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Abstract: In the domain of human activity recognition, the primary goal is to determine the action a user was perform-
ing based on data collected through some sensor modalities. Common modalities adopted to this end include
visual and Inertial Measurement Units (IMUs), with the latter taking precedence in recent times due to their
unobtrusiveness, low cost and mobility. However, a secondary challenge arises in such sensor-based activity
recognition. Difficulties in collecting and annotating training samples are significant and can hinder the per-
formance of models trained on such limited data. As such, there is a need to explore techniques capable of
tackling this problem in this domain. In this work, we explore the feasibility of reusing samples collected from
different ”source” body locations in activity recognition at different ”target” body locations. This is achieved
through the use of ”roaming” models based on recurrent neural networks. We investigate the predictive per-
formance of the transferred samples relative to the performance from samples collected natively at the target
body locations. Our results suggest that such roaming models can permit the reuse of cross-body samples
without a significant loss in discriminative performance.

1 INTRODUCTION

Capturing and analyzing human motion dynamics has
garnered interests for several reasons. One poten-
tial application is activity recognition, i.e., inference
of the physical activities being performed by a per-
son or group of persons within some context, e.g.,
medical (Liu et al., 2016) or domestic (Hoque and
Stankovic, 2012) to name a few. Another applica-
tion is to enable a robot to mimic human motions for
robot-human interaction, as seen in (Elbasiony and
Gomaa, 2018).

In order to capture the aforementioned human mo-
tion dynamics, different sensing methods can be used,
e.g., camera-based (Simonyan and Zisserman, 2014)
or sensor-based (Gomaa et al., 2017) methods. While
visual (camera-based) methods have seen much adop-
tion due to their efficacy, they are also limited by their
lack of mobility and relatively high costs. Sensor-
based methods on the other hand, are becoming more
common due to the recent ubiquity of sensor-enabled
personal devices and their relative unobtrusiveness
compared to the other modalities. The sensor-based
methods are, however, limited by their locality. That

is, most of the sensor-based methods are only able to
capture dynamics produced over some small regions
of the body (e.g., IMU signals collected at the left el-
bow can be used only near the left elbow). In order
to capture more body-wide/global dynamics, multiple
sensors must then be used, each of which is placed
at a different body location. This is costly (due to
the number of sensors required) and laborious. Ad-
ditionally, this reduces the feasibility of applications
requiring such numbers of sensors due to their lack of
user-friendliness.

Specifically in the domain of activity recognition,
due to the difficulties inherent in the data collection
and annotation process, enabling new human activity
recognition systems can require significant cost and
effort as described above. In other domains, a short-
age of data may be overcome by data augmentation
techniques where new samples are generated by some
technique with a view to improving the performance
of associated machine learning models. However, in
this domain data augmentation techniques have not
been well studied because of the intuitive difficul-
ties in preserving the semantic meaning of augmented
samples.
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In order to overcome such a difficulty, transfer
learning can be a potential solution. Transfer Learn-
ing (Pan and Yang, 2010) refers to a broad set of tech-
niques which are centered around the reuse of knowl-
edge or data gained in solving some problem in solv-
ing some other, related problems. In the former case,
the implicit assumption is that there are labelled sam-
ples from the unseen problem and what is required is
the knowledge of how to use/process these samples
accordingly. In the latter case, the implicit assump-
tion is that there is a technique by which samples from
some source domain can be re-purposed for use in an-
other domain. As applied here, this has the advantage
of mitigating the time and effort required to obtain
new samples, which may be significant in domains
such as activity recognition. For humanoid robotics,
such transfer techniques could also be used to recreate
the dynamics of some other body parts without need-
ing to use multiple sensors distributed over different
body parts. This would reduce the cost and effort re-
quired to design and deploy such systems practically
by minimizing the number of sensors required, and
also improves the system usability.

In this work we investigate the feasibility of per-
forming data-oriented transfer learning of IMU sig-
nals for activity recognition. More specifically, we
train a regression model based on long short term
memory networks in order to map IMU signals from
one body location to another body location. We es-
tablish theoretical upper and lower bounds for com-
parison. We obtain results confirming that the pro-
posed method yielded much better performance than
the lower bound, while remaining close to the upper
bound due to the transformation process. This indi-
cates the efficacy of the proposed technique.

