
An Overview of the Endless Battle between Virus Writers and Detectors:
How Compilers Can Be Used as an Evasion Technique

Michele Ianni1, Elio Masciari2 and Domenico Saccà1

1DIMES, UNICAL, Via P. Bucci, Rende, Italy
2ICAR, CNR, Via P. Bucci, Rende, Italy

Keywords: Metamorphic Malware, Obfuscation, Malware Detection, Single Instruction Compilers.

Abstract: The increasing complexity of new malware and the constant refinement of detection mechanisms are driving
malware writers to rethink the malware development process. In this respect, compilers play a key role and
can be used to implement evasion techniques able to defeat even the new generation of detection algorithms.
In this paper we provide an overview of the endless battle between malware writers and detectors and we
discuss some considerations on the benefits of using high level languages and even exotic compilers (e.g.
single instruction compilers) in the process of writing malicious code.

1 INTRODUCTION

History of malware, short for malicious software, is
characterized by the endless battle between malware
writers and detectors. Since detection strategies are
becoming more and more complex, malware writers
have to invent new techniques in order to evade de-
tection. Today we can find many viruses that can be
considered as pieces of art because they employ sev-
eral clever ideas in order to keep themselves as stealth
as possible. The increasing complexity of new mal-
ware is posing new intriguing challenges both from
the malware writer perspective and detection mech-
anisms. In order to implement complex malware,
able to spread itself on various operating systems and
architectures, it could be useful to move from pure
assembly implementations, to malware written using
high level languages. In this respect the use of com-
pilers is a key concept to take into account. Compil-
ers, in fact, can be used to implement metamorphic
techniques and obfuscation and can build executables
able to defeat new detection mechanisms based on the
extraction of semantic patterns from the binaries. The
paper is organized as follows: in section 2 we describe
several techniques used by malware writers in order
to avoid detection. In section 3 we show some of the
strategies used by antivirus software to detect mali-
cious code and we focus our attention on CFG based
detection. In section 4 we discuss the benefits related
to the use of compilers in the process of writing mali-
cious code and we show the advantages of using sin-

gle instruction compilers as an evasion technique. Fi-
nally in section 5 we draw our conclusions.

2 EVASION TECHNIQUES

The most widespread technique used by commer-
cial anti-malware systems in order to detect viruses
is based on malware signatures (Idika and Mathur,
2007). They are invariant patterns, usually taken
from the program’s code or raw file content, used to
uniquely identify the given malware. To evade signa-
ture based scanners many today viruses (called meta-
morphic) are able to transform themselves during the
propagation phase, without losing their capabilities
(You and Yim, 2010). To achieve this goal several
metamorphic transformation are used, including code
permutation, garbage code insertion, code shrinking
and expansion, register renaming, encryption (Coll-
berg et al., 1997; Barak et al., 2001; Beaucamps and
Filiol, 2007). The result of these transformations is
a brand new virus that, while keeping the functional-
ity of its predecessor, present a different structure and
then a different signature, thus evading detection (You
and Yim, 2010). As explained in (Bonfante et al.,
2007), we define M ⊂ P to be the set of malicious
programs, where P is the set of all programs and S to
be the set of signatures. A detector is then a function
D : P×M→ {0,1}. A program p is detected if there
is a signature m∈ S such that D(p,m) = 1. In the case

Ianni, M., Masciari, E. and Saccà, D.
An Overview of the Endless Battle between Virus Writers and Detectors: How Compilers Can Be Used as an Evasion Technique.
DOI: 10.5220/0007922802030208
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 203-208
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

203



of malwares D(p,m) = 1 ⇐⇒ m is a pattern derived
from p.

