
Applications of Automated Model’s Extraction in Enterprise Systems

Cristina Marinescu
LOOSE Research Group, Politehnica University Timişoara, Romania

Keywords: Enterprise Systems, Meta-models, Models, Static Analysis.

Abstract: As enterprise software systems become more and more complex, the need of automated approaches for their
understanding and quality assessment increases. Usually the automated approaches make use of a meta-model
according to the information is mainly extracted from the source code but when considering enterprise systems,
the meta-model should contain information from two different paradigms (e.g., object-oriented and relational)
which are not enough to be loaded only from the source code. In this paper, based on a specific meta-model
for enterprise systems, we present a set of applications (approaches) which help us to understand and assess
the quality of the design, as part of the maintenance process.

1 INTRODUCTION

As object-oriented systems become more and more
complex, the need of using proper reverse engineering
as well as quality assurance techniques upon such sys-
tems has increased significantly. Moreover, the men-
tioned activities become even more difficult, when
considering a category of software systems, namely
enterprise. These systems are about the display, ma-
nipulation, and storage of large amounts of complex
data and the support or automation of business pro-
cesses with that data (Fowler, 2003). Consequently,
almost all enterprise systems involve two program-
ming paradigms: the object-oriented one, for imple-
menting the entire business logic, and the relational
paradigm, for ensuring the persistency of the involved
data.

As stated in (Rugaber and Wills, 1996), one
step toward a research infrastructure accelerating the
progress of reverse engineering is the creation of
an intermediate representation of software systems.
Probably the best-known intermediate representation
of a software system is its model. The model of
a given software system contains specific informa-
tion extracted from the source code based on a meta-
model. The meta-model specifies the relevant entities
(e.g., classes, methods) and their relevant properties
and relations (e.g., inheritance, method calls) found
in an object-oriented system. According to the study
we present in (Marinescu and Jurca, 2006), it is not
suitable to perform reverse engineering upon an en-
terprise system using a meta-model for representing

a regular object-oriented system (i.e., a system which
does not involve persistency). In order to perform re-
verse engineering on enterprise software systems we
need a specific meta-model which contains, on one
hand, entities from the object-oriented part and, on
the other hand, entities regarding the relational part of
the enterprise system and the interactions between the
two paradigms. Based on such a meta-model, in this
paper we define new techniques which facilitate the
maintenance of enterprise systems.

The paper is structured as follows: in Section 2
we present our approach for modeling enterprise ap-
plications. Next (Section 3), we introduce the facili-
ties provided by our approach, and we conducted an
experiment based on three case-studies. The paper
concludes with a discussion on related work (Section
4) and some final remarks towards the future work
(Section 5).

2 A META-MODEL FOR
ENTERPRISE SYSTEMS

In this section we present each type of design infor-
mation from our meta-model.

Modeling Object-oriented Entities. We model the
object-oriented entities using an object-oriented lan-
guage. In this case, the meta-model is represented as
an interconnected set of data classes, usually one for
each type of design entity. The fields are either el-

254
Marinescu, C.
Applications of Automated Model’s Extraction in Enterprise Systems.
DOI: 10.5220/0007916102540261
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 254-261
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ementary properties of that design entity or links to
other related data structures. For example, the struc-
ture that models the Class design entity has a field
of type Method that establishes its connection to the
methods the class contains. The model of the sys-
tem, extracted based on the meta-model, contains also
information regarding the calls (i.e., which methods
are called by a particular method) and accesses (i.e.,
which variables are accessed by a particular method)
from existing methods.

Modeling Relational Entities. According to the
presentation of relational databases from (Ramakrish-
nan and Gehrke, 2002), a relational database consists
of one or more tables where each table has its own
schema. A schema of a table consists of the name of
the table, the name of each field (or attribute, or col-
umn) and the type of each field from the table. Ad-
ditionally, integrity constraints can be defined on the
database schema. Thus, our meta-model for repre-
senting relational databases contains the entities Table
and Column found in a relational database.

Modeling Object-relational Interactions. The en-
tities (e.g., classes, methods) that ensure the commu-
nication with the relational database belong to a layer
called data source. Consequently, between the object-
oriented part of an enterprise system and the relational
part there are interactions only within the data source
layer. In order to capture these interactions we take
into account the various usages of third-party libraries
and/or frameworks that are specific for the data source
layer: a method is considered to belong to the data
source layer if it invokes one or more methods from a
specific library that provides an API for accessing and
processing data stored in a data source, usually a rela-
tional database (e.g., the method invokes the execute-
Query() method from the java.sql package). A class
containing one or more methods belonging to the data
source layer is also mapped to the data source layer.