The rest of this paper is structured as follows. In
Section 2, we discuss other literature relevant to this
work. In Section 3, we briefly introduce existing tech-
niques used in the proposed method. In Section 4, we
describe the details of the proposed method. In Sec-
tion 5, we give experimental methodology adopted,
together with the associated considerations. In Sec-
tion 6, we analyze the results obtained from our ex-
periments and conclude our work with a summary in
Section 7.

2 RELATED WORK

In this section we introduce works similar to the pro-
posed method.

(Hu and Yang, 2011) proposed a technique for
transfer learning based on sensor mapping. They
consider labelled samples from a source domain (i.e

set of activities) and aim to perform activity recogni-
tion based on unlabelled samples in a target domain
(i.e a different set of activities). This is achieved by
first building a correspondence between samples from
both domains, then performing a label-based transfer
between the considered domains. The authors com-
pare it against a baseline unsupervised method and
report superior results.

In (Hu et al., 2011), the authors investigated the
adaptation of activity instances collected for some
task with a view to reusing them for another task.
They introduce an algorithm for this purpose, which
relies on extant web-accessible metadata describing
both sets of activities. From the metadata, a simi-
larity mapping for instances between one activity set
and another is derived, together with a confidence
estimate for the mapping. Their method was found
to yield performance similar to traditionally-proposed
techniques.

In (Khan and Roy, 2017), an instance-based trans-
fer learning framework was proposed, where labelled
samples from some activity set are re-purposed as
samples for a similar activity set, based on some cri-
terion. A combination of clustering and classification
is used to build a dynamic pipeline for instance classi-
fication between the common and uncommon activity
sets. The authors apply their proposed technique to 3
distinct datasets (i.e where each dataset has a different
set of activities) and obtained up to an 85% recall in
cross-dataset evaluation.

3 BACKGROUND

3.1 Long Short Term Memory

Long Short Term Memory (LSTM) networks are a
type of recurrent neural network (Rumelhart et al.,
1986) architecture introduced by (Hochreiter and
Schmidhuber, 1997). Traditional recurrent neural net-
works, while capable of dealing with temporal depen-
dencies in sequential data, have difficulties handling
long input sequences.

LSTMs have been shown to yield excellent results
on sequential data (e.g (Cho et al., 2014), (Sutskever
et al., 2014) etc), often outperforming traditional tech-
niques such as Hidden Markov Models. To handle
sequential dependencies, LSTM neurons maintain an
internal state which can be considered to ”encode” the
inputs seen by the neuron up until the current instant
of time. By modifying the state, the LSTM cell is ca-
pable of adjusting itself to respect the short and long
term properties of the input sequence.

The modification of the LSTM’s internal state is
regulated by structures called Gates. The first of these
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is called the Forget Gate, which is responsible for
’forgetting’/erasing some portion of the cell’s inter-
nal state, based on the received input and its previ-
ous output. After this operation, the new cell state
must be updated based on the received input. This
is achieved by the actions of the Input Modulation
and Input Gates, the former which generates a can-
didate internal state value and the latter which speci-
fies how much of the candidate state should be added
to the cell’s state. The final step in the operation of
the LSTM cell is the computation of the actual output
value of the cell. This is done by another gate called
the Output Gate, which generates an output candidate
vector. The cell state is passed through an activation
function and the result is multiplied with the output
candidate vector to produce the cell’s output.

LSTM networks are usually composed of a num-
ber of LSTM cells, such that the outputs from pre-
ceding cells are used as inputs into proceeding cells
and each cell maintains its own cell state. Similar
to the traditional recurrent architectures, LSTMs are
also trained using Back-Propagation through Time
(BPTT) (Werbos et al., 1990).

3.2 Bidirectional LSTM

Bidirectional LSTM (Schuster and Paliwal, 1997) is a
variant of the LSTM architecture, which is character-
ized by the parallel stacking of two LSTM networks.
The intuition behind the use of bidirectional LSTMs
applies specifically when all the time steps of the in-
put data are available at once. In this way the use of
such an architecture allows the network to learn both
the forward and reverse dynamics of the input, likely
capturing more discriminative information than if a
single (unidirectional) LSTM was used.

4 THE PROPOSED METHOD

4.1 Problem Statement

We formalize the problem as follows. We consider
two body locations: s denoting the source body loca-
tion from which the available samples are originally
collected, and t denoting the target body location lo-
cation to which it is desired to transform or roam the
samples from s to. Intuitively this can be described
as a regression problem. We denote a single, multi-
dimensional finite-length sample from s as ds and a
single, multidimensional finite-length sample from t
as dt . Note that dt and ds are collected over the same
time window. We can then formulate the problem

mathematically as:

dt = F(ds), (1)

where F() is a roaming function from the source to
the target.

