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Abstract: Many applications for Android and iOS process sensitive data and, therefore, rely on cryptographic APIs
natively provided by the operating system. For this to be effective, essential rules need to be obeyed, as
otherwise the attainable level of security would be weakened or entirely defeated. In this paper, we inspect the
differences between Android and iOS concerning the proper usage of platform-specific APIs for cryptography.
For both platforms, we present concrete strategies to detect critical mistakes and introduce a new framework for
Android that excels in pinpointing the origin of problematic security attributes. Applied on real-world apps
with cryptography, we find that out of 775 investigated apps that vendors distribute for both Android and iOS,
604 apps for iOS (78%) and 538 apps for Android (69%) suffer from at least one security misconception.

1 INTRODUCTION

In recent years, Android and iOS have emerged as the
two leading operating systems in the smartphone in-
dustry. Many applications for these platforms perform
security-critical tasks and require that sensitive data is
processed reliably. Sadly, there is little information on
how responsibly apps treat personal information, such
as passwords and encryption keys. A wrong applica-
tion of cryptography or security-critical functionality,
however, may expose secrets to unrelated parties and,
thereby, undermine the intended security level.

The research of security aspects on mobile plat-
forms has received a lot of attention. A majority of
publications in this field focus on the Android ecosys-
tem where the openness of the platform promotes pro-
gram inspection. This process of reverse engineering
is predominantly driven by the motivation to check
the existence and correct implementation of security
mechanisms. Manually verifying how critical func-
tionality has been realized can be challenging due to
the rising complexity and size of today’s programs.
Automated solutions, on the other side, are often tai-
lored to the inspection of particular parameters but
fail to perform a conclusive identification and analysis
of relevant program parts. This issue is aggravated
by the heterogeneity of Android and iOS, which does
not only cause distinct attack vectors but also prevents
inspection tools from being re-used for both platforms.

A common method to protect sensitive information
in Android and iOS apps is the use of system-provided
APIs that expose cryptographic functionality. While
these high-level interfaces reduce the burden of the
developer to understand how cryptographic primitives
work internally, it is still vital to use APIs with pa-
rameters that do not give a false sense of security.
Therefore, several platform-independent rules have to
be observed. Among them are for example, (1) the
need to prevent the electronic code book (ECB) mode
for block ciphers,(2) the need to avoid constant keys or
credentials that are in the worst-case hard-coded into
the app, or (3) the need to derive initialization vectors
(IV) from a pseudo-random number generator.

While analyzing thousands of Android apps in
2013, researchers have defined six common types
of mistakes in using cryptographic APIs and con-
firmed that issues were present in 88% of all inspected
apps (Egele et al., 2013). Since then, approaches have
been elaborated to better detect (Shao et al., 2014;
Muslukhov et al., 2018) and mitigate (Ma et al., 2016)
crypto API misuse in Android. Similar efforts have
also been made regarding iOS apps (Feichtner et al.,
2018; Li et al., 2014) where security problems have
been uncovered in 82% of apps checked. As related
work underlines that correct usage of system-provided
APIs for crypto purposes is rather the exception than
the norm, it stresses the need for further research that
discloses reasons for the high frequency of misuse.
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Problem. It is still unclear whether apps that are
available for both Android and iOS suffer from similar
implementation weaknesses. Available research of
misapplied crypto in mobile apps usually does not
cross the line between platforms. Thus, it is hard to
argue whether API misuse is the result of a developer’s
lack of knowledge or ignorance, or more likely due to
problematic design decisions in the system-provided
API and its too complex documentation.

Moreover, most related work for Android focuses
on highlighting the widespread of misapplied crypto
rather than pinpointing the exact origin of problematic
statements in code. While there is undoubtedly a need
for tools to warn about these kinds of problems, so far
they are unable to give clear advice to developers and
analysts about the origin of rule-violating code.

The ability to directly compare execution traces of
API invocations is important, since it is crucial to see
why methods are invoked with cryptographically weak
values. In addition, also with regards to the platform,
execution traces can provide valuable insight into why
some rules are significantly more violated than others.

Approach. To assess and compare the occurrence of
misapplied crypto in Android and iOS apps, we pursue
a three-stage process:

1. Streamline application analysis for both platforms
by establishing a workflow and output format that
ensures inspection results on Android and iOS are
comparable. To achieve that, we designed and im-
plemented a framework that bridges the previously
defined gap in analyzing Android apps.

2. Based on a general set of crypto API rules not to
violate, we identify detection strategies that hold
on both platforms. Due to the different design
of Android and iOS, individual constraints apply
regarding parameters crypto API methods can take.

3. Using analysis frameworks that incorporate the
predefined rules, we conduct an automated study
of misapplied crypto on a manually compiled set
of apps that include cryptography and that are offi-
cially distributed for both Android and iOS.

Results. We manually collected a set of 775 mobile
apps that apparently originate from the same vendor
and are distributed in the official stores of Android
and iOS. All of them had at least 1,000 installations or
ratings on each platform, and their use of cryptography
seemed obvious, i.e., password managers or secure
messengers. We found that 78% or 604 apps for iOS
and 69% or 538 apps for Android violated at least one
basic security rule. The analysis also showed strong
indications that the prevalence of some issues is almost
solely based on design decisions of the API.

Contribution. Our contributions are as follows:

1. We introduce a new framework to automatically
dissect Android apps, identify common misuse
of crypto APIs and exactly pinpoint the origin of
wrongly chosen security-relevant attributes 1. As
security rules might change over time or by APIs
being updated, we propose a modular design that
allows for easy adaptability to future needs. The
analysis output shows a precise data flow of param-
eters that are used in calls to crypto APIs. Apart
from analysts, the resulting report in XML format
can also easily be understood by developers, who
can use it to fix found issues quickly.

2. We derive concrete detection strategies for general
security rules and assess how they can be violated
on each platform. Used in combination with anal-
ysis frameworks for Android and iOS, problems
can reliably be identified based on given data flows
and, referring to the objective of this paper, the
results on both platforms are comparable.