Using signature for malware detection is effi-
cient only if it is applied to known malware. This
technique, compared to dynamic analysis techniques,
has less scanning time, lower false-positive ratio and
doesn’t suffer of the risks of system infection due to
the execution of the malware. The use of code ob-
fuscation techniques allows to easily generate vari-
ants of known malware resulting in new malware
that cannot be detected by signature based scanners
and are harder to comprehend for an human analyst.
As stated in (Lyda and Hamrock, 2007) more than
80% of malware is packed, in accordance to (Stepan,
2006) almost 50% of new malware in 2006 were ex-
isting malware obfuscated with packing techniques.
The same trend is linked to the use of other obfus-
cation approaches. There exist many examples of
code obfuscation designed to avoid AV scanners de-
tection (Driller, 2002; Mohanty, 2005; Rajaat, 1999;
Julus, 2000) and all of them are able to easily evade
signature based malware detectors.

As described in (You and Yim, 2010) except for
packing, the first obfuscation technique historically
used is encryption (Schiffman, a; Schiffman, b; Wong
and Stamp, 2006). The executable body is crypted
and the malware adds to it a decryptor that provides
decryption of the body at program runtime. Since at
every infection the cryptographic keys used are dif-
ferent the crypted virus body will be always different.
One of the first viruses that developed this strategy is
Cascade, followed by Win95/Mad and Win95 Zombie
(Szor and Ferrie, 2001). Some of this kind of viruses
use also multiple layers of encryption (Win32/Coke).
The major limitation of this approach is that in most
cases the decryption is in clear text and, since it is
always the same, it can be used in order to gener-
ate a signature. To overcome this limitation malware
writers created new malware able to change also de-
cryptor code. This led to the birth of polymorphic
malware (Rajaat, 1999), that, using many different
techniques (Wong and Stamp, 2006; Christodorescu
and Jha, 2006; Konstantinou and Wolthusen, 2008)
are able to generate always different decryptors, with-
out invariant patterns that could be used as signatures.
The first viruses that used a real 32-bit polymorphic
engine were Win95/Marburg and Win95/HPS. They
have been developed and spreaded online many poly-
morphic engines, among these we can cite “The Mu-
tation Engine” (MtE) (Schiffman, a) that is able to
easily convert non obfuscated code into polymorphic
malware. Altough polymorphic malware are effec-
tive against signature based detection, they can be de-
tected using more refined techniques. After the de-

cryption phase, in fact, the body of the virus will be al-
ways the same. Using sandboxing techniques (Schiff-
man, a; Schiffman, b) the detectors are able to emulate
malware in a controlled environment, allowing the de-
cryptor to decrypt malware body in memory. At this
point it is still possible to use signature based tech-
niques on the decrypted body. To prevent malware
emulation several armoring techniques have been pro-
posed (Schiffman, a) but the improvements in sand-
boxing mechanisms brought many of them to be in-
effective. To overcome all these limitations malware
writers brought obfuscation to a new level: metamor-
phic malware (Driller, 2002; Julus, 2000) (Schiffman,
b; Wong and Stamp, 2006; Christodorescu and Jha,
2006; Konstantinou and Wolthusen, 2008). They are
malware able to transform their own body during in-
fection phase. At each iteration metamorphic mal-
ware is rewritten so that each succeeding version of
the code is different from the preceding one.

There are numerous techniques used by this kind
of malware (and often by polymorphic malware too):

• Register swapping: is a technique used, for exam-
ple, by Vecna’s Win95/Regswap virus (Wong and
Stamp, 2006). It consists in changing registers
used in various instructions during the evolution
from generation to generation. Wildcard search-
ing makes this technique ineffective.

• Instruction substitution: it is based on substitut-
ing single, or groups, of instructions with other
instructions (or groups of them). The new in-
structions will be equivalent to the previous ones
in functionalities but syntactically different (Kon-
stantinou and Wolthusen, 2008).

• Garbage instructions insertion: is a technique
based on the insertion of garbage instructions, that
are useless for the execution of the program. Their
only goal is to vary malware body (Balakrishnan
and Schulze, 2005; Wong and Stamp, 2006; Kon-
stantinou and Wolthusen, 2008). They can be sin-
gle instructions or sequences that perform useless
operations leaving unaltered the state of the pro-
gram or even instructions located in areas of the
program that will never be executed. In this case
we are talking about dead-code.