From Eq. (1) it can be seen that the roaming
problem can be expressed as the learning of a suit-
able roaming function F() such that the difference be-
tween F(ds) and dt (since they are collected at the
same instants of time) is minimized. Since a neu-
ral network can be considered to be a universal func-
tion approximator (Cybenko, 1989), we consider the
learning of an approximation F̂() of the function F()
from collected data samples using a deep neural net-
work with a view to obtaining this optimal mapping.

4.2 Network Architecture

We carry out the following procedure to construct the
roaming models described previously. In this work,
we consider only the tri-axial accelerometer and tri-
axial gyroscope sensors as we believe that these two
sensors capture the most relevant information about
the dynamics of the signals under consideration. We
segment the source and target data samples into 1
second windows based on the work of (Banos et al.,
2014a).

We consider an arbitrary pair of body locations as
source (s) and target (t) locations. Next, we construct
a deep neural network to approximate the roaming
function as described previously. Although we con-
sidered different architectures (fully-connected, con-
volutional, etc) we found that recurrent architectures
obtained the best performance. This can be attributed
to their inherent affinity for sequential input data.
Therefore we construct a deep recurrent neural net-
work as shown in Figure 1. It consists of two bidi-
rectional LSTM layers, each containing 100 LSTM
cells. We treat the first LSTM layer as an encoder and
the second as a decoder, such that the dynamics of the
source samples are first encoded into the cell states of
the encoder LSTM. Subsequently, the decoder LSTM
aims to use the captured dynamics as input and re-
construct the corresponding target location dynamics.
The final output of the decoder LSTM layer is fed
through a single fully-connected layer consisting of
six neurons.

During model training, sample windows (of 1s
length as stated above) and fed as the input and de-
sired output of the network. We train the network (i.e
the two LSTMs in tandem) using adaptive moment
estimation (Kingma and Ba, 2015) as the weight op-
timization technique. Since this is a regression prob-
lem, we use the mean squared error as the loss func-
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Figure 1: Architecture of Roaming Model.

tion so as to obtain an optimal reconstruction of the
target samples from the source samples.

We consider different sets of body locations. Due
to space constraints we limit our analyses to three
body locations in the upper half of the body - the
right lower arm (RLA), right upper arm (RUA) and
the back (BACK) - and construct roaming models be-
tween each pair of locations.

5 EXPERIMENTS

5.1 Dataset

We used the REALDISP Dataset to evaluate the pro-
posed method. The REALDISP dataset (Baños et al.,
2012), (Banos et al., 2014b) is an activity recognition
dataset consisting of multimodal sensor readings (ac-
celerometer, gyroscope, and magnetometer) obtained
using Xsens IMU units at a sample rate of 50Hz. It
contains samples collected from three different device
placements: one of which is considered ideal, and the
others with increasing positional displacements. We
use the data corresponding to the ideal placement in
this work. 17 subjects were involved in the collec-
tion of the data, and there are 33 considered activ-
ities spanning upper extremity, lower extremity and
full-body activity sets. The constituent activities are
shown in Table 1.

During the data capture process multiple sensor
units were attached to the subjects’ bodies. Specif-
ically, 9 body locations were considered which are

Figure 2: Device Placements in REALDISP dataset. Image
reused with permission from (Baños et al., 2012), (Banos
et al., 2014b).

shown in Figure 2. Therefore for any given point in
time t, the collected data contains multimodal sam-
ples from 9 body locations all collected at that instant
t. After we segment the raw samples into 1 second
long windows, we obtain a total of 13963 samples.
This makes it possible to build a roaming model be-
tween on-body locations as proposed in this work.

5.2 Evaluation Methodology

We evaluate the quality of the roamed samples and
by extension, the roaming models as follows. For any
source location s and target location t, we segment the
available data into the following proportions - 50%,
25%, 25%. We denote the different portions of data
as described in Figure 3.

We carry out three sets of evaluations for all the
roaming scenarios considered; the first of these is
aimed at determining a theoretical lower bound for
predictive performance, and this is done by training a
classifier on 25% of the samples from the target loca-
tion (1B in Figure 3), then testing 25% of the samples
from the source location (0C in Figure 3) using this
classifier. This is done to obtain an estimate of the
predictive performance obtainable without the use of
the proposed roaming method. In the second evalua-
tion, we train a roaming model on the 50% portions
of the source and target data (denoted as 0A and 1A in
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Table 1: Activities in REALDISP dataset.