3. We present the first comparative evaluation of mis-
applied crypto in Android and iOS apps. Applied
on a carefully compiled set of 775 apps for iOS
and their counterparts for Android, we assess the
spread of common mistakes in apps for both plat-
forms. We ask if developers know how to use the
system-provided APIs correctly and check if apps
that are considered to be secure on one platform,
typically fulfill the same expectations on the other.

Outline. The remainder of this paper is organized
as follows. In Section 2, we discuss related work. In
Section 3, we explain the structure of Android and
iOS apps, cryptography APIs, and the principle of
Program Slicing. In Section 4, we present our modular
solution for Android to automatically identify security-
relevant attributes in apps by means of static slicing.
Section 5 shows precise detection strategies that have
been modeled as ruleset within our framework. In
combination with an existing framework for analyzing
iOS apps, in Section 6, we study violations of security
rules in real-world apps. Section 7 concludes our work.

2 RELATED WORK

The analysis of cryptography-related problems on
mobile platforms has attracted a lot of attention in the
past years. In this section, we discuss several related
research that is closely related to our work.

1The source code of the framework is available at
https://github.com/IAIK/CryptoSlice
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Misapplied Crypto APIs. Evaluation of reports in
Common Vulnerabilities and Exposures (CVE) re-
vealed that 83% of all findings related to cryptography
in mobile applications were due to the wrong usage of
crypto APIs (Lazar et al., 2014). Focusing on the us-
ability of different crypto libraries, other studies (Acar
et al., 2017; Nadi et al., 2016) conclude that, aside
from too complex interfaces and insecure defaults, typ-
ical reasons for misuse are often to be found in poor
documentation, missing code samples, and further fea-
tures required by the library to work securely.

Although reducing the decision-space for the
choice of insecure parameters and a simplification of
APIs helps in preventing mistakes, a variety of po-
tential weaknesses remain (Chatzikonstantinou et al.,
2015). However, keeping security rules that match
these issues up-to-date can be challenging as APIs
evolve over time. A recent work, thus, concentrated
on automatically aligning security rules to changes in
API design (Paletov et al., 2018).

Detecting API Misuse. Among the first tools to
automatically check Android applications for misap-
plied crypto APIs was CryptoLint (Egele et al., 2013).
Based upon the reverse-engineering framework Andro-
guard, it dervies a control-flow graph over all functions.
Subsequently, static program slicing is employed to
inspect the parameters passed to cryptographic opera-
tions. Tested with almost 11,000 Android applications,
the authors found that 88% of them commit at least
one security mistake. As the reasoning of their rules
is valid for both Android and iOS, we re-implement
them using our own detection strategies. Inspired by
CryptoLint, the CMA analyzer pursued a similar ob-
jective (Shao et al., 2014). Besides rules for crypto
APIs, the authors also proposed to consider further
security-relevant rules. Newer case studies of crypto
API misuse on Android confirm that even more than
5 years after the first study, the general issue is still
widespread (Muslukhov et al., 2018; Ma et al., 2016).

In comparison with Android, only few related con-
tributions target the iOS platform. Supported by the
fact that Dalvik bytecode in Android applications can
be decompiled to Java code, existing tools for static
analysis are easily applicable. On iOS, solutions for
binary analysis have to be aligned to the specifics of
Objective-C and Swift, such as control-flow decisions
at runtime and computing points-to sets. In a recent
study, the impact of crypto misuse was assessed for a
set of iOS apps (Feichtner et al., 2018). The authors
tested 417 apps and found that 82% of them violated at
least one security rule. Other works for iOS concern-
ing APIs survey the usage of private APIs or pursue a
source-to-sink analysis using static and dynamic meth-
ods (Deng et al., 2015; Li et al., 2014).

Static and Dynamic App Analysis. Publications
concerning mobile app analysis usually involve ei-
ther dynamic or static analysis. Dynamic approaches
work by monitoring the live execution of an app. On
Android, tools like TaintDroid or TaintART can ana-
lyze and detect privacy leakage in the current execution
path (Enck et al., 2010; Sun et al., 2016). Nevertheless,
they inherently miss code paths that are not visited at
runtime. With the need to manually run each app, a dy-
namic approach is less suited for the objective of this
work and will, thus, not be considered more in-depth.

Methods for static analysis, as an alternative, typi-
cally apply taint tracking on a reverse-engineered rep-
resentation of Dalvik bytecode (Android) or ARMv8
64-bit code (iOS). On Android, with a source-like
representation, the main challenge is to follow all exe-
cution paths as sound and precisely as possible. Fully-
fledged frameworks, such as FlowDroid (Arzt et al.,
2014) and IccTA (Li et al., 2015) tackle this challenge.
Unfortunately, their general design prevents them from
being specifically applied using security rules. Self-
contained implementations and specific output formats
make them challenging to extend and, regarding our
purpose, do not contribute to making analysis results
between Android and iOS comparable.

3 BACKGROUND

In this section, we highlight substantial differences
of applications for Android and iOS with regards to
reverse-engeering. Followed by that, we present the
idea of program slicing and finally focus on the use of
system-provided crypto APIs on both platforms.

3.1 Reverse-engineering Apps

The heterogeneity of Android and iOS also extends
to the file formats used for apps of the corresponding
platform. In the following, we point out individual
characteristics and describe how apps have to be trans-
formed to be able to perform program inspection.

3.1.1 Android

Android apps are mostly developed in Java or Kotlin.
During compilation, stack-based JVM bytecode is
translated to register-based Dalvik bytecode that is
later interpreted by the Dalvik Virtual Machine (DVM).
By reusing and eliminating repetitive function signa-
tures, code blocks, and string values, the Dalvik com-
piler manages to effectively reduce the uncompressed
bytecode size. As a result, all parts are merged into a
single executable file named classes.dex.
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A classes.dex executable consists of multiple sec-
tions. Starting with a header, specifying the file type
using a magic number, and the format version number,
the subsequent sections reference all strings, type iden-
tifiers, class and method signatures, fields, and method
identifiers using unique IDs. The actual program code
is stored in a separate data section.