• Transposition: this name is used to define many
instruction reordering techniques that leave un-
altered the flow of the program (Christodorescu
and Jha, 2006). One of these technique consist in
randomly reordering some instructions then using
unconditional jumps to reconstruct the original
flow. In a more elegant way it is possible to isolate
independent groups of instructions then modify
their order. In this case, since the sequences are

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

204



independent, there is no need to make use of un-
conditional jumps. Finding independent groups of
instructions is not an easy task to perform, so, of-
ten developers use easier techniques, which can be
considered a variant of the first one. It is based on
the reordering of the various subroutines that are
present inside the malware (Christodorescu and
Jha, 2006). One of the malware that used this ap-
proach is Win32/Ghost. If we have n subroutines
we are able to generate up to n! different variants.

• Code integration: is the most sophisticated tech-
nique used to obfuscate code. It has been intro-
duced by the virus writer Zombie in Win95/Zmist
(Zombie Mistfall). It consists in decompiling the
program to infect in distinct parts and then insert-
ing malware code between them. At the end the
original program and the malware are reassem-
bled in a single executable.

3 MALWARE DETECTION

Although several theoretical studies (Cohen, 1987;
Chess and White, 2000) have proved that an algorithm
able to detect all types of malware can not exist, a lot
of effort has been put to improve detection mecha-
nisms. Several methods have been proposed, varying
from support vector machine (SVM) (Burges, 1998),
to decision trees (Kolter and Maloof, 2004; Moser
et al., 2007), to Naive Bayes Method (Schultz et al.,
2001). There are two different approaches in malware
detection: static and dynamic analysis. The first an-
alyzes a binary without executing it. Since this tech-
nique is safer, faster and easier to implement than dy-
namic analysis, it is the most widespread approach,
even if it is more limited than the latter. Some exam-
ples of operations that are performed by static analy-
sis are finding patterns on executables and code flow
analysis. In addition to be fast and safe, static anal-
ysis has the advantage of reaching complete applica-
tion code coverage, thus reducing the number of false
positives in malware detection. The main problem in
using static analysis is that it is very difficult to detect
unknown malware. Dynamic analysis, instead, runs
malware in a sandbox simulating the behaviour of a
real environment, monitoring all system calls. It is
clear that the speed of performing this kind of anal-
ysis is much slower than static analysis techniques.
In addition to that, several techniques have been pro-
posed from malware writers in order to check if the in-
fected executable is running inside a virtual machine,
and, in that case, changing its own behaviour in a non
offensive one. To overcome the limitation of static
analysis they have been introduced many techniques

based on the concept of code normalization. These
techniques try to reduce obfuscated code to a base
form that is the same for all obfuscated variants of the
same executable. Many different approaches to code
normalization have been proposed. Among them we
can cite Christodorescu et al. (Christodorescu et al.,
2005), Walenstein et al. (Walenstein et al., 2006) and
Lakhotia et al. (Lakhotia and Mohammed, 2004). In
the latter the base form is called “zero form” and the
process to reduce an executable to that form is called
“zeroing”. As herm1t states in (herm1t, 2002) if this
kind of approach was perfect a tool that could per-
form zeroing reducing all possible variants of a virus
into a single “normalized” form (not necessarily op-
timal), could then use this strategy with every algo-
rithm thus proving or refuting their identity. That’s
known to be indecidable. The effort of the creators of
detectors is then focused on capturing semantic pat-
tern inside an executable rather than invariant sync-
tactic features. These techniques vary from API call
analysis (Sathyanarayan et al., 2008) to Control Flow
Graph analysis.