Walking Waist Rotation Shoulders High Amplitude Rotation
Jogging Waist Bends Shoulders Low Amplitude Rotation
Running Reach Heels Backwards Arms Inner Rotation
Jump Up Lateral Bend Knees (alternately) to breast

Jump Front& Back Lateral Bend Arm Up Heels (alternately) to backside
Jump Sideways Repetitive forward stretching Knees Bending (crouching)

Jump leg/arms open/closed Upper Trunk & Lower Body Opposite Twist Knees (alternately) bend forward
Jump Rope Arms Lateral Elevation Rotation on the knees

Trunk twist (arms outstretched) Arms frontal elevation Rowing
Trunk twist (elbows bent) Frontal hand claps Elliptic Bike

Waist bends forward Arms frontal crossing Cycling

Figure 3: Data assignment for experimental and evaluation
methodology.

Figure 3), then roam 25% of the source samples (0C
in Figure 3) using the trained model. The classifier
from the first evaluation is then used to evaluate the
roamed samples i.e the roamed samples are used as
the testing data. This is done with a view to deriving
the performance gains obtained through the use of the
roaming model. Finally, we once again use the trained
classifier, but evaluate on samples collected natively
from the target body location (1C in Figure 3). This
is done in order to obtain a theoretical upper bound
for the proposed method, as well as give a quantita-
tive value for the loss in predictive performance in-
curred through the use of the roaming model (i.e the
loss incurred from re-purposing samples rather than
collecting them anew at the target location).

We consider all the activities in the REALDISP
dataset, as we aim to investigate the feasibility of
transferring samples in general between body loca-
tions, independent of any particular activity. Because
of the wide variety of activities in this dataset, we feel
that the performance obtained from our experiments
will be a reasonable indicator of the feasibility of such
roaming models in general. All the considered eval-
uations are carried out across-subjects i.e the subjects
in *A, *B and *C are all different. This is done to

Figure 4: Structure of CNN used for classification.

simulate practical scenarios in the real world where
model training and inference are likely done on dis-
joint sets of individuals. We use a Convolutional Neu-
ral Network (CNN) as the classifier due to its ability
to automatically extract features from the source data.
The structure of the adopted CNN is shown in Figure
4.

The described evaluations (baseline and roam-
ing/comparative) are repeated ten times and averaged
in order to obtain a general estimate of the quality of
the roamed samples. For every evaluation, Different
subject selections are made for training and testing
purposes. The Keras machine learning library was
used for the implementation of the roaming model,
while the classifier was implemented using the Py-
Torch machine learning library. Due to space limita-
tions, we consider the average classification accuracy
and F-metric as the evaluation metrics. The obtained
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results and their discussion are provided in the follow-
ing section.

6 RESULTS

In this section we present the results of our experi-
ments and analyze them further. In the result tables
we indicate activities involving the whole body with
‡, the trunk with ||, the upper extremities with † and
the lower extremities with ∧. Additionally we group
the rows per activity subgroup (i.e whole body, up-
per extremities, etc) for easier interpretability. The
theoretical lower bound results (i.e from training on
the target location and using samples from the source
location directly) are presented under the column
marked ”LB”. The results obtained from the proposed
method (i.e roaming samples from the source to the
target location and using the classifier trained on the
target location) are listed under the ”Proposed” col-
umn. The results from the theoretical upper bound
(i.e training and testing on samples from the target lo-
cation) are shown under the ”UB” column. All the
F-metrics are reported on a normalized scale i.e 0 to
1.

6.1 Right Lower Arm to Right Upper
Arm and Back

Table 2 shows the results of the roaming experiments
in which the right lower arm (RLA) is the source loca-
tion and the right upper arm (RUA) and back (BACK)
are the target locations.

For the activities involving the whole body, trunk
and upper extremities, the right upper arm (RUA) arm
upper bound shows good F-metrics, as compared to
the activities involving the lower extremities. This is
because the preceding sets of activities have more dy-
namics captured by the right upper arm as compared
to the latter set of activities. Additionally the lower
bound results indicate that the RLA generates roughly
similar dynamics as generated by the right upper arm
due to their relative proximity. As such, the results
obtained by the proposed method show significant im-
provement over the lower bound, indicating that the
roaming model is effective in this scenario.