The methods of classes are the primary entities
that ensure the communication with the databases -
in this context, the Method entity from the object-
oriented meta-model has to be enriched with infor-
mation regarding the operations performed upon a re-
lational database. Within our solution, we propose to
annotate the Method entity from the object-oriented
meta-model with information regarding the opera-
tions upon the database the method performs: e.g.,
delete, insert, select, update, each of these operations
involving one or more tables. The class which models
the SQL statement contains an attribute that stores the
tables accessed by the operation. The information re-
garding the tables accessed by an entity is propagated

from low-level entities (operations performed within
the bodies of methods) to high-level entities (classes)
according to the following rules:

• a method stores the set of the tables accessed by
its body.

• a class stores the set of the tables accessed by its
methods.

We store in the entity Table also information regard-
ing the entities that access the table (e.g., methods,
classes).

Due to the fact that our meta-model for enterprise
systems contains entities specific to regular object-
oriented systems, we decide not to build our tool sup-
port for modeling enterprise systems from scratch –
we built it on the top of the MEMORIA (Raţiu, 2004)
meta-model which is part of IPLASMA (Marinescu
et al., 2005). IPLASMA is an integrated environment
for quality analysis of object-oriented software sys-
tems that includes support for all the necessary phases
of analysis: from model extraction up to high-level
metrics-based analysis, or detection of code duplica-
tion. The tool platform relies only on the source code
as input. All of the provided support is integrated by
an uniform front-end. The DATES module (Mari-
nescu, 2007) extracts a model of enterprise applica-
tions relying on top of the presented meta-model.

3 APPLICATIONS OF THE
META-MODEL

The goal of this section is to present several types of
specific information extracted by DATES from enter-
prise software systems. These are intended to help us
in order to understand and assess the design quality of
the analyzed systems. The size characteristics of the
applications for which we present the obtained results
are summarized in Table 1.

Table 1: Characteristics of the case studies.

TRS Payroll CentraView
Size 590 Kb 995 Kb 14,3 Mb

Classes 54 115 1527
Methods 500 580 13369
Tables 10 12 217
LOC 13598 13025 177655

TRS is an enterprise system developed by a team
of students within the software engineering project
classes. Payroll is an industrial enterprise applica-
tion whose scope is to manage information about
the employees from a company. CentraView is an

Applications of Automated Model’s Extraction in Enterprise Systems

255

open-source enterprise application 1 which provides
a growing businesses with a centralized view of all
customer and business information.

3.1 Visualizing how Tables are Accessed
in the Source Code

In order to provide an overview regarding the accesses
of tables in the source code we define next two visu-
alizations, namely: Tables Accesses and Distribution
of Operations.

3.1.1 Tables Accesses

The main goal of this visualization is to provide an
overview regarding the usage of tables in the source
code in correspondence with their size. Thus, we rep-
resent each table with a rectangle enriched with three
metrics, as we show in Figure 1.

The width of the rectangle represents the number
of statements performed within the source code upon
the represented table. The height is associated with
the number of classes whose methods perform opera-
tions upon the table. The fill (color) of the rectangle is
a gray gradient (i.e., it goes between white and black),
and it is related to the number of columns in a table
(i.e., the more columns the darker the rectangle).

Statements

Classes
accessing table# Columns

Figure 1: Tables Accesses. Representation.

Having in front of us the defined visualization for
a given system may bring valuable information in the
reengineering process. Next, we explain different sit-
uations that may appear and their impact:
• a small rectangle whose size is just a pixel – the

table is not used in the source code.
• a square – every class that accesses the table per-

forms only an operation on the table.
• a rectangle with an excessively large height –

the operations upon the table are spread in many
classes and, consequently, the impact of changing
the table would affect many entities in the source
code. If in this situation the color of the rectangle
is near black (i.e., a large value associated with the
number of columns the table has), there is a high
probability that the table is affected by the Multi-
purpose Table design flaw (Ambler and Sadalage,
2006).