The process of reverse-engineering Android apps
usually consists in converting the Dalvik file to Java’s
.class format. Using predefined rules and constraint
solving mechanisms, tools, such as dex2jar2 or enjar-
ify3, translate register-based Dalvik bytecode to stack-
based JVM code. As this process is non-deterministic,
it often leads to spurious or wrong code translations.

Alternatively, instead of decompiling Dalvik byte-
code to Java, it can be represented as Smali code.
Smali is a mnemonic language to represent Dalvik
bytecode in a parseable format. As it keeps the se-
mantics of code very close to the original, it is often a
preferable choice over more intricate decompilation.

3.1.2 iOS

iOS executables are packaged in the Mach-O file for-
mat and enclose at least one 64-bit executable for
an ARMv8 CPU. The file is split into three sections:
Header, Load Commands, and Data. The first part
identifies the file as Mach-O file and includes informa-
tion about the target CPU architecture. Next, the file
layout and designated memory location of segments
are defined. The third section finally consists of dif-
ferent regions with program code and sections that are
loaded into memory during runtime.

In contrast to Android where apps are provided in a
reversible bytecode format, iOS applications are com-
piled to machine code that is tailored to a particular
CPU architecture. Manually inspecting the disassem-
bled code of an iOS binary can be challenging due to
the complexity and size of today’s apps. Automated
solutions, as an alternative, have to be aligned to the
characteristics of ARMv8 code for iOS. As apps for
iOS are developed in runtime-oriented languages, such
as Objective-C and Swift, most control-flow decisions
are made during runtime. Instead of calling methods
directly or through virtual method tables, it uses a
dynamic dispatch function in the runtime library.

Recent research (Feichtner et al., 2018) proposed
the following workflow to reverse-engineer iOS apps:
Decompile the ARMv8 disassembly of an app into
LLVM IR code4 and then compute points-to sets for
all pointers using a context-insensitive approach.

2https://github.com/pxb1988/dex2jar
3https://github.com/Storyyeller/enjarify
4https://llvm.org/docs/LangRef.html

3.2 Program Slicing

Static slicing can be used to determine all code state-
ments of a program that may affect a value at a speci-
fied point of execution (slicing criterion). The result-
ing program slices cover all possible execution paths
and allow conclusions to be drawn about the function-
ality of the program. In our Android framework, we
adopt the algorithm of (Weiser, 1981) to create slices
of Smali code and to find paths from the origin of a
parameter to its use, e.g., in cryptographic functions.

Weiser presented a method that models the data
flow within a function using equations. Relevant vari-
ables and statements are determined iteratively. The
algorithm consists of two steps (Tip, 1995):

1. Follow Data Dependencies: This step is executed
iteratively, if control dependencies are found.

2. Follow Control Dependencies: Includes relevant
variables of control flow statements. The first step
is repeated for affected variables.

3.3 Cryptography APIs

Mobile apps rely on cryptography to protect sensitive
data. In the following, key aspects of the cryptographic
APIs included in Android and iOS are highlighted.

3.3.1 Android

By including the Java Cryptographic Architecture
(JCA), Android supports a well-established set of se-
curity APIs. The JCA is provider-based which means
that the interfaces may be implemented by multiple
cryptographic engines in the background. The actual
providers and available algorithms vary based on the
used version of Android.

Symmetric and asymmetric encryption schemes
are made available to developers through the Cipher
class5. To use a specific scheme, developers pro-
vide a transformation string as an argument to the
Cipher.getInstance() method. The parameter en-
closes the algorithm name, cipher mode, and padding
scheme to use within the returned Cipher object.

3.3.2 iOS

On iOS, the platform libraries CommonCrypto and
Security expose APIs to perform security-related op-
erations. The first library provides symmetric ci-
phers, hash functions, and a key derivation function

5https://developer.android.com/reference/javax/crypto/
Cipher
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(PBKDF2). The second library features functional-
ity for asymmetric ciphers, certificate handling, and
keychain access.

4 PINPOINTING API MISUSE IN
ANDROID APPS

Designed for the inspection of single aspects in An-
droid apps, our framework features static analysis
on definable slicing patterns in order to identify and
highlight the improper usage of security-relevant func-
tionality. The modular architecture of the Java-based
framework offers the ability to automatically extract,
disassemble and investigate programs. By applying
static backtracking techniques, the control and data
flow of relevant code segments is opened up and serves
as input for further evaluation. For this purpose, our
framework incorporates rules (see Section 5) to make
reliable assumptions about the degree of security, com-
mon cryptography-related constructions are able to
provide. Besides analyzing these constructions, it is
determined whether they deviate from being employed
correctly. The framework also supports the manual
analysis of apps by delivering well-arranged graphs,
representing the static slice of user-definable patterns.

In comparison with similar solutions, such as
CMA (Shao et al., 2014) or CryptoLint (Egele et al.,
2013), we can give clear advice about the origin of
rule-violating code, rather than being only able to con-
firm its existence. In experiments, we also noticed that
related work tend to flag all apps that violate any rules
as insecure. While this is true in the strict sense, it
disregards the practical impact of rule violations: apps
might use crypto APIs also for other purposes than
encryption. Without looking at the actual execution
paths, it might go unnoticed if encryption is only em-
ployed for obfuscation. A similar case occurs if, e.g.,
libraries used in apps initialize variables holding en-
cryption keys, salt values, or IVs with insecure default
values but overwrite them before actual usage. As a
consequence, our framework does not draw a binary
conclusion on the (in)security of apps but provides
reports with potentially problematic execution paths,
as identified by the conditions in our security rules.

