
Towards Skills-based Easy Programming of Dual-arm Robot 

Applications 

Fan Dai 
ABB Corporate Research, Ladenburg, Germany 

Keywords: Dual-arm Manipulation, Robot Programming, Robot Skills. 

Abstract: Programming dual-arm robotic applications requires good understanding of the tasks and the coordination 

between both arms must be well specified. This article analyses the synchronization modes required in dual-

arm robot applications and describes a mechanism of programming these applications based on synchronizing 

the execution phases of robot skill functions for the two arms. Combined with a graphical user interface, it 

contributes to the ease of use of dual-arm robot systems. 

1 INTRODUCTION 

Dual-arm, or two-handed manipulation has been an 

interesting topic in robotics since the very beginning 

of robotics research related to tele-operation, and it is 

again of high interest with new developments in 

service and industrial robotics (Smith et al., 2012). 

Many efforts and advances are known in control of 

coordinated motion, but the programming of dual-

arm manipulation is still one of the main bottlenecks 

of application development, because programming 

dual-arm robot applications requires very good 

understanding and specification of the coordination 

between the two arms. 

Zöllner et al., (2004) worked on programming by 

demonstration for dual-arm manipulation tasks, 

where task executions are modelled with Petri nets. 

Having the arm states active or ready as conditions, 

dual-arm task planning and execution can be learned 

by mapping observed bimanual human 

demonstrations. While this method is theoretically 

quite promising, many problems still must be solved, 

especially the interpretation of human intentions in 

complex situations. 

The concept of robot skills (e.g. Kröger et al., 

2010, Thomas et al., 2013, Dai et al., 2016) has been 

introduced to allow task-level programming, which is 

more intuitive for application engineers. Theoretical 

concepts cover the coordination of parallel tasks as 

well, but most approaches are still focused on single 

arm application tasks, or tasks where two robot 

manipulators must avoid collisions with each other. 

An appropriate mechanism for two-arm robot 

application tasks is needed.  

Szynkiewicz (2012) worked on skill-based 

bimanual manipulation planning, uses Rubik’s Cube 

as an example to implement a two-handed 

manipulation skill involving vision and force control. 

However, the mechanism of specification and 

realization of coordinated dual-arm tasks is not 

clearly described. 

Stenmark et al., (2017) worked on improving 

intuitive dual-arm programming of collaborative 

industrial robots, utilizing the concept of re-usable 

robot skill functions, where the focus was on 

synchronizing primitive dual-arm motion constructs. 

They also combined it with an iconic graphical user 

interface, allowing adding and modifying 

synchronizations, but limited to primitive motion 

synchronization. 

Our approach goes further to a mechanism of 

creating dual-arm robot skills by analysing and 

specifying the synchronization of single arm robot 

skills. It allows an easier way of programming 

bimanual application tasks. 

In this paper, we analyse two-handed 

manipulation taking assembly applications as an 

example (section 2). Based on this, we derive in 

section 3 our concept of synchronizing two-arm tasks 

by introducing phase-based synchronization. We 

propose to implement robot skill functions with 

clearly defined phases and synchronization points, 

which can be parameterized, optionally via a 

graphical user interface. 

Dai, F.
Towards Skills-based Easy Programming of Dual-arm Robot Applications.
DOI: 10.5220/0007920203630370
In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), pages 363-370
ISBN: 978-989-758-380-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

363



2 TWO-HANDED ASSEMBLY 

TASKS 

In this section, we take an application-oriented view 

on dual-arm manipulation, focusing on assembly 

tasks. Applications in which two-handed operations 

come into play can be grouped as follows: 

 Coordinated parallel tasks 

 In-hand manipulation using one hand as part 

holder (fixture) for the other one 

 In-hand manipulation with simultaneous actions 

of both hands 

In the following, we analyse these three groups of 

applications with some examples. 

2.1 Coordinated Parallel Tasks 

These types of applications may be further split into 

two sub-groups. For most cases in the first sub-group 

the overall task could be done by a single hand. Doing 

it with two hands simply increases the efficiency or 

shortens the cycle time. 

For example, when piling up objects onto each 

other, a single robot arm could take the parts one by 

one and accomplish the task alone. But doing it with 

two robot arms is much quicker. The same holds 

when multiple different parts are to be mounted. 

Similarly, in many applications, one arm is used to 

take the raw part and place it at the location for 

processing. The other arm then retrieves the finished 

part. 

 

Figure 1: Piling-up cubes with coordinated parallel tasks.  