1https://github.com/shaunscott12/CentraView

3.1.2 Distribution of Operations

In order to have a detailed view about the types of op-
erations that are performed upon the existing tables
we create another type of visualization (see Figure
2). This visualization represents each used table as
a rectangle containing 4 squares, each square having
its color mapped to one of the following SQL state-
ments: insert, select, update and delete. The side of
each square is equal to the number of SQL statements
whose type is represented by its color. Consequently,
if the rectangle associated with a table:

insert select update delete

Figure 2: Distribution of Operations. Representation.

• contains only a blue square (i.e., upon the table
only select statements are performed) it means
that the table contains only constant data which is
usually maintained by the database administrator.

• contains only a green square (i.e., upon the ta-
ble only insert statements are performed) it means
that the information is only recored in the table but
not manipulated directly from the source code. In
this situation it would be interesting to find out
who are the real consumers of the stored data
within the table. The same is applicable if the
rectangle contains also a red square (delete state-
ments).

• contains 2 squares whose colors are green and
blue then it means that the information, after it is
introduced in the table, is never modified from the
source code of the application.

We implemented these visualizations within the
DATES module using the existing module JMON-
DRIAN 2 (Mihancea, 2010) for visualizing data within
the IPLASMA platform.

3.1.3 Results

Visualizations in TRS. From the first overview ob-
tained (Figure 3) we find out that:

Figure 3: Tables Accesses in TRS.

• 2 tables are unused in the source code (e.g.,
Flight reservation comp and PasteErrors).

2https://github.com/petrufm/jMondrian.git

ICSOFT 2019 - 14th International Conference on Software Technologies

256

• there are 3 tables which are accessed in 3 classes,
while the rest of the tables are accessed from only
one class.

• we have a table which is accessed from a single
class frequently (the rectangle with the highest
width). We took a closer look at the class and
found out that a lot of duplications occur, some
of them being related to the where clauses of the
SQL statements.

From the second visualization (Figure 4) related to
the existing types of SQL statements for manipulating
data in tables we notice that:

Figure 4: Distribution of Operations in TRS.

• there are 4 tables storing data which is only read
within the source code (i.e., only select operations
are performed).

• there are 3 tables whose stored information af-
ter the insertion is only selected and deleted and
never modified.

• there is a table Credit Card whose number of rows
is never modified from the source code – only se-
lect and update operations performed upon.

Visualizations in Payroll. From the Tables Ac-
cesses Visualization (Figure 5) we find out that:

• there is a table which is not accessed in the source
code.

• most of the tables are accessed by only one class.

Figure 5: Tables Accesses in Payroll.

Regarding the Distribution of Operations in Payroll
we notice from the Figure 6 the following:

• upon more than a half from the tables accessed in
the source code (6 from 11) all the four types of
SQL operations are performed.

• from table employee information is only read.

• the information from the table salaryhistory is
never read, only inserted, updated and deleted.

Figure 6: Distribution of Operations in Payroll.

Visualizations in CentraView. From Figure 7
which contains information regarding the usages of
tables in the source code we discover that:

• there is a large number of unused tables.

• the most used table in the source code is table in-
dividual upon which 33 SQL statements are per-
formed from 15 classes.

• there is a group of tables which are heavily used in
the source code – e.g., emailmessage (8 SQL op-
erations), mocrelate (19 SQL operations), activity
(26 SQL operations).

In Figure 8 we present the defined visualization ob-
tained by analyzing CentraView. According to it we
find out that the application contains:

• a large number of tables whose stored information
is only read in the source code – e.g., activity.

• many tables whose information is only read and
modified (we find only blue and orange squares)
– e.g., expense, opportunity.

• tables whose rows are never updated.

3.2 Finding Improper Usages of
Exceptions in the Source Code

In this section we introduce another automatic ap-
proach that our meta-model supports related to an im-
proper usages of exceptions in the source code. An
empirical study which correlates the usage of excep-
tions in the source code with the defects encountered
in a system is presented in (Marinescu, 2013). This
study provides evidence about a positive correlation
between the classes that use exceptions and the de-
fects those classes exhibit. It shows that the classes
which use exceptions are more likely to exhibit de-
fects than the classes which do not use exceptions.

Applications of Automated Model’s Extraction in Enterprise Systems

257

Figure 7: Tables Accesses in CentraView.