The overall workflow of our framework, as illus-
trated in Figure 1, can be summarized as follows:

1. Preprocessing: We translate the Dalvik bytecode
from an Android app archive in .apk format to
Smali code and parse it to an object representation.

2. Static Slicing: Based on the given security rules
defining abstract slicing patterns, we derive con-
crete slicing criteria. We perform static backtrack-

Preprocessing

App Object

Static Slicing

paths.xml

.apk Input

graph.xml

Slice tree report.xml

Security Rules

Analysis Task

Figure 1: Analysis workflow.

ing, follow all possible execution paths, and orga-
nize these data flows in a graph representation.

3. Security Rule Evaluation: Using a breadth-first
search, we browse individual execution paths and
check whether they comply with our security rules.

In the following, we provide a more detailed in-
sight and explain the individual analysis steps.

4.1 Preprocessing

Although Android code is usually based on Java or
Kotlin code, we do not try to decompile Dalvik byte-
code back to Java. As pointed out by the creators of the
Dare decompiler (Octeau et al., 2012), decompilation
is only likely to succeed for 95% of the app classes. In-
stead, we disassemble Dalvik bytecode to Smali code,
a register-based intermediate language. Therefore, the
file classes.dex contained in each Android app archive
is processed using the tool baksmali6. As a result, we
obtain a list of files with code similar to Java, which
we parse into an object representation that resembles
all essential attributes and basic blocks.

4.2 Static Slicing

The ability to trace information in backward direc-
tion is a core component of our framework in order to
isolate those parts of an app that are relevant regard-
ing a specific slicing criterion. In the following, we
present the implemented techniques for static slicing
and highlight practical challenges.

4.2.1 Slicing Patterns

Slicing naturally depends on a slicing criterion ref-
erencing a specific line of program code. Consider-
ing our objective to track arbitrary data flows, a more
generic representation is needed. Therefore, we pro-
pose so-called slicing patterns that conceptually de-
scribe an object to track in XML format.

6https://github.com/JesusFreke/smali
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Patterns include no references to particular pro-
gram lines but comprise all necessary info to dynam-
ically build slicing criteria. Using slicing patterns in
our security rules, they become applicable for a large
set of targets and lead to a multitude of slicing criteria.

In the default behavior, slicing criteria are deter-
mined by searching for all invoke statements match-
ing the given pattern. Therefore, all code lines of
an application are scanned, looking for the provided
method signature. For each match, the appendant pro-
gram statement is considered as a starting point for
slicing. Subsequently, the name of the register to track
is located by associating the index of each occurring
register with the given parameter (index) of interest.
As a result, a set of suitable slicing criteria is delivered.

4.2.2 Backtracking

Backward slicing traverses all preceding code state-
ments that have influenced a specific register at the
initial slicing criterion. Starting at a particular state-
ment, we follow all usages of a register back to the
point where it is defined. This approach is commonly
referred to as Use-Definition (or short use-def). The
resulting slice models the data flows of all variables
that affect the starting point.

For each criterion, first the register is identi-
fied which matches the defined parameter of interest.
While backtracking the register, all involved program
statements are recorded as slice nodes and added to a
slice tree. Tracking ends when constants are assigned
to the currently tracked register and slicing is no longer
feasible. Likewise, the slicing process terminates when
the tracked register is overwritten or track is lost, e.g.,
when referenced methods cannot be resolved.

Technically, our implementation works using a
FIFO queue. The to-do list collects all registers, fields,
return values, and arrays that are subject to tracking.
Moreover, it holds a reference to all objects that have
already been followed and excludes them from being
re-processed. When requested by the slicer, the queue
returns the next object to track, which includes the
register to track and the location of the next opcode.

The implemented slicing algorithm is not contin-
gent on previously generated program dependency
graphs and, hence, supports fast and computationally
inexpensive program analysis. Nevertheless, to lever-
age the potential of today’s multi-core processors, the
framework supports the analysis of multiple Android
apps in parallel. Thereby, it is possible to inspect large
amounts of apps in minimal time.

4.2.3 Slice Trees and Constants

The slicing process dynamically builds a tree with all
encountered slice nodes for a specific slicing criterion.
The top node is always the criterion, deduced from
the pattern since it represents the root of all possible
execution paths that can be modeled. Subjacent nodes
stand for all code lines which are contained in the
slice. In case there are multiple execution paths (e.g.
if-else statement), a slice node might have links from
multiple predecessor nodes. When code statements are
iterated multiple times (e.g. for or while loop) cycles
are induced between vertices. Each (intermediate)
node involves a list of all predecessor nodes, including
the originating register name and the register name,
related to the current program statement.

A slice tree can comprise one or multiple leaf nodes
whereas each describes either a constant or indicates
an abruptly ended slicing process. Assuming that a
constant value, such as an integer, an array, or a string,
is copied into the tracked register, slicing may stop
since the register value is redefined. For backward
slicing this signifies that the tracking process has led
to one or more values that affect the slicing criterion.
Leaf nodes are also inserted in case slicing loses track.
This happens, for instance, when registers are set as
parameters in calls to unresolvable methods.

Since all disclosed path endpoints are invariant,
we regard them as constants. Aside from containing
information about values that are assigned to regis-
ters, constants also explain why paths end at certain
points. This is achieved by retaining metadata from
slicing. For example, each constant is assigned a cate-
gory which clearly defines the type of the underlying
value. Similarly, in case tracking stops abruptly, con-
stants are put in place to describe the cause.

4.3 Security Rule Evaluation

Each of the implemented security rules first tries to
find predefined method signatures and then, based on
the found matches, verifies whether they correspond
to the predefined security model. In case a rule is vio-
lated, an alert is issued, accompanied by details about
the problematic statement. Thereby, the framework
manages to evaluate the exact location of rule-violating
code lines and writes information about the involved
class, method and code to the console as well as to
an XML report. As a consequence, the result is easily
readable and can, moreover, be interpreted automati-
cally by parsing the XML report. Evidently, to also
consider the context in which security-related findings
appear and to prevent false positives, studying linked
execution paths can provide valuable insights.
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The security rules are executed in consecutive order
and independent from each other. The only shared
feature is a reporting system, used to summarize the
output of all evaluated checks. Each rule incorporates
the entire workflow described in the previous sections.
Due to the extensible approach, adding further security
rules is supported by requiring only little effort.