The second sub-group includes applications in 

which two hands are needed to accomplish the task, 

but they do not come into direct mechanical or spatial 

interaction with each other, for example: One hand 

opens the cover; the other one puts the part into the 

container. 

In these two-handed applications, compared to 

single hand operation, the actions of both hands must 

be synchronized with each other, but not the motion 

details. Important are: 1) Temporal dependencies of 

starting and ending the actions; 2) Spatial collision 

avoidance. 

The goal is to achieve the shortest cycle time. If 

the constraints on cycle time allow, one can also try 

to optimize energy consumption, minimize 

mechanical stress etc. 

2.2 One Hand as Part Holder for the 
Other One 

At manual workplaces, we can very often observe 

two-handed operations in which one hand acts as a 

part holder for the other hand. Here we can have the 

following situations: 

2.2.1 The One Hand Holds a Part, and the 
Other Hand Mounts a Second Part 
onto It 

As shown in Figure 2, one of the robot hands holds 

the base part, while the other hand mounts the other 

part onto it. This is the most common case. In this 

case, the first hand must maintain a fixed position for 

the duration of the part assembly by the other hand.  

  
a) Snap insert b) Screwing 

Figure 2: Examples of two-handed assembly with one hand 

as part holder. 

2.2.2 The One Hand Holds a Part, and the 
Other Hand Mounts This Part onto 
Other Part 

The pictures below show a connector on a flexible flat 

cable. One hand must place the part on top of the 

socket, so that the other hand can then push on the 

connector to mount it firmly.  

   
a) Connector and 

socket  

b) Approaching 

the target 

c) At the target 

position 

Figure 3: One hand supports the other to fix the socket plug. 

In this kind of applications, the first hand must be 

compliant, following slightly the movement of the 

part when the part is moved by the other hand while 

mounting it. 

 

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

364



2.2.3 The One Hand Hands over a Part to 
the Other Hand 

When a part cannot be reached by the one hand that 

should operate with the part, or it can be reached, but 

cannot be picked at the right position, a commonly 

used option is to take the part by another hand first, 

and hand it over to the operating hand.  

 

Figure 4: Handing over the cube. 

In this case, there is a hand-over phase for a short 

while, requiring synchronization as the second hand 

takes the part. 

2.2.4 Simultaneous Actions of Both Hands 

The screw-mounting example can also be done by 

simultaneously turning the two parts counter-wise. 

This shortens the time for this task. In addition, if the 

rotation of the last robot joint is used to screw the part, 

like in this example, simultaneously turning both 

parts avoids re-grasping, which may become 

necessary due to joint limits in case of turning one 

part only. 

  

a) Screwing with both hands 
b) Lifting with both hands 

Snap insert Screwing 

Figure 5: Examples of simultaneous actions. 

Another example is using two hands to take a 

relatively large part and perform placing or mounting. 

Compared to a single-handed grasp, this can avoid 

undesirable torques on the gripper tool.   

In such applications, the motions of both hands 

must be synchronized, or one of the hands must 

follow the other hand for defined phases of motion. 

 

 

 

 

 

 

3 SYNCHRONIZATION OF BOTH 

HANDS 

A two-handed robot task is composed of at least two 

sub-tasks, each performed by one of the robot hands. 

If the robot hands are programmed so that each of the 

hands executes their own skills, these skill functions 

must be coordinated with each other. The most 

important criteria are: 1) Ensure that the main phase 

of the desired task succeeds; 2) Achieve the shortest 

cycle time. Since the duration of individual tasks 

differ, it is usually not possible to schedule bimanual 

manipulation without waiting times.  When the 

success of a two-handed manipulation task requires 

one hand to wait on the other, optimal scheduling can 

avoid excessive waiting times.  

In the following, we consider the general modes 

of synchronization between parallel processes and the 

execution of skill functions as well as the 

corresponding (sub-) tasks of an application, and then 

discuss how the different types of two-handed 

operations can be synchronized. 

3.1 Synchronization Modes 

Theoretically, five modes of task synchronization can 

apply (Table 1). However, not all of them are 

essential for two-handed assembly. The most 

common mode is of type a) End-start 

synchronization. Special applications require 

synchronous motion (type e). Other modes can be 

beneficial in some cases but are not necessarily 

required. 

Table 1: Task synchronization modes. 

a) End-start: Start of task A 

(e.g. left arm) waits until 
end of task B (e.g. right 

arm)  

b) Start-start & end-end: 
Starting and ending at the 

same time.  

c) Start-start: synchronous 

start, free ends 
 

d) End-end: free starts, 
synchronous ending  

 
e) Synchronous motion: The 

complete motions of both 

hands are synchronized  
 

To know which mode is required in which 

situation, we analyse in more detail below the phases 

of assembly skills as they are executed by one hand, 

and   how   they   can   be   used   in   the   two-handed  

Towards Skills-based Easy Programming of Dual-arm Robot Applications

365



application examples. 