When the back (BACK) is considered as the tar-
get location, it can be seen that the lower bounds
are significantly worse than those obtained from the
right upper arm, with several activities completely
mis-classified (most clearly seen with the activities in-
volving the upper extremities). This is due to the fact
that the classifier is unable to recover the dynamics

of the back from the right lower arm without trans-
formation. After the transformation obtained through
the use of the proposed method, the predictive perfor-
mance obtained per activity improves over the lower
bound for all activities. The least performance benefit
obtained is correspondingly observed for the activities
involving the upper extremities, indicating that roam-
ing from the right lower arm to the back is most ef-
fective for activities of the whole body, trunk or lower
extremities.

6.2 Right Upper Arm to Right Lower
Arm and Back

Table 3 shows the results obtained using our pro-
posed technique when the right upper arm (RUA) is
the source location and the right lower arm (RLA) and
back (BACK) are the target locations.

From the upper bound results for the former sce-
nario (i.e RUA-RLA), it can be observed that the RLA
location shows fairly good recognition over all ac-
tivity subsets (whole body, trunk, upper extremities,
etc), with the poorest performance observed for the
lower extremity activities. Similar to the previous ex-
periments, this can be attributed to the fact that the
RLA location does not capture most of the dynam-
ics generated by such activities. The lower bound re-
sults for same are expectedly much lower, but show an
aggregate predictive accuracy similar to the converse
case as seen in Table 2 i.e RLA-RUA yields roughly
similar performance to RUA-RLA. This can be ex-
plained as before; the proximity of the two locations
permits them to be affected broadly similarly by the
same activities. After the application of the proposed
method, a significant improvement is observed in the
predictive performance for all the considered activ-
ities. The activities involving the upper extremities
show the best roaming performance, in some cases
showing virtually no degradation in performance rel-
ative to the upper bound. This can similarly be at-
tributed to the proximity of the source and target lo-
cation, which permits them to be subjected to similar
dynamics and therefore yield similar predictive per-
formance.

Considering the latter scenario (i.e RUA-BACK),
it can be seen (from the upper bound results) that the
BACK location shows good recognition accuracy for
all activity subsets except for the upper extremity ac-
tivities where its performance degrades significantly.
This can be attributed to the fact that the BACK loca-
tion is very minimally affected by movements of the
arm and therefore cannot be used to discriminate be-
tween such activities accurately. The lower bound re-
sults also suggest that samples from the RUA location
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Table 2: F-measures for Roaming Experiments for Right Lower Arm (RLA) to Right Upper Arm (RUA) and Back (BACK).

Source Location RLA
Target Location RUA BACK

Method LB Proposed UB LB Proposed UB
Average Classification Accuracy (%): 21.21 66.05 73.48 4.66 44.18 63.35

Walking‡ 0.55 0.71 0.83 0.00 0.63 0.78
Jogging‡ 0.04 0.72 0.77 0.00 0.54 0.70
Running‡ 0.02 0.70 0.79 0.01 0.63 0.85
Jump Up‡ 0.28 0.52 0.59 0.02 0.38 0.40

Jump Front & Back‡ 0.36 0.56 0.64 0.16 0.41 0.68
Jump Sideways‡ 0.11 0.41 0.50 0.11 0.44 0.65

Jump legs/arms open/closed‡ 0.21 0.86 0.92 0.04 0.35 0.54
Jump Rope‡ 0.24 0.57 0.60 0.03 0.24 0.35

Rowing‡ 0.07 0.64 0.66 0.01 0.55 0.64
Elliptic Bike‡ 0.00 0.71 0.63 0.00 0.46 0.56

Cycling‡ 0.05 0.57 0.78 0.00 0.11 0.47
Trunk Twist (arms out)|| 0.41 0.83 0.85 0.02 0.55 0.59

Trunk Twist (elbows bent)|| 0.00 0.94 0.94 0.04 0.51 0.63
Waist Bent Forward|| 0.16 0.56 0.75 0.01 0.69 0.92

Waist Rotation|| 0.02 0.65 0.76 0.05 0.45 0.77
Waist Bends (reach foot w/ opposite hand)|| 0.27 0.78 0.92 0.00 0.67 0.87

Reach Heel Backwards|| 0.46 0.52 0.67 0.20 0.29 0.56
Lateral Bend|| 0.14 0.51 0.54 0.11 0.42 0.62