5 CRYPTOGRAPHIC API MISUSE

In this section, we present detection strategies for a
set of security rules we use to detect common security-
critical implementation flaws in Android and iOS apps.

Similar to related research (Muslukhov et al., 2018;
Feichtner et al., 2018), we investigate whether apps
that use system-provided crypto APIs achieve a crypto-
graphic notion of IND-CPA security. Indistinguishabil-
ity under a chosen plaintext attack or IND-CPA states
that attackers are unable to extract even a single bit of
plaintext from a ciphertext within a certain amount of
time. Encryption can be considered secure if it is IND-
CPA secure (Egele et al., 2013). In practice, however,
faulty implementations or wrongly-chosen parameters,
e.g., a constant or hard-coded encryption key, thwart
IND-CPA security. Therefore, six general rules were
proposed to keep encryption secure. In the following,
for each we derive concrete detection strategies that
can immediately be applied for Android and iOS apps.

Rule 1: Do Not Use ECB Mode for Encryption.
In ECB mode, data blocks are enciphered indepen-
dently from each other and cause identical message
blocks to be transformed into identical ciphertext
blocks. Consequently, data patterns are not hidden
and confidentiality may be compromised.

On Android, developers can request an instance of
a particular cipher by passing a suitable transformation
value as a parameter to Cipher->getInstance().
Typically, this value is composed of the algorithm, an
operation mode, and the padding scheme to use. E.g.,
to request an instance providing AES in ECB mode
with PKCS#5 padding, “AES/ECB/PKCS5Padding”
has to be specified. While it is indispensable to de-
clare an algorithm, explicitly setting mode and padding
may be omitted. In that case, the underlying provider
will implicitly assume ECB mode. Besides AES, this
affects all symmetric block ciphers.

1. Determine all invocations of the method
Cipher->getInstance() and for each occur-
rence, backtrack the first parameter, register v1,
holding the transformation value.

2. Find all possible execution paths, where the end-
point resembles a transformation or specifies a

symmetric block cipher, such as AES or DES.

3. For each selected path, verify whether it in-
cludes parts of a transformation value, e.g.
/OFB/NoPadding. If found, complete the algo-
rithm name in the path endpoint with the deter-
mined mode and padding descriptor.

4. Raise an alert if the transformation value either
explicitly declares ECB mode, or specifies only
the algorithm name.

On iOS, by default CBC is preferred over ECB mode.
ECB mode is only used when the developer explicitly
specifies to use this mode of operation.

1. For each invocation of CCCryptorCreate(),
CCCrypt(), CCCryptorCreateWithMode(), or
backtrack the third parameter, options, specify-
ing whether to use ECB or CBC mode.

2. Raise an alert if the any of the possible execution
paths ends with a constant value of 2 which would
indicate ECB mode (kCCOptionECBMode).

Rule 2: No Non-random IVs for CBC Encryption.
Constant or predictable initialization vectors (IVs) lead
to a deterministic and stateless encryption scheme,
susceptible to chosen-plaintext attacks. If CBC mode
is selected for encryption, developers should provide a
non-random IV. If no IV is given at all, the cipher uses
an all-zeros IV, which is at least as bad as a constant.

By analyzing byte arrays set as IVs, we learn if IVs
are composed of static values or deduced from con-
stants, e.g. strings. IVs can also be predictable when
weak pseudo-random number generators (PRNG) are
employed. Besides probing for specific indicators, we
are naturally unable to make assumptions about the
predictability of values. Similarly, non-static IVs can-
not implicitly be assumed unpredictable.

On Android, to specify an IV for encryption, typi-
cally an AlgorithmParameterSpec is passed as argu-
ment to Cipher->init(). If it encapsulates an object
of the type IvParameterSpec, an IV is manually de-
fined rather than being generated randomly.

1. For all invocations of Cipher->init() with an
AlgorithmParameterSpec object as 2nd argu-
ment, backtrack the value of this parameter.

2. Using the found list of constants, verify whether
an object of the type IvParameterSpec is created
by calling its constructor. Abort, if none is found.

3. From each available slicing path, extract the sub-
path that begins at the iv argument, passed to the
constructor of the IvParameterSpec object.

4. Raise an alert if the iv parameter is derived from
a statically defined byte array, a string (e.g. using
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String->getBytes()), or by calling the insecure
Random API.

On iOS, we assert that an IV is evidently generated
using a cryptographically secure PRNG.

1. For each invocation of CCCryptorCreate(),
CCCrypto(), or CCCryptorCreateWithMode(),
we backtrack the 6th parameter, specifying the IV.

2. Alert if a possible execution path does not call
CCRandomGenerateBytes() in CommonCrypto
or SecRandomCopyBytes in the Security library.

Rule 3: Do Not Use Constant Encryption Keys.
Keeping encryption keys secret is a vital requirement
to prevent unrelated parties from accessing confiden-
tial data. Statically defined keys clearly violate this
basic rule and render encryption useless.

On Android, SecretKeySpec can be used to spec-
ify a key. If derived from a constant, it must not be
used for symmetric encryption. However, with public-
key crypto, the encryption key is not a secret and can
also be wrapped as a SecretKeySpec object. Thus,
we distinguish between keys for symmetric and asym-
metric encryption and also check the 2nd parameter of
SecretKeySpec, which specifies the algorithm to use.

1. For all invocations of SecretKeySpec->init(),
backtrack the first parameter, holding the key.

2. Verify for all contained constants if the key param-
eter is derived from a statically defined byte array,
or a string (e.g. using String->getBytes()).