Based on the mentioned findings, we consider that de-
velopers should not neglect special cases (i.e., excep-
tions) in the source code.

We introduce a technique that automatically de-
tects the situations in which exceptions related to in-
formation’s retrieval from the database are not prop-
erly handled in the source code. Based on the infor-
mation provided by our approach, the fragments from
the source code which do not properly handle the ex-
ceptions are good candidates for refactoring.

3.2.1 Motivation

Most of the existing library methods which perform
operations upon the persistent data reveal abnormal
situations (e.g., embedded SQL errors, broken com-
munication with the database) to its callers from the
data source layer by throwing exceptions. We present
the problems that may arise due to an improper mech-
anism for handling exceptions within the data source
layer with respect to an example.

Assuming that we have a table called Books (Fig-

Figure 8: Distribution of Operations in CentraView.

create table books (
ID int primary key, title varchar,
author varchar, publisher varchar)

Figure 9: Table books.

ure 9) there are a lot of possibilities for retrieving the
stored data within. For example, we create the Id-
iomaticBookDataSource class (Figure 10). As you
notice the class is intended to have for each column
in the table a method that returns its corresponding
value for a given ID. The used library method (e.g.,
executeQuery) for retrieving the requested informa-
tion throws a SQLException. In our example the ex-
ception is not thrown to the next architectural level
(domain) and, instead, a null value (or a particular
value) is sent. This is a bad style for handling ex-
ceptions and it has a lot of drawbacks:

• the caller of the getAuthor method may forget to
check the returned value. If the method returns
null due to error at the database level the applica-
tion will crash.

• if the caller checks the returned value, the id-
iomatic mechanism for handle exceptions ham-
pers the maintenance of the source code.

According to (Bruntink et al., 2006), a system
without a proper exception handling is likely to crash
continuously, which renders it useless for practical
purposes. In this paragraph we introduce an approach
for detecting missing thrown exceptions within the
data source layer of enterprise systems. It provides us

ICSOFT 2019 - 14th International Conference on Software Technologies

258

class IdiomaticBookDataSource {
public String getAuthor(int id) {
try {
String query;
...
query = "SELECT author from books " +

"WHERE ID=" + id;
ResultSet rs;
rs = statement.executeQuery(query);
return rs.getString("author"); }

catch (SQLException e) {
return null; //or return ""; }}

... }

Figure 10: Class IdiomaticBookDataSource.

with those methods which make use of an idiomatic
style for dealing with exceptions and, consequently,
are good candidates for refactoring. In (Mortensen,
2007) the authors propose a technique for refactor-
ing return code idiom for exceptions with aspects and
present the benefits. The methods detected by our ap-
proach might be refactored according to the presented
technique. In (Robillard and Murphy, 2003) is intro-
duced a mechanism for inspecting the structure of ex-
ceptions in Java programs; based on the extracted in-
formation it allows us to detect and correct problems
like unused handlers. In this context we want to em-
phasize that the our approach does not address prob-
lems relating to the use of exceptions in the source
code; instead, it points out situations where the use of
exceptions is missing from the source code.

The detection of the methods from the data source
layer which use an idiomatic style for handling ex-
ceptions (i.e., the missing thrown exceptions flaw is
encountered) is done according to the steps presented
next.

1. We detect the methods responsible for retriev-
ing/storing the persistent data from the relational
database. These methods belong to the data
source layer.

2. We select from the previous group only the meth-
ods which do not throw exceptions, as we believe
this rule quantifies the fact that the clients(e.g.,
callers) of these data source methods are not in-
formed about special situations using exceptions.

We consider that from the provided methods a special
attention is requested by those whose return type is
void because they might cause hidden defects. This
is due to the fact that their callers are unable to check
if the requested operation has been properly executed
upon the persistent data.

3.2.2 Results

Findings in TRS. This system has 25 methods be-
longing to the data source layer, none of them throw-

ing an exception. Thus, all of them use an idiomatic
style for reporting exceptions. For example, we
encounter a method called cardCredit(long cardNo)
which returns the amount of money available from a
particular card (see Figure 11). As we may notice, the
method returns zero if:

• the amount stored by the card cardNo is zero.

• the card cardNo does not exist.

• the SQL command was not executed, due to an
improper connection to the database or to a syntax
error (the syntax of the embedded SQL can’t be
verified by the compiler).