As explained in (Shoshitaishvili et al., 2016) a
Control Flow Graph (CFG) is a graph in which the
nodes are basic blocks of execution and the edges are
possible control flow transfers between them. They
are used both for malware detection and vulnerability
discovery. CFG recovery is a widely discussed topic
in literature, we can cite (Cifuentes and Van Emmerik,
2001; Kinder and Veith, 2008; Kruegel et al., 2004;
Schwarz et al., 2002; Troger and Cifuentes, 2002; Xu
et al., 2009). The general method to recover a CFG
(for more details see (Shoshitaishvili et al., 2016))
consist on using a recursive algorithm like 1:

Algorithm 1: Control Flow Graph recovery.

1: function CFG RECOVERY
2: basic block queue←{}
3: CFG←{}
4: basic block queue.push(B0) . B0 is the first

basic block
5: CFG.add(B0)
6: while basic block list is not empty do
7: B← basic block queue.pop()
8: for each basic block Bi that can follow B

in the execution do
9: if CFG does not contain Bi then

10: CFG.add(Bi)
11: basic block queue.push(Bi)
12: end if
13: Connect B to Bi
14: end for
15: end while
16: end function

An Overview of the Endless Battle between Virus Writers and Detectors: How Compilers Can Be Used as an Evasion Technique

205



Of course there exist more refined ways to recover
a CFG.

Many CFG recovery algorithms deal with the
problem of indirect jumps. An indirect jump occurs
when the control flow is transferred to a target repre-
sented by a value in a register or to a memory loca-
tion. This makes flow analysis much harder because
the destination of the jump is not easily resolvable.
This is because it could depend from computations
specified in code, from the application context or even
from function pointers used in object oriented lan-
guages to implement object polymorphism (Shoshi-
taishvili et al., 2016).

3.1 Control Flow Graph based Malware
Detection

As previously stated, due to the difficulty on isolating
invariant synctactic features of a self-mutating mal-
ware, the effort of the creators of detectors is focused
on capturing semantic patterns. CFG are widely
used to find similiarities among executables (Dullien
and Rolles, 2005) and, more in detail, among mal-
wares (Cesare and Xiang, 2010a; Briones and Gomez,
2008; Bonfante et al., 2007; Eskandari and Hashemi,
2011; Cesare and Xiang, 2010b; Jeong and Lee, 2008;
Lee et al., 2010; Bruschi et al., 2006). The techniques
proposed in literature are based on generating the
CFG of a program P to analyze. The generated CFG
is the compared to a set of CFGs of known viruses in
order to find isomorphic components. Usually ((Br-
uschi et al., 2006)) before extracting the CFG from a
program P a set of normalization operations (Lakhotia
and Mohammed, 2004) are performed on the binary.
This step aims to reduce the effects of mutation tech-
niques. The normalized binary is then used to extract
the CFG which is then compared to CFG extracted by
normalized known malware. If the CFG of the nor-
malized program contain a subgraph isomorphic to
the CFG of a malware, then the executable is marked
as malicious.

4 USING COMPILERS TO EVADE
DETECTION

The advances in malware detection and the plethora
of different devices and operating systems in use
nowadays, pose new intriguing challenges to malware
writers. The use of assembly language is becoming
more and more painful, because of the difficulties in-
volved to write portable and easy-to-support code. In
the forward-looking article “Recompiling the meta-

morphism” (herm1t, 2002), the author, herm1t, sug-
gests to make use of high level languages in order
to overcome the difficulties involved in developing
malware in pure assembly. He outlines how using
a high level language gives to the developer the op-
portunity to easily extract additional information from
the code, rather than builtin support for features like
hashes, iterators or objects. The idea of ”recompiling
the metamorphism” is without any doubt interesting
and introduces many advantages to the virus writer,
however, not all the benefits of using compilers have
been considered in detail. In order to evade new anti-
malware techniques based on the extraction of seman-
tic patterns from executables, compilers could play
an important role. They, in fact, are able to gener-
ate executables characterized by very different struc-
tures and could be used in order to defeat detection
mechanisms. In this respect we take into accounts the
benefits introduced by using exotic compilers, like the
M/o/Vfuscator2 1 in order to obtain different CFGs,
thus fooling the CFG based detection.