3. If at least one possible key has been found, also
backtrack the 2nd parameter of the corresponding
SecretKeySpec object and extract all data flows.

4. For each execution path, verify whether one of
the following asymmetric encryption schemes is
specified: DHIES, ECIES, ElGamal, RSA. If the
algorithm is not a known public-key algorithm, we
conclude that the statically defined key is used for
symmetric encryption and raise an alert.

On iOS, we assure that any byte array specified as key
does not exclusively consist of constant values.

1. For each invocation of CCCryptorCreate(),
CCCrypto(), or CCCryptorCreateWithMode(),
we backtrack the 4th parameter, holding the key.

2. For any path, we ensure that key elements originate
from a non-constant or hard-coded source.

Rule 4: Do Not Use Constant Salts for PBE. A
randomly chosen salt ensures that a password-based
key is unique and slows down brute-force and dictio-
nary attacks. Salts passed to key derivation functions
(KDF), thus, must not exclusively depend on constant
values.

On Android, parameters to use with KDFs can be
declared using the PBEKeySpec API. Subsequently, a
SecretKeyFactory instance transforms the password
to an encryption key by invoking generateSecret().

1. Find all invocations of PBEKeySpec->init() or
PBEParameterSpec->init() and backtrack the
parameter with the salt value.

2. Raise an alert if any execution path providing
the salt parameter, is derived from a stati-
cally defined byte array, a string (e.g. using
String->getBytes()), or by calling the insecure
Random API.

On iOS, CCKeyDerivationPBKDF() must not be pro-
vided with an entirely constant salt value.

1. For all calls to CCKeyDerivationPBKDF(), back-
track the 4th parameter, specifying the salt value.

2. For any execution path, we ensure that byte arrays
with the salt originate from a non-constant origin.

Rule 5: Do Not Use < 1,000 Iterations for PBE. A
low iteration count significantly reduces the costs and
computational complexity of table-based attacks on
password-derived keys. We, thus, expect apps to use
≥ 1,000 rounds in KDFs, as proposed by RFC 80187.

On Android, the iteration count for PBE is declared
using the PBEKeySpec or PBEParameterSpec API.

1. Find all invocations of PBEKeySpec->init() or
PBEParameterSpec->init() and backtrack the
parameter with the iteration count value.

2. Raise an alert if any execution path terminates at a
constant integer whose value less than 1,000.

On iOS, the rounds parameter of the method
CCKeyDerivationPBKDF() specifies the amount of
iterations to use for key derivation.

1. For all calls to CCKeyDerivationPBKDF(), back-
track the 7th parameter with the iteration count.

2. For any execution path, we raise an alert if it does
not end at a constant integer value ≥ 1,000.

Rule 6: Do Not Use Static Seeds for Random-num-
ber Generation. If a PRNG is seeded with a stat-
ically defined value, it will produce a deterministic
output which is not suited for security-critical applica-
tions.

With Android 4.2 (API level 16), the default PRNG
provider has been changed from Apache Harmony
to the native AndroidOpenSSL. Before that, it was
possible to override the internally designated seed with
a custom value which, in case it was constant, caused
the generation of deterministic output values.

7https://tools.ietf.org/html/rfc8018#section-4.2
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1. For all invocations of SecureRandom->init(),
backtrack the first parameter, holding the byte
array with the seed. Likewise, for all calls to
SecureRandom->setSeed() compute slices for
the seed argument, which may consist of a byte
array or eight bytes stored in a long integer value.

2. For all found execution paths, check if any supplies
the seed parameter with constant input values.

3. An alert is raised if the parameter is derived from
a statically defined byte array, a string (e.g. using
String->getBytes()), or a 64-bits integer.

On iOS, the platform APIs do not support seeding the
underlying PRNG. This misuse, thus, cannot occur.

6 EVALUATION

In the following study, we present the first comparative
evaluation of misapplied crypto APIs in Android and
iOS apps. Related research regarding crypto misuse
never crossed the line between platforms. As it has
already been demonstrated that security-critical imple-
mentation weaknesses are prevalent in both Android
or iOS, we focus our analysis specifically on apps that
are available for both platforms.

The goal of this evaluation is twofold. First, we
ask if developers know how to use system-provided
APIs correctly and give an impression of how often
security misconceptions occur in popular apps. To
prevent false positives or out-of-context findings, we
manually study reported execution traces. Second, we
ask how likely it is that apps which vendors distribute
for both platforms, also violate the same security rules.
Therefore, we compare the findings of mistakes in
apps for Android with those in their iOS counterparts.

6.1 Method and Dataset

For the automated study of Android apps, we employ
our framework, as presented in Section 4. For each
inspected app, it outputs a report in XML format,
lists found rule violations and associated execution
paths. For iOS, we rely on an existing open-source
framework8, which pursues a very similar approach
and emits HTML reports with execution traces for in-
spected security properties. We, however, align the
security rules to the detection strategies presented in
Section 5 to establish for both platforms comparable
conditions to detect crypto API misuse.

8https://github.com/IAIK/ios-analysis

Table 1: Dataset of apps for evaluation.

Count [%]

Downloaded from iOS App Store 1,322
Matching Android apps in Google Play 976
iOS: No CommonCrypto calls 172 18%
Android / iOS: With crypto API calls 804 82%

iOS: App not decompilable 21 3%
Android: App archive corrupted 4 0.5%
Android / iOS: Out of memory 4 0.5%

Analyzable apps with crypto API usage 775 96%

6.1.1 Dataset

We manually compiled a set of apps where the use
of cryptography seemed inevitable to provide specific
functionality. Empirically, we found that this require-
ment affects at least apps for password management,
secure messaging, document encryption, sensitive data
exchange, and secure cloud storage.

While Google Play uniquely identifies apps by
their package name, e.g., com.example, the iOS App
Store features no comparable identifiers. We were,
thus, looking for other descriptors suited to match apps
that were provided for both platforms. We found that
for the vast majority of multi-platform offered apps,
the title and/or description text used in the stores are
usually widely consistent over both platforms.