Lateral Bend Arm Up|| 0.17 0.41 0.49 0.05 0.32 0.57
Repetitive Forward Stretching|| 0.15 0.68 0.79 0.00 0.63 0.90

Upper Trunk & Lower Body Opposite Twist|| 0.13 0.42 0.61 0.01 0.10 0.51
Arms Lateral Elevation† 0.12 0.70 0.59 0.00 0.10 0.23
Arms Frontal Elevation† 0.07 0.69 0.72 0.00 0.14 0.25

Frontal Hand Claps† 0.38 0.68 0.78 0.00 0.25 0.40
Arms Frontal Crossing† 0.29 0.83 0.84 0.00 0.17 0.49

Shoulders High-Amplitude Rotation† 0.72 0.89 0.91 0.01 0.13 0.33
Shoulders Low-Amplitude Rotation† 0.22 0.87 0.83 0.01 0.23 0.29

Arms Inner Rotation† 0.06 0.76 0.72 0.00 0.11 0.60
Knees (alternately) to breast∧ 0.17 0.71 0.86 0.14 0.63 0.88

Heels (alternately) to backside∧ 0.35 0.73 0.73 0.23 0.59 0.80
Knees bending (crouching)∧ 0.31 0.31 0.35 0.24 0.32 0.60

Knees (alternately) bent forward∧ 0.18 0.43 0.59 0.02 0.28 0.54
Rotation on Knees∧ 0.01 0.69 0.69 0.00 0.56 0.74

show very different dynamics than those collected na-
tively from the BACK location and as such show ex-
tremely poor recognition performance in that scenario
(i.e without roaming). After roaming, the predictive
performance improves drastically across all activities,
with the aggregate performance (as measured by the
average accuracy) approaching the aggregate perfor-
mance of the native BACK-collected samples. The
worst roaming performance is observed for activities
involving the upper extremities, indicating that roam-
ing from the RUA location to the BACK location is
not effective for upper extremity activities.

6.3 Back to Right Upper Arm and
Right Lower Arm

Table 4 shows the results obtained using the proposed
method when the back (BACK) is considered as the
source location and the right lower arm (RLA) and
right upper arm (RUA) are considered as the target
locations.

It can be observed that the RLA location natively
(i.e from the upper bound results) shows the best pre-
dictive performance for activities involving the up-
per extremities. This can be explained by the fact

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

686



Table 3: F-measures for Roaming Experiments for Right Upper Arm (RUA) to Right Lower Arm (RLA) and Back (BACK).

Source Location RUA
Target Location RLA BACK

Method LB Proposed UB LB Proposed UB
Average Classification Accuracy (%): 23.01 64.13 71.21 9.02 60.18 66.32

Walking‡ 0.43 0.68 0.79 0.08 0.80 0.76
Jogging‡ 0.00 0.61 0.66 0.03 0.67 0.73
Running‡ 0.00 0.70 0.69 0.30 0.72 0.80
Jump Up‡ 0.27 0.46 0.48 0.00 0.43 0.47

Jump Front & Back‡ 0.30 0.50 0.51 0.20 0.60 0.68
Jump Sideways‡ 0.24 0.40 0.45 0.02 0.47 0.61

Jump legs/arms open/closed‡ 0.13 0.85 0.84 0.12 0.52 0.61
Jump Rope‡ 0.29 0.81 0.85 0.02 0.31 0.48

Rowing‡ 0.04 0.56 0.73 0.01 0.63 0.78
Elliptic Bike‡ 0.00 0.72 0.82 0.06 0.55 0.63

Cycling‡ 0.15 0.60 0.63 0.00 0.68 0.66
Trunk Twist (arms out)|| 0.28 0.77 0.88 0.00 0.60 0.56

Trunk Twist (elbows bent)|| 0.01 0.83 0.87 0.20 0.70 0.64
Waist Bent Forward|| 0.26 0.60 0.61 0.00 0.85 0.89

Waist Rotation|| 0.04 0.49 0.70 0.01 0.69 0.80
Waist Bends (reach foot w/ opposite hand)|| 0.44 0.75 0.80 0.12 0.86 0.83

Reach Heel Backwards|| 0.37 0.48 0.54 0.07 0.44 0.64
Lateral Bend|| 0.24 0.54 0.58 0.02 0.63 0.74

Lateral Bend Arm Up|| 0.26 0.47 0.56 0.01 0.55 0.67
Repetitive Forward Stretching|| 0.18 0.62 0.55 0.00 0.78 0.81