3.2 Phases, States, and Events 

If we look at manipulation tasks with one robot arm, 

typically, they consist of the following major 

execution phases: 

 Approach – go to the starting position for the 

main phase 

 Main phase – execute the intended action, such 

as grasping, pushing, insertion, snapping, 

screwing, etc. 

 (Optional) Release – release the work piece e.g. 

by opening the gripper, if is holds the part 

 Depart – move away from the current work area 

The details of the main phase depend on the type of 

actions. Taking snap insertion as example, we can 

have the following sub-phases: 

 Push towards the goal position with compliance 

until measures of completion are met 

 Check for success, if necessary, by trying to pull 

the part back, or move around, or by any other 

means of sensing 

 Error handling, e.g. retry, dispatch, or report 

error. 

While moving towards the goal position (approach or 

push), it can happen that the part misses the correct 

starting position for insertion and touches the base 

object. In this case, an additional phase is necessary:  

 Search for the correct starting position. 

The above described phases and their conclusions are 

actually the significant states of the snap insert 

execution. Each phase change (state transition) can be 

exposed to another task for synchronization. While 

the phases are natural states, the phase end states 

would automatically be the start states for the next 

phase, if no waiting for external events is introduced. 

Figure 6 shows a flow chart with these phases and 

phase changes. The Search phase can be entered from 

the Approach phase, when the part contacts the base 

object while moving towards an incorrectly defined 

start position, or from the Insert phase, when the 

Insert phase starts from an incorrect position. In both 

cases, the part would touch the surface of the base 

object in an unintended way. 

From a task-oriented point of view, Search, Check 

and Error-handling are internal phases that do not 

reflect the intended states of task accomplishment. A 

synchronization of such phases with external actions 

is not required in general, except for certain error 

states, if strategies for error handling involving both 

hands  are  introduced.  But  error  handling  is  a  very   

 
a) State model with internal phases  b) Simplified model 

Figure 6: Phase of snap insertion. 

complex and special topic, which we do not further 

discuss in this article.  

For simplicity, we use in the following the 

simplified state model shown in Figure 6 b), in which 

insertion can be replaced by other skills such as 

screw-driving, etc. 

3.3 Two-handed Operations with 
Synchronization 

When looking into the application examples, we can 

group them into: 1) Sharing work space; 2) One hand 

as part holder; 3) Hand-over; 4) Two-handed 

symmetric assembly; 5) Two-handed synchronous 

motion. In the following, we discuss how these 

groups of applications can be implemented with 

corresponding phase synchronizations.   

3.3.1 Sharing Work Space 

In case both hands must accomplish actions within 

the same work space, they cannot execute these 

simultaneously. Sometimes, the order of the actions 

is defined by the application itself; sometimes 

serialization is needed for collision avoidance. 

For example, the piling-up example could be done 

by two-hands with one waiting for the other to finish 

its placing action (Figure 7). 

But this may cause unnecessary waiting time. In 

this example, the most feasible way is in fact, that one 

hand waits at an intermediate approaching position 

until the other hand has left the departing position. 

Thus, introducing intermediate synchronization 

points can reduce the overall cycle time. Here, depart 

(of one hand) and approach phase (of the other hand) 

each can be split into two sub phases for better 

synchronization (Figure 8), but the synchronization 

mode is still “end-start” sequencing of these two 

phases. 

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

366



 

 

Figure 7: Piling up with two hands. 

 

Figure 8: Use sub phases to reduce cycle time. 

This intermediate approach position is normally 

different from the approach position of single hand 

operations, because it must ensure that no collision 

with the other hand can occur. 

3.3.2 One Hand as Part Holder 

When one hand acts as part holder like in the two-

handed snap-insertion example, it requires that the 

supporting hand is in position before the inserting 

hand starts the main phase of insertion, but the latter 

can already move to the approaching position. This 

can be simply implemented using “end-start” 

synchronization as depicted in Figure 9. 

Certainly, it could also run with synchronized 

ends of the approaching phases. However, this does 

not lead to any benefits. 

3.3.3 Hand-over 

For hand-over operations, the one hand releases the 

part after the other hand has picked it. It is again a 

simple “end-start” relationship between the 

corresponding phases as depicted in Figure 10. 