Consequently, we identified and downloaded 1,322
free apps from the iOS App Store, where we assumed
the use of cryptography. Using the title and description
text of each app, we were searching Google Play for
an Android pendant and were successful for 976 apps.
All of them had at least 1,000 installations or ratings
as indicated by Google Play and the iOS App Store.
With a version for Android and iOS each, in total, we
have acquired 2×976 = 1,952 apps for analysis.

After fetching iOS apps via iTunes, we used
Clutch9 on a jail-broken iPhone to decrypt them. By
inspecting their library bindings, it became evident that
only 82% or 804 iOS apps included calls to Common-
Crypto. As the remaining set of 172 apps without calls
to system-offered crypto APIs also provided function-
ality where the use of cryptography seemed reasonable,
security might be missing or provided by third-party
libraries, which our rules are not designed to cover.

6.1.2 False Positives and False Negatives

As the two frameworks do not only warn about the ex-
istence of problematic statements but can also pinpoint
their origin, we leverage the data flow seen in exe-
cution paths to assess the soundness of issues found.

9https://github.com/KJCracks/Clutch
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By manually validating all obtained analysis reports,
we prevent findings of false positives and ensure that
all rule violations indeed occur in code that has real
practical impact on the security of apps.

False positives or out-of-context results can occur,
e.g., if encryption is only used for obfuscation and
not for actually enciphering secret messages. Like-
wise, apps might include code where crypto routines
are only initialized with insecure default attributes but
never used. By manually examining the execution
traces before acknowledging a rule violation, we mini-
mize false positives that could have occurred, e.g., if a
backtracked value was a parameter to a function that
had never been invoked.

As our security rules evaluate method signatures
of system-provided APIs, we can be confident that
these calls are always found, even if apps obfuscate
their program code. On Android and iOS, we, thereby,
effectively avoid false negatives.

6.2 Results

In total, we studied 976 apps where vendors provided
a version for Android and iOS via the official app
stores. As summarized in Table 1, we did not find
references to CommonCrypto in 18% or 172 apps
for iOS. Irrespective of whether they actually con-
tain cryptography-related code, we excluded these
apps from further analysis, since we knew a priori
that our security rules would not detect any violations
in them. Interestingly, for all remaining 804 iOS apps
that use the CommonCrypto API, also all correspond-
ing Android pendants included calls to methods in
java.security.* or java.crypto.*. This strongly
indicates that crypto is actually needed for the correct
functionality of these apps, rather than being just in-
cluded incidentally, e.g., via used third-party libraries.

The inspection of 24 iOS and 5 Android apps failed
due to errors in processing the app archives. Of them,
21 apps for iOS could not be decompiled from ARMv8
to LLVM IR code due to missing mappings of instruc-
tion codes. Also, our Android framework was unable
to process four apps, where the archive was damaged,
despite repeated tries to re-download a functional ver-
sion from Google Play. For another four apps, out
of memory errors occurred during pointer analysis on
iOS or register tracking on Android.

For 775 apps supplied to the iOS framework and
our solution for Android, the analysis workflow ter-
minated successfully. For each inspected application,
we obtained a generated report that included the re-
sult of the performed security checks and for all rule
violations, listings with problematic execution paths.

6.2.1 Violations of Security Rules

We found that 78% or 604 apps for iOS and 69% or 538
apps for Android commit at least one security-critical
mistake. Among them, we identified 52% or 404 apps,
where the Android and iOS versions of the same app
commit at least one mistake on both platforms.

Table 2 lists our observations of violated security
rules. We discuss the findings in more detail below.

Rule 1: Do Not Use ECB Mode for Encryption.
On Android, we observed that 77% or 587 apps use
instances of symmetric ciphers where the underlying
mode of operation is ECB. Manually studying found
execution path clarifies that block ciphers are mostly
declared without explicitly specifying the mode and
padding to use. This causes the underlying provider to
apply ECB mode implicitly. Although the use of AES
is predominant, at times we also noticed Cipher ob-
jects, specifying the nowadays weak DES algorithm.

CBC being the default mode on iOS, 25% or 192
apps explicitly declared to use ECB. In 22% or 172
apps, this mode was specified in the iOS version and
also deployed in Android pendant of the same app.

Rule 2: No Non-random IVs for CBC Encryption.
35% or 271 apps on Android specified a static IV orig-
inating from hard-coded byte arrays or constant values.
Manually verifying the results, we found that the ma-
jority derived a cryptographically secure IV using the
API SecureRandom. Some Android apps relied on the
Random API instead, which leads to predictable IVs.

On iOS, this was the most prominent problem: 64%
or 494 apps used a constant IV. Mostly, no IV was
declared at all, thus, implicitly causing an all zeros IV.

Rule 3: Do Not Use Constant Encryption Keys.
Hard-coded encryption keys were identified as an issue
in 41% or 320 Android apps and 59% or 455 iOS apps.
Regarding the prevalence in apps for both platforms,
31% or 243 apps used constant data as key material.

Table 3 highlights the provenience of key material.
The according execution traces show that most apps
which employ constant keys do so by deriving them
from string values or by declaring byte arrays with
constants. In practice, apps typically create distinct
instances of Cipher (Android) and CCCryptor (iOS)
objects for encryption and decryption. However, as
they usually refer to the same constant key material,
the total number of hard-coded secrets exceeds the
number of apps with this issue.

Besides being entirely variable or static, from
studying the execution paths, we learned that encryp-
tion keys can also be mixed, consisting of a statically
defined key concatenated with a non-constant value.
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Table 2: Violations of security rules in 775 apps for Android and iOS.