Upper Trunk & Lower Body Opposite Twist|| 0.12 0.34 0.48 0.05 0.17 0.48
Arms Lateral Elevation† 0.25 0.61 0.76 0.00 0.22 0.23
Arms Frontal Elevation† 0.16 0.68 0.83 0.00 0.33 0.37

Frontal Hand Claps† 0.39 0.70 0.85 0.00 0.43 0.52
Arms Frontal Crossing† 0.15 0.85 0.86 0.01 0.27 0.45

Shoulders High-Amplitude Rotation† 0.81 0.93 0.96 0.00 0.32 0.38
Shoulders Low-Amplitude Rotation† 0.15 0.88 0.89 0.00 0.27 0.43

Arms Inner Rotation† 0.00 0.68 0.84 0.00 0.49 0.55
Knees (alternately) to breast∧ 0.31 0.60 0.45 0.23 0.87 0.94

Heels (alternately) to backside∧ 0.25 0.56 0.56 0.12 0.77 0.86
Knees bending (crouching)∧ 0.25 0.32 0.29 0.15 0.56 0.67

Knees (alternately) bent forward∧ 0.12 0.41 0.61 0.20 0.49 0.64
Rotation on Knees∧ 0.00 0.65 0.82 0.00 0.62 0.70

that the effects of such activities are localized mostly
along the aforementioned extremities, the data from
which were used in training the classifier in that ex-
periment. Conversely, it shows the worst performance
for activities involving the lower extremities. This
can be attributed to the fact that such activities do not
generate appreciable effects in the upper extremities.
The lower bound results also show that the dynam-
ics of the back differ significantly from the dynam-
ics of the RLA location. This is reflected in the poor
predictive performance obtained, with several activi-
ties completely mis-classified. After the samples are
roamed, improvements in the predictive performance

are apparent; this is most apparent with the whole-
body activities and the activities involving the trunk.
Accordingly, the improvements are less in the activi-
ties involving the upper extremities. This can be ex-
plained by the fact that the BACK location natively
does not capture much of the dynamics of the upper
extremities, and as such this limits the utility of roam-
ing samples from that location to the upper extremi-
ties.

Accordingly, the RUA location natively (i.e from
the upper bound results) shows the best predictive
performance of all the considered target locations,
showing good performance across all the activities al-
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Table 4: F-measures for Roaming Experiments for Back (BACK) to Right Lower Arm (RLA) and Right Upper Arm (RUA).

Source Location BACK
Target Location RLA RUA

Method LB Proposed UB LB Proposed UB
Average Classification Accuracy (%): 7.16 43.80 67.19 11.63 56.82 78.03

Walking‡ 0.03 0.54 0.74 0.11 0.70 0.88
Jogging‡ 0.00 0.49 0.53 0.08 0.61 0.74
Running‡ 0.00 0.67 0.64 0.56 0.59 0.77
Jump Up‡ 0.18 0.26 0.46 0.20 0.41 0.61

Jump Front & Back‡ 0.29 0.41 0.49 0.26 0.55 0.66
Jump Sideways‡ 0.07 0.36 0.42 0.18 0.48 0.60

Jump legs/arms open/closed‡ 0.01 0.58 0.73 0.12 0.75 0.92
Jump Rope‡ 0.02 0.41 0.82 0.07 0.40 0.70

Rowing‡ 0.00 0.44 0.71 0.01 0.44 0.72
Elliptic Bike‡ 0.00 0.32 0.71 0.00 0.52 0.77

Cycling‡ 0.00 0.28 0.54 0.00 0.51 0.85
Trunk Twist (arms out)|| 0.00 0.55 0.82 0.01 0.66 0.86

Trunk Twist (elbows bent)|| 0.00 0.60 0.91 0.09 0.75 0.97
Waist Bent Forward|| 0.20 0.52 0.50 0.00 0.81 0.84

Waist Rotation|| 0.12 0.38 0.72 0.00 0.62 0.78
Waist Bends (reach foot w/ opposite hand)|| 0.00 0.65 0.71 0.18 0.91 0.93

Reach Heel Backwards|| 0.13 0.22 0.59 0.13 0.47 0.65
Lateral Bend|| 0.16 0.42 0.60 0.01 0.35 0.64

Lateral Bend Arm Up|| 0.06 0.21 0.53 0.06 0.44 0.59
Repetitive Forward Stretching|| 0.00 0.48 0.53 0.00 0.76 0.82