Consequently, it is impossible for the callers of card-
Credit to determine the exact meaning of the return
value and usually they assume the first case was en-
countered.
public double cardCredit(long cardNo) {
double credit=0;
try {
String sql;
sql="SELECT Credit From Credit_card" +

" WHERE Number=" +cardNo;
PreparedStatement pst;
pst = db.prepareStatement(sql);
ResultSet rs = pst.executeQuery();
while (rs.next()) {
credit=rs.getDouble("Credit");
return credit; }
... }

catch(SQLException ex) {
System.out.println("SQL Exception"); }

return credit; }

Figure 11: Method cardCredit from TRS.

We encounter also a method which performs some
operations upon the persistent data and returns void.
Thus, its callers are forced to assume that no errors
occur among the communication with the database, a
practice which often proved to be a source of hidden
defects.

Findings in Payroll. This system reveals a small
number of methods (less than 1 percent) which belong
to the data source layer and do not throw exceptions.

Findings in CentraView. In this system we en-
counter a lot of methods belonging to the data source
layer which deal with exceptions in an idiomatic way.
For example, we find that method addNewSearch in-
serts into table search a new request from the user.
If the operation succeeds, it returns the newly unique
id assigned to the request, otherwise -1. Another ex-
ample we notice is method getAccessEntityList whose
return type is a collection. This method has 146 LOC

Applications of Automated Model’s Extraction in Enterprise Systems

259

(Lines of Code) and performs more than one SQL
operation upon the involved table. Consequently, if
an empty collection is returned from getAccessEn-
tityList, it is impossible for its callers to establish if
it is an empty collection because no data that meet the
requested criteria were found or an abnormal situation
occurred.

From the reported methods which throw no ex-
ception and return void we illustrate an interesting
case in Figure 12. This method is a private one,
being called from two other methods – addFile and
updateFile. The first mentioned method collects the
data which have to be inserted into the table, estab-
lishes the corresponding id, inserts the data (by call-
ing addFileLink from Figure 12) and returns the gen-
erated id or zero if some error occurs regarding the
assignment of the id. But the unexpected part is that
this method (addFile) returns the associated id with-
out checking that the data actually have been intro-
duced into the database – the called method which in-
serts the data (addFileLink) returns void, being unable
to report any error that might occur. Thus, the sys-
tem’s users will receive an id for their request, without
ensuring that the request has actually been recorded
into the table. In the context of this example we want
to emphasize that it is also a case of an inconsistent
idiomatic value returned within the application – we
have previously showed an example which returns -1
in case of encountering an error when inserting data
into a table.
private void addFileLink(int fileId,...) {
double credit=0;
try {
d1.setQuery("insert into"...);
...
d1.executeUpdate(); }

catch(Exception ex) {
logger.error("[addFileLink] " + e); }}

Figure 12: Method addFileLink from CentraView.

Another example we notice is method export-
Table. It has two parameters (filePath, tabname), the
last being the name of a table whose information is in-
tended to be saved into the file filePath. Because the
method doesn’t throw any exception and returns void
its clients will not be able to determine when dealing
with an empty file if the queried table stores no data
or an error involving the database operation was en-
countered (e.g., table tabname not found).

4 RELATED WORK

A tool specifically designed for database reengineer-
ing is proposed in (de Guzman et al., 2005). The

main difference between this approach and our ap-
proach resides in the fact that our approach provides a
meta-model for representing relational databases and
also the interactions between an object-oriented pro-
gramming language (at this moment, Java) and the
databases.

A recent approach that quantifies the quality of the
database schema and detects design flaws related to
the database usages is described in (Delplanque et al.,
2017). The approach is accompanied by a tool named
DBCritics. Another recent approach accompanied by
a tool named SQLInspect (Nagy and Cleve, 2018) for
detecting SQL anomalies in the source code is intro-
duced in (Nagy and Cleve, 2017). Our approach com-
plements the existing analyses by providing new di-
mensions: visualizing how tables are accessed in the
source code and finding improper usages of excep-
tions.