 

 

 

 

 

 

Figure 9: Using “end-start” for synchronization of two-

handed insertion. 

 

Figure 10: Synchronizations for hand-over. 

3.3.4 Two-handed Symmetric Assembly 

As shown in Figure 11, two-handed symmetric 

assembly (taking the example of screwing) always 

can be implemented using “end-start” 

synchronization as well. 

 

Figure 11: Using “end-start” synchronization in two-

handed symmetric screwing. 

This is equivalent to “start-start” synchronization 

of the rotate phases, if no additional waiting time 

before the starts of these phases is introduced by other 

events that are in principle possible, but not relevant 

here. Of course, symmetric assembly could also be 

implemented with synchronized start and end (“start-

start & end-end”) of corresponding phases of both 

hands (e.g. Figure 12.), though this is not really 

required. In the practice, “end-start” synchronization 

is easier to implement. 

 

Towards Skills-based Easy Programming of Dual-arm Robot Applications

367



 

Figure 12: Using “start-start & end-end” for two-handed 

symmetric screwing. 

3.3.5 Two-handed Moving 

Different from the above use cases, synchronous 

motion is required in such special cases as lifting or 

moving a large or heavy part with two hands. 

 

Figure 13: Synchronous motion (may also require 

simultaneous release). 

3.4 Usage Summary of 
Synchronization Modes 

Based on the above observations, we can conclude 

that “end-start” is the most commonly used mode, 

where “synchronous motion” is required for special 

cases. Other modes are not necessary for 

implementing two-handed assembly applications. 

Table 2: Usage of synchronization modes. 

Synchronization mode Usage 

End-Start 
Most applications can be 
implemented this way 

Start-start 
Can be achieved with “End-

start” mode (see e.g. Figure 12) 

Start-start & end-end Not required 

End-end Not required 

Synchronous motion:  
Required in special cases e.g. 

two-handed lifting 

 
 
 
 
 
 
 

4 ROBOT SKILLS AND VISUAL 

PROGRAMMING  

From a programming point of view, robot skill 

functions are nothing else than higher-level 

parameterizable functions. These can be used by 

application programmers in any programming 

environment with any programming tools including 

simple text editors. We also proposed to use visual 

programming for guiding and assisting the 

application programmer to use skill functions in an 

intuitive way (Dai et al., 2016).  

In a concept demo implementation, the skill 

description is stored in XML format including: 

function name, parameters, locations of other related 

data, e.g. source code of the skill function, support 

functions used by the skill function or for applying it, 

UI elements that can be optionally used, description 

and help text, including multimedia presentations. 

For the UI and multimedia presentations, XAML was 

chosen, which can be dynamically loaded to the App 

to provide individually customized user interface 

pages. 

According to our phase-based synchronization 

concept, parameters of the skill functions also include 

skill phases and the skill execution state. 

Taking a snap insertion skill programmed in the 

robot programming language RAPID as an example, 

the robot skill functions have the following constructs 

allowing the synchronization concept described in the 

sections above: 

 
PROC SnapIn(pose StartPose,  

 \pers state myState, 

\pers state waitToStart,  

\state waitToStartValue, 

   \pers state waitToInsert,  

\state waitToInsertValue, 

\pers state waitToRelease,  

\state waitToReleaseValue, 

\pers state waitToDepart,  

\state waitToDepartValue) 

 

myState := stateWaiting; 

IF (Present(waitToStart) AND  

  Present(waitToStartValue))  

THEN 

WaitUntil 

  

(waitToStart>=waitToStartValue) 

  \pollrate:=0.004; 

ENDIF 

myState := stateApproaching; 

!start approaching 

 … 

!end approaching 

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

368



myState := stateApproached; 

IF (Present(waitToInsert) AND 

  Present(waitToInsertValue)) 

THEN 

WaitUntil 

  

(waitToInsert>=waitToInsertValue) 

  \pollrate:=0.004; 

ENDIF 

myState := stateInserting; 

! start inserting 

 … 

!do something  

myState := stateEnd; 

ENDPROC 

 

The user can compose the action sequences for each 

robot hand (i.e. the corresponding robot control task) 

by selecting and concatenating these skill functions 

and program elements.  

To compose two-handed applications, one usually 

also must specify the synchronization points for the 

two hands. This can be done based on the concept as 

discussed in the previous chapter. The UI page is 

shown below in Figure 14.  

Figure 14:  Skill phase synchronization page (arrow 

indicates the order). 

For a pre-defined two-handed skill, there is no 

need for manual editing of the synchronization points. 