4.1 Single Instruction Compilers as an
Evasion Technique

In (Dolan, 2013), Dolan demonstrates the Turing-
completeness of the x86 instruction mov. After the
publication of the article many people started to im-
plement, most of the time for fun, single instruction
compilers, capable to compile arbitrary programs into
lists of only mov instructions. Several different in-
struction turned out to be Turing-complete, so many
different single instruction compilers arose 2. Even
if at first sight it may seem just like a funny fact, the
use of single instruction compilers has very interest-
ing consequences. Since in single instruction com-
piled programs comparisons, jumps, function calls are
all implemented with a single instruction, the result-
ing CFG is a single (usually long) basic block. This
result is very interesting, because having a CFG com-
posed by a single basic block make ineffective all de-
tection mechanisms based on CFG isomorphism de-
tection. Using a single instruction compiler, however,
has its drawbacks. First of all a program compiled
with a single instruction compiler could be considered
suspicious, thus marked as malicious. In addition to
that, the size of a program compiled with a single in-
struction compiler, is, most of the time, much bigger
than the size of the same program compiled using the
entire set of instructions. This introduces some prob-
lems to virus writers that in many cases have a lim-

1https://github.com/xoreaxeaxeax/movfuscator
2https://github.com/xoreaxeaxeax/movfuscator/tree/mas

ter/post

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

206



ited space in the binary they are going to infect, so
they should keep the malicious code as small as pos-
sible. Sometimes even the performances of the mali-
cious code is important and programs compiled with
a single instruction compiler usually are slower than
traditional ones in terms of execution speed. These
problems lead to rethink the way single instruction
compilers are used for evasion purposes. A simple
but effective solution could be splitting the source
code at compilation time. In our implementation we
mark with source code annotation the functions that
we want to compile with a single instruction compiler,
then at compilation time, making use of the tools pro-
vided by LLVM (Lattner and Adve, 2004) we are able
to build an executable that uses the full set of instruc-
tions for the code that cannot be used to determine its
malicious behaviour and a single instruction for the
malware routines. In this way we are able to build a
much smaller executable that is still able to fool CFG
based malware detection. It is important to under-
line that the single block of single instruction com-
piled code can be furtherly modified using the meta-
morphic techniques described in section 2. This sin-
gle block can be also manipulated in order to obtain
different CFGs, this can be easily done by inserting
jumps or comparisons, thus creating branches in the
graph. To further variate the result of the obfuscation,
several different single instruction compilers can be
adopted, resulting in a great variety of CFGs, making
very hard for the detectors to extract signatures, both
syntactically, due to metamorphic transformation, and
semantically, thanks to the always changing CFG.

5 CONCLUSIONS

In this paper we presented and overview of the tech-
niques used by malware in order to avoid detection as
well as some detection mechanisms. We showed the
benefits related to the use of compilers on the process
of malware creation and we proposed the use of single
instruction compilers as an evasion mechanisms for
CFG based malware detection. In order to overcome
the limitations of this kind of compilers we proposed
several solutions that can greatly increase the ability
of malware to hide itself from detectors.

REFERENCES

Balakrishnan, A. and Schulze, C. (2005). Code obfuscation
literature survey. CS701 Construction of compilers,
19.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S.,

Sahai, A., Vadhan, S., and Yang, K. (2001). On
the (im) possibility of obfuscating programs. In An-
nual International Cryptology Conference, pages 1–
18. Springer.

Beaucamps, P. and Filiol, É. (2007). On the possibility
of practically obfuscating programs towards a unified
perspective of code protection. Journal in Computer
Virology, 3(1):3–21.

Bonfante, G., Kaczmarek, M., and Marion, J.-Y. (2007).
Control flow graphs as malware signatures. In In-
ternational workshop on the Theory of Computer
Viruses.