Currently there are also enterprise systems where
the persistence layer is manipulated by frameworks
like Hibernate (Bauer and King, 2007). In this context
we want to emphasize that our approach can be ap-
plied upon enterprise systems which use such frame-
works, but in this case the information regarding the
connections between the object-oriented part and the
relational part will be extracted (and, consequently,
we need to develop and use a different model loader)
also from existing configuring XML files.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we decribe a specific meta-model for
representing enterprise software systems in order to
facilitate the process of reverse engineering upon
these systems. As applications of the described meta-
model (i) we introduce two visualizations regarding
the accesses of tables in the source code, and (ii) we
capture some improper usages of exceptions in the
source code.

In the future, we intend to (i) extend the tool sup-
port in order to be able to use it upon enterprise sys-
tems written using other technologies (.NET, different
persistency providers, different communication tech-
niques), (ii) continue the evaluation of the introduced
approaches against other enterprise systems, and (iii)
integrate our tool support into an IDE like Eclipse in
order to facilitate its use, as the integration would al-
low to analyze the system in real-time instead of using
a separate tool to construct its model.

ICSOFT 2019 - 14th International Conference on Software Technologies

260

REFERENCES

Ambler, S. and Sadalage, P. (2006). Refactoring Databases:
Evolutionary Database Design. Addison-Wesley.

Bauer, C. and King, G. (2007). Java Persistance with Hi-
bernate. Manning Publications.

Bruntink, M., van Deursen, A., and Tourwé, T. (2006). Dis-
covering faults in idiom-based exception handling. In
Proc. International Conference on Software Engineer-
ing (ICSE). ACM Press.

de Guzman, I., Polo, M., and Piattini, M. (2005). An inte-
grated environment for reengineering. In Proc. IEEE
International Conference on Software Maintenance.

Delplanque, J., Etien, A., Auverlot, O., Mens, T., Anquetil,
N., and Ducasse, S. (2017). Codecritics applied to
database schema: Challenges and first results. In Proc.
International Conference on Software Analysis, Evo-
lution and Reengineering (SANER).

Fowler, M. (2003). Patterns of Enterprise Application Ar-
chitecture. Addison-Wesley.

Marinescu, C. (2007). DATES: Design analysis tool for en-
terprise systems. In Proc. IEEE International Working
Conference on Source Code Analysis and Manipula-
tion (SCAM).

Marinescu, C. (2013). Should we beware the exceptions?
an empirical study on the eclipse project. In Proc. In-
ternational Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing (SYNASC).

Marinescu, C. and Jurca, I. (2006). A meta-model for en-
terprise applications. In Proc. International Sympo-
sium on Symbolic and Numeric Algorithms for Scien-
tific Computing (SYNASC). IEEE Computer Society
Press.

Marinescu, C., Marinescu, R., Mihancea, P., Raţiu, D., and
Wettel, R. (2005). iPlasma: An integrated platform for
quality assessment of object-oriented design. In Proc.
IEEE International Conference on Software Mainte-
nance (ICSM Industrial and Tool Volume), Budapest,
Hungary. IEEE Computer Society Press.

Mihancea, P. (2010). A Novel Client-Driven Perspective on
Class Hierarchy Understanding and Quality Assess-
ment. In Ph.D. Thesis.

Mortensen, M. (2007). Refactoring idiomatic exception
handling in C++: Throwing and catching exceptions
with aspects. In Proc. International Conference on
Aspect-Oriented Software Development. ACM Press.

Nagy, C. and Cleve, A. (2017). A static code smell detector
for sql queries embedded in java code. In Proc. Inter-
national Working Conference on Source Code Analy-
sis and Manipulation (SCAM).

Nagy, C. and Cleve, A. (2018). Sqlinspect: a static ana-
lyzer to inspect database usage in java applications. In
Proc. International Conference on Software Engineer-
ing: Companion Proceeedings (ICSE).

Raţiu, D. (2004). Memoria: A Unified Meta-Model for Java
and C++. Master Thesis, ”Politehnica” University of
Timişoara.

Ramakrishnan, R. and Gehrke, J. (2002). Database Man-
agement Systems. McGraw Hill, second edition.

Robillard, M. P. and Murphy, G. C. (2003). Static analy-
sis to support the evolution of exception structure in
object-oriented systems. ACM Transactions on Soft-
ware Engineering and Methodology, 12.

Rugaber, S. and Wills, L. (1996). Creating a research in-
frastructure for reengineering. In Proc. IEEE Working
Conference on Reverse Engineering.

Applications of Automated Model’s Extraction in Enterprise Systems

261