Therefore, we have chosen a different type of 

visualization (two lines without arrows) as shown 

below in Figure 15.  It indicates that both skills are 

considered as a unit, so that user doesn’t need to see 

the internal synchronization. 

Typical for two-handed skills, some motion 

positions can be taught for both hands together, e.g. 

via lead-through as shown in Figure 16. 

Finally, the app will create the main modules for 

the robot control tasks, which call the corresponding 

skill functions with these parameters (including 

synchronization points). The finished application is 

then ready to be started. 

 

 

 

Figure 15: Hand-over as two-handed skill function. 

 
 

Figure 16: Teaching motion positions for both hands. 

5 CONCLUSIONS AND FUTURE 

WORK 

The robot skills concept can be applied to support 

more intuitive and easy programming of two-handed 

robot applications by synchronization of skill 

execution phases. Our analysis has shown that the two 

basic synchronization modes: end-start 

synchronization and synchronous motion are 

sufficient for all these applications. With pre-

implemented synchronization points and optional 

parameters, the skill functions can be flexibly used by 

application programmers for different situations. 

Visual programming can also contribute to ease of 

use. The skill execution phases can be shown beside 

the skill function. Known graphical interaction 

methods can be applied to define the synchronization 

between skill functions of the two robot hands, e.g. 

by connecting anchor points of the graphical 

elements. 

Still, programming two-handed applications 

requires good knowledge of the skill functions, the 

synchronization modes, and logical reasoning. To 

further increase ease of use of robot systems like 

YuMi, two-handed skills or skill templates may be 

provided. Such skills may consist of pairs of skill 

functions for both hands with well-defined 

Towards Skills-based Easy Programming of Dual-arm Robot Applications

369



synchronizations, considering the following two-

handed operations: 

 Sharing work space 

 One hand as part holder 

 Hand-over 

 Two-handed symmetric assembly 

 Two-handed moving of parts 

In this context, we did experimental implementations 

of “hand-over” and “sync move” (two-handed 

moving of parts) with corresponding user interface 

elements.  

Certainly, the mechanism of synchronization 

enables two-handed applications, but the efficiency of 

such applications depends also on other factors that 

influence the behaviour of the robot hands, e.g. the 

“intelligence” of the underlying skill functions, the 

execution parameters of the primary functions used 

by the skills. These are also coupled with the skill 

phase design and synchronization type. Therefore, we 

will further work on studying the correlations 

between both, and how machine learning methods 

can help to increase efficiency of two-handed skills 

and two-handed applications. 

ACKNOWLEDGEMENTS 

Research partially supported by European Union as 

part of the Productive 4.0 project 

(https://productive40.eu). 

REFERENCES 

Smith, Ch., Karayiannidis, Y., Nalpantidis, L., et al. (2012) 

“Dual arm manipulation—A survey”. Robotics and 

Autonomous Systems 60(10), October 2012. pp. 1340–

1353. 

Zöllner, R., Asfour,T., Dillmann, R. (2004) “Programming 

by demonstration: dual-arm manipulation tasks for 

humanoid robots”. IEEE/RSJ International Conference 

on Intelligent Robots and Systems (IROS), Sept. 2004. 

Kröger, T., Finkemeyer, B., and Wahl, F. M. (2010)  

“Manipulation primitives—A universal interface 

between sensor-based motion control and robot 

programming,” in Robot Systems for Handling and 

Assembly, 1st ed., ser. Springer Tracts in Advanced 

Robotics, D. Schütz and F. M. Wahl, Eds. Berlin, 

Heidelberg, Germany: Springer, 2010, vol. 67. 

Thomas, U., Hirzinger, G-, Rumpe, B., Schulze, Ch. and 

Wortmann, A. (2013) A New Skill Based Robot 

Programming Language Using UML/P Statecharts, 

2013 IEEE International Conference on Robotics and 

Automation (ICRA), Karlsruhe, Germany, May 6-10, 

2013 

Dai, F., Wahrburg, A., Matthias, B., Ding, H. (2016) 

“Robot Assembly Skills Based on Compliant Motion”, 

47th International Symposium on Robotics (ISR 2016), 

June 2016 

Szynkiewicz, W. (2012) “Skill-Based Bimanual 

Manipulation Planning”, Journal of 

Telecommunications and Information Technology, 

2012(4): December 2012, pp. 54-62 

Stenmark, M., Topp, B.A., Haage, M., Malec, J. (2017) 

“Knowledge for Synchronized Dual-Arm Robot 

Programming”, AAAI Fall Symposium Series 2017. 

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

370


