithm 

(25)-(27) compensates parametric uncertainties and 

external disturbances with the required accuracy 

 = 0.04 achieved after 1 s for any uncertainties from 

the set . Additional investigation under saturated 

control input is shown that the proposed algorithm is 

stable while algorithms (Khalil, 2002; Tsykunov, 

2007) lose stability. These results are similar for 

multi-agent systems. 

5 CONCLUSIONS 

The paper describes the robust algorithm for 

compensation of mismatched disturbances with 

distributed time-delay. The synthesis of control 

system based on the backstepping algorithm and the 

auxiliary loop algorithm. The proposed algorithm 

guarantees stabilization of the plant state vector with 

the required accuracy. We also compare the 

proposed algorithm with the backstepping algorithm 

and auxiliary loop algorithm. The simulation results 

illustrate the efficiency and robustness of the 

suggested control system. 
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APPENDIX 

Lemma (Furtat, 2014; Furtat and Gushchin, 

2019). Let the system be described by the following 

differential equation 

),,,( 21 txfx  ,   (32) 
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Rx , 2),(col 21
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is Lipchitz continuous function in x. Let (34) have a 

bounded closed set of attraction  = {x | P(x) ≤ C} 

for µ2 = 0, where P(x) is piecewise-smooth, positive 

definite function in 1s
R . In addition let there exist 

some numbers C1 > 0 and 01   such that the 

following condition holds 
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Then there exists µ0 > 0 such that the system (32) 

has the same set of attraction  for µ2 ≤ µ0. 

Proof of Theorem. Taking into account (30), 

rewrite the equations for the error estimates 

)(ˆ)()( ttt iii    , i = 1, 2, ..., n as follows 

)()()( 1 ttt iii     , i = 1, 2, ..., n. (33) 

Rewrite (8), (15), (22) and (32) as the following 

system 

,...,,2,1),()()(

,1...,,2,1),()()(

),()()(

21

11

1111

nittt

njttecte

ttxctx

iii

jjjj




















 (34) 

where µ1 = µ2 = µ. To analyze system (34) the 

following Lemma is needed. 

Let us check conditions of Lemma. Consider 

system (34) for µ2 =0. Let P(x) = V(t), where V(t) is 

Lyapunov function defined in the form 










n

i

i

n

j

i ttetxtV

1

2
1

1

22
1 )(5.0)(5.0)(5.0)(  . (35) 

Take the derivative of V(t) along the trajectories 

(34), we get 

  .)()()()(

)()()()(

1

21
1

1

1

1
2

1

11
2
11









 



n

i

i

n

j

jjjj tttetec

ttxtxctV





 (36) 

Find upper bounds for the fourth term of (36): 

.1...,,2,1,5.05.0 2
10

21
01  


 njee jjjj   (37) 

Substituting (37) to (36), we get 
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,ˆˆ

2
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1

1
1

1

1

2
1

2
11 








 

n

i

ii

n

j

jj decxcV    (38) 

where 1
011 5.0ˆ 

  jj cc  and 0
1

1 5.0ˆ   
id . 

Obviously, there exist coefficients cj + 1, 

j = 1, 2, ..., n-1, µ1, and µ0 such that 0ˆ
1 jc , 

0ˆ id  and system (34) is asymptotically stable. 

Taking into account to (35), rewrite (38) as 

follows 

),()( tVtV      (39) 

where  nn ddccc ˆ...,,ˆ,,ˆ...,,ˆ,min2 2
1

121
  . 

Solving inequality (46) with respect to V(t), we 

get 

teVtV  )0()( .   (40) 

From (40) it follows that solutions of system (33) 

are exponentially tend to zero. 

Proof boundendess of all signals in the closed-

loop system. 

Taking into account (23), rewrite the first 

equation of (4) in the following form 

).(
)1)((

)( 12
1

11
1 tx

p

pcp
t







  

Since the function x1(t) is asymptotically stable 

than the functions 1(t), )(1 t , )(1 t  and 





0

2

1

)(

ih

dtx  , i = 1, 2, ..., n are bounded. From 

boundedness of 1(t) it follows that the signal )(ˆ
1 t  

is bounded. Taking into account (23) and system 

(34), the proof of boundedness of the signals i(t), 

)(ti
 , )(ti

  and )(ˆ ti , i = 2, 3, ..., n is same. 

Therefore, from (7), (14) and (21) the signals vi(t), 

i = 1, 2, ..., n – 1 and u(t) are bounded. Hence, the 

function x(t) is bounded. From (3), (10) and (17) it 

follows that the functions zi(t), i = 1, 2, ..., n are 

bounded. Therefore, the functions i and i
~  are 

bounded. Consequently, all signals in the closed-

loop system are bounded. 

According to Lemma there exist 0 > 0 such that 

for 1 ≤ 0 and 2 ≤ 0 the attraction set is the same 

as for 2 = 0. However, system (34) is not 

asymptotically stable for 2  0. It will be has some 

attraction set. Let us find the set of attraction of 

system (34) for 2  0. Taking into account result 

(38), take derivative in time of (35) along 

trajectories (33) for 1 = 2 = 0 

,
~

ˆ
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1
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1

1

2
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2
11 
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



 

n

l
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n

i
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n

j
jj decxcV    (41) 

where .5.0ˆ
0

1
0   

id  

Use the following upper bounds: 

,)(5.05.0)(5.0 0
21

0
2

0
21

0    tt lllll
  (42) 

where  2

...,2,1, ,

sup5.0 l
nlt

 


 . 

Taking into account (42), rewrite (41) in the 

form 

,5.0ˆ 0
2

22
1

1
0

1

1

2
1

2
11  ndecxcV

n

i
i

n

j
jj  









 (43) 

where 0
1

0   d  

Taking into account (35), rewrite (43) as follows 

 0)()( ntVtV  ,   (44) 

where  dccc n ,5.0,ˆ...,,ˆ,min2 1
021
  . 

Solving inequality (44) with respect to V(t), we 

get 

  .1)0()( 0
1  neVetV tt     (45) 

From (45) we can note that goal (2) holds. The 

theorem is proved. 
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