Upper Trunk & Lower Body Opposite Twist|| 0.00 0.10 0.59 0.01 0.18 0.64
Arms Lateral Elevation† 0.00 0.13 0.77 0.00 0.09 0.71
Arms Frontal Elevation† 0.00 0.27 0.83 0.01 0.35 0.87

Frontal Hand Claps† 0.00 0.55 0.82 0.00 0.47 0.85
Arms Frontal Crossing† 0.00 0.41 0.84 0.00 0.26 0.90

Shoulders High-Amplitude Rotation† 0.00 0.33 0.95 0.00 0.42 0.96
Shoulders Low-Amplitude Rotation† 0.00 0.43 0.93 0.00 0.45 0.90

Arms Inner Rotation† 0.00 0.49 0.86 0.00 0.53 0.91
Knees (alternately) to breast∧ 0.32 0.54 0.47 0.32 0.79 0.82

Heels (alternately) to backside∧ 0.19 0.62 0.66 0.23 0.78 0.79
Knees bending (crouching)∧ 0.16 0.27 0.27 0.25 0.47 0.47

Knees (alternately) bent forward∧ 0.01 0.30 0.61 0.22 0.43 0.57
Rotation on Knees∧ 0.00 0.48 0.68 0.01 0.71 0.76

though the upper extremity activities show the best
performance. Similar to the RLA location, the predic-
tive performance obtained for lower-body extremities
is generally the lowest obtained, but the RUA location
shows better robustness than the RLA location. This
is due to the fact that the RUA location, being higher-
up along the body, is able to capture some of the dy-
namics of the lower extremity activities, as opposed
to the RLA location which is more particular/local to
the upper extremities. Before the proposed technique
is applied, it can be seen that the direct reuse of the
BACK location samples at the RUA location yields
poor predictive performance. This can be explained

similarly to the previous section i.e the dynamics of
the two locations are differ significantly. Regardless,
the difference between the BACK and RUA locations’
dynamics is lower than the difference between the
BACK and RLA locations. This can be seen in the
lower number of completely mis-classified samples
for the BACK-RUA scenario compared to the BACK-
RLA scenario. When the proposed method is applied,
improvements in the predictive performance are ob-
tained for all considered activities. The best roaming
performance gains are observed in activities involv-
ing the lower extremities, followed by the activities
involving the trunk. This can be attributed to the fact
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that the BACK location captures more of the dynam-
ics of the lower extremities than the RUA location.
Therefore by roaming the samples from the BACK lo-
cation to the RUA location, together with the relative
similarity in the dynamics captured by both locations,
near-native predictive performance is gained on activ-
ities whose effects have an impact on both the BACK
and RUA locations.

6.4 Discussion

In this section we summarize inferences obtained
from the results and their subsequent discussion in the
preceding subsections.

Considering the general pattern of results ob-
tained, it can be inferred that the proposed roaming
technique performs best between proximal body lo-
cations (e.g RLA-RUA, RUA-BACK, etc). This can
be attributed to the fact that proximal body locations
are similarly affected by the dynamics of a given set
of activities. Additionally, roaming performance is
maximized when the source body location is itself
suitably discriminative of the considered activities.
This follows due to the reason that the source loca-
tion must itself contain sufficient recognition infor-
mation, which may then be roamed for reuse. We
can thus surmise that, in general, the predictive per-
formances obtained through roaming (relative to the
reported upper-bounds) indicate that the roamed sam-
ples can be useful in solving the activity recognition
problem.

7 CONCLUSION AND FUTURE
WORK

In this work we explore the feasibility of constructing
”roaming” models, which are capable of transform-
ing samples between different body locations. We
propose a technique based on Bidirectional Recurrent
Neural Networks and apply our proposed technique
to a multi-sensor, multi-location dataset consisting of
33 activities involving different regions of the body.
The results obtained suggest that roaming models can
be feasible between proximal body locations, and the
highest gains from their use result from the consid-
eration of activities whose dynamics are adequately
captured by the source location.

In the future we would like to explore more body
locations to gain a more holistic insight into the per-
formance and feasibility of such models. Addition-
ally, we will investigate roaming models based on the
use of more than one source body location. Further-
more, the feasibility of activity class-specific (e.g up-

per body activities) roaming models may be explored
in order to obtain better roaming performance as op-
posed to using a general roaming model for all activ-
ities.
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