Briones, I. and Gomez, A. (2008). Graphs, entropy and grid
computing: Automatic comparison of malware. Virus
Bulletin, pages 1–12.

Bruschi, D., Martignoni, L., and Monga, M. (2006). Detect-
ing self-mutating malware using control-flow graph
matching. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assess-
ment, pages 129–143. Springer.

Burges, C. J. (1998). A tutorial on support vector machines
for pattern recognition. Data mining and knowledge
discovery, 2(2):121–167.

Cesare, S. and Xiang, Y. (2010a). Classification of malware
using structured control flow. In Proceedings of the
Eighth Australasian Symposium on Parallel and Dis-
tributed Computing-Volume 107, pages 61–70. Aus-
tralian Computer Society, Inc.

Cesare, S. and Xiang, Y. (2010b). A fast flowgraph
based classification system for packed and polymor-
phic malware on the endhost. In 2010 24th IEEE In-
ternational Conference on Advanced Information Net-
working and Applications, pages 721–728. IEEE.

Chess, D. M. and White, S. R. (2000). An undetectable
computer virus. In Proceedings of Virus Bulletin Con-
ference, volume 5, pages 1–4.

Christodorescu, M. and Jha, S. (2006). Static analysis
of executables to detect malicious patterns. Tech-
nical report, WISCONSIN UNIV-MADISON DEPT
OF COMPUTER SCIENCES.

Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S.,
and Veith, H. (2005). Malware normalization. Tech-
nical report, University of Wisconsin.

Cifuentes, C. and Van Emmerik, M. (2001). Recovery of
jump table case statements from binary code. Science
of Computer Programming, 40(2-3):171–188.

Cohen, F. (1987). Computer viruses. Computers & security,
6(1):22–35.

Collberg, C., Thomborson, C., and Low, D. (1997). A tax-
onomy of obfuscating transformations. Technical re-
port, Department of Computer Science, The Univer-
sity of Auckland, New Zealand.

Dolan, S. (2013). mov is turing-complete. Technical report,
Tech. rep. 2013 (cit. on p. 153).

Driller, M. (2002). Metamorphism in practice. 29A Maga-
zine, 1(6).

Dullien, T. and Rolles, R. (2005). Graph-based comparison
of executable objects (english version). SSTIC, 5:1–3.

An Overview of the Endless Battle between Virus Writers and Detectors: How Compilers Can Be Used as an Evasion Technique

207



Eskandari, M. and Hashemi, S. (2011). Metamorphic mal-
ware detection using control flow graph mining. Int.
J. Comput. Sci. Network Secur, 11(12):1–6.

herm1t (2002). Recompiling the metamorphism. https://
83.133.184.251/virensimulation.org/lib/vhe11.html.
Accessed: 2018-11-13.

Idika, N. and Mathur, A. P. (2007). A survey of malware
detection techniques. Purdue University, 48.

Jeong, K. and Lee, H. (2008). Code graph for malware
detection. In 2008 International Conference on Infor-
mation Networking, pages 1–5. IEEE.

Julus, L. (2000). Metamorphism. 29A Magazine, 1(5).
Kinder, J. and Veith, H. (2008). Jakstab: A static anal-

ysis platform for binaries. In International Confer-
ence on Computer Aided Verification, pages 423–427.
Springer.

Kolter, J. Z. and Maloof, M. A. (2004). Learning to de-
tect malicious executables in the wild. In Proceedings
of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 470–
478. ACM.

Konstantinou, E. and Wolthusen, S. (2008). Metamorphic
virus: Analysis and detection. Royal Holloway Uni-
versity of London, 15:15.

Kruegel, C., Robertson, W., Valeur, F., and Vigna, G.
(2004). Static disassembly of obfuscated binaries. In
USENIX security Symposium, volume 13, pages 18–
18.