Rule (R) Overall rule violations in apps Rule violations in same
Android iOS apps on both platforms

R1: Do not use ECB mode for encryption 598 (77%) 192 (25%) 172 (22%)
R2: No non-random IVs for CBC encryption 271 (35%) 494 (64%) 200 (26%)
R3: Do not use constant encryption keys 320 (41%) 455 (59%) 243 (31%)
R4: Do not use constant salts for PBE 112 (14%) 84 (11%) 49 (6%)
R5: Do not use < 1,000 iterations for PBE 119 (15%) 145 (19%) 104 (13%)
R6: Do not use static seeds for PRNGs 25 (3%) - -

Applications with ≥ 1 rule violations 538 (69%) 604 (78%) 404 (52%)
No rule violation 237 (31%) 171 (22%) 371 (48%)

Interpreting these keys as constants would be inaccu-
rate as we are unable to make assumptions about the
entropy provided by the non-constant part.

Rule 4: Do Not Use Constant Salts for PBE. We
identified that 14% or 112 Android apps and 11% or
84 inspected iOS apps passed constant salt values as
input to key derivation functions. This effectively un-
dermines the protection of password-based encryption
against table-based attacks. On both platforms, most
apps violating this rule declared a static byte array ini-
tialized with zero values. In 6% or 49 apps, this issue
occurred in both versions of the same app.

Rule 5: Do Not Use < 1,000 Iterations for PBE.
On Android, we found that 15% or 119 apps employ
less than the minimally advised amount of 1000 itera-
tions for Password-Based Encryption (PBE). Likewise,
19% or 145 apps for iOS and 13% or 104 apps on
both platforms declared a too small value. Regarding
the distribution of the iterations, most rule-violating
apps specified a count of either 20, 50, 64, or 100. In
execution traces of iOS apps without this issue, we
could observe a significant prevalence of apps using
CCCalibratePBKDF() API to dynamically derive an
iteration count, rather than hard-coding a value.

Rule 6: Do Not Use Static Seeds for Random-num-
ber Generation. As the platform APIs on iOS do
not offer a seedable PRNG, this rule can only be vi-
olated by Android apps. Changes in the underlying
PRNG implementation have globally fixed this vulner-
ability for systems running Android 4.2 (API level 16)
or newer. Due to this and only 3% or 25 Android apps
declaring a constant seed for use with SecureRandom,
the practical impact of this rule violation is limited.

6.3 Discussion

The study of 775 apps that were distributed for An-
droid and iOS revealed that in 52% or 404 apps
security-critical mistakes were present in both versions.

Table 3: Origin of constant secrets used as key material.

# Violations on Android iOS

Constant string used as encryption key 238 305
Constant byte array as key 96 164
Hash value of constant string 9 36
iOS: Secret retrieved from NSUserDefaults - 28

Applications violating rule 3 320 455

The individual rule violations per platform have clearly
shown a trend that some misuses happen more often
on a specific platform. At the same time, it became
obvious that the likelihood for some other mistakes is
independent of a particular API design.

The most significant difference in rule violations
across platforms was observed in the first rule targeting
the use of ECB mode for encryption. The high number
of 77% or 598 Android apps with this issue can be
attributed to the fact that, unless a mode is specified,
an implicit fallback to ECB occurs. In contrast, on
iOS only 25% or 192 apps explicitly specified ECB
instead of the default mode CBC. This circumstance
strongly indicates that the prevalence of this problem
on Android is caused by an insecure default setting.

Another notable difference between the two plat-
forms has shown regarding the use of non-random IVs
for CBC encryption. On Android, if no IV is specified,
Cipher will automatically generate a strong IV that
can be retrieved via Cipher->getIV(). As opposed
to that, not declaring an IV on iOS will cause that a
NULL (all zeros) IV is used for encryption. This again
highlights the importance of secure default settings.

The most frequently violated issue in apps for both
platforms affects constant encryption keys. Compared
with other security violations, the key parameter al-
ways has to be provided manually. Sadly, both devel-
opers of Android and iOS apps, seem to be not aware
of the radical consequences of hard-coding secrets.

Summarizing, we have seen that the origins of mis-
takes fall into two categories: firstly, those which are
based on insecure default values in the correspond-
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ing API, e.g., implicit ECB mode on Android, or a
NULL IV on iOS, and secondly, security problems
that occur due to developers not carefully handling
security-critical parameters, like encryption keys.

As a remedy, we propose a two-fold strategy:

1. API Changes: Unsafe default values in APIs,
such as ECB mode on Android, should be re-
placed by secure alternatives. In occasions, where
omitting arguments impairs security, e.g., a NULL
value as IV on iOS, a cryptographically secure ran-
dom value should be generated instead. Although
such profound changes might break compatibility
with existing code, they would require develop-
ers to improve their implementations and, thereby,
minimize the prevalence of problematic code.

2. Raising Awareness: Modern IDEs for application
development, such as Android Studio or Apple
Xcode, feature sophisticated code inspection. Fol-
lowing our recipes presented to evaluate security-
critical attributes (see Section 5), code analysis in
IDEs should be extended to warn about harmful
practices, such as hard-coded encryption keys.

7 CONCLUSION

In this paper, we studied misapplied crypto APIs in
Android and iOS apps. By introducing an easily adapt-
able framework to track data flows throughout Android
apps, we succeed in reliably pinpointing the origin of
wrongly chosen security-relevant attributes. Therefore,
we elaborated and implemented detection strategies to
assess the cryptographic soundness of parameters that
are used with encryption and key derivation APIs.

We presented the first comparative evaluation of
crypto API misuse across platforms. Evaluated using a
carefully selected set of 775 apps that were distributed
for Android and iOS, we found security mistakes in
69% or 538 Android apps and 78% or 604 iOS apps.
Unsafe default values in platform-provided APIs and
missing developer awareness strongly contribute to
this widespread of problems. Our results also highlight
the need to compare concrete execution traces of API
invocations to better understand the context of methods
that are invoked with cryptographically weak values.
Finally, our study underlines that misapplied crypto is
still a severe issue in Android and iOS apps.
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