Lakhotia, A. and Mohammed, M. (2004). Imposing order
on program statements to assist anti-virus scanners. In
Reverse Engineering, 2004. Proceedings. 11th Work-
ing Conference on, pages 161–170. IEEE.

Lattner, C. and Adve, V. (2004). Llvm: A compilation
framework for lifelong program analysis & transfor-
mation. In Proceedings of the international sympo-
sium on Code generation and optimization: feedback-
directed and runtime optimization, page 75. IEEE
Computer Society.

Lee, J., Jeong, K., and Lee, H. (2010). Detecting meta-
morphic malwares using code graphs. In Proceedings
of the 2010 ACM symposium on applied computing,
pages 1970–1977. ACM.

Lyda, R. and Hamrock, J. (2007). Using entropy analysis to
find encrypted and packed malware. IEEE Security &
Privacy, 5(2):40–45.

Mohanty, D. (2005). Anti-virus evasion techniques and
countermeasures. Published online at http://www.
hackingspirits. com/eth-hac/papers/whitepapers.
asp., 18.

Moser, A., Kruegel, C., and Kirda, E. (2007). Exploring
multiple execution paths for malware analysis. In Se-
curity and Privacy, 2007. SP’07. IEEE Symposium on,
pages 231–245. IEEE.

Rajaat (1999). Polimorphism. 29A Magazine, 1(3).
Sathyanarayan, V. S., Kohli, P., and Bruhadeshwar, B.

(2008). Signature generation and detection of mal-
ware families. In Australasian Conference on In-
formation Security and Privacy, pages 336–349.
Springer.

Schiffman, M. A brief history of malware obfuscation:
Part 1 of 2. Published online at https://blogs.cisco.
com/security/a brief history of malware obfuscation
part 1 of 2. Accessed: 2018-11-13.

Schiffman, M. A brief history of malware obfuscation:
Part 2 of 2. Published online at https://blogs.cisco.
com/security/a brief history of malware obfuscation
part 2 of 2. Accessed: 2018-11-13.

Schultz, M. G., Eskin, E., Zadok, F., and Stolfo, S. J.
(2001). Data mining methods for detection of new
malicious executables. In Security and Privacy, 2001.
S&P 2001. Proceedings. 2001 IEEE Symposium on,
pages 38–49. IEEE.

Schwarz, B., Debray, S., and Andrews, G. (2002). Disas-
sembly of executable code revisited. In Reverse en-
gineering, 2002. Proceedings. Ninth working confer-
ence on, pages 45–54. IEEE.

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N.,
Polino, M., Dutcher, A., Grosen, J., Feng, S., Hauser,
C., Kruegel, C., et al. (2016). Sok:(state of) the art of
war: Offensive techniques in binary analysis. In 2016
IEEE Symposium on Security and Privacy (SP), pages
138–157. IEEE.

Stepan, A. (2006). Improving proactive detection of packed
malware. Virus Bulletin, 1.

Szor, P. and Ferrie, P. (2001). Hunting for metamorphic. In
Virus bulletin conference. Prague.

Troger, J. and Cifuentes, C. (2002). Analysis of virtual
method invocation for binary translation. In Reverse
Engineering, 2002. Proceedings. Ninth Working Con-
ference on, pages 65–74. IEEE.

Walenstein, A., Mathur, R., Chouchane, M. R., and Lakho-
tia, A. (2006). Normalizing metamorphic malware us-
ing term rewriting. In Source Code Analysis and Ma-
nipulation, 2006. SCAM’06. Sixth IEEE International
Workshop on, pages 75–84. IEEE.

Wong, W. and Stamp, M. (2006). Hunting for metamorphic
engines. Journal in Computer Virology, 2(3):211–229.

Xu, L., Sun, F., and Su, Z. (2009). Constructing precise
control flow graphs from binaries. University of Cali-
fornia, Davis, Tech. Rep.

You, I. and Yim, K. (2010). Malware obfuscation tech-
niques: A brief survey. In Broadband, Wireless Com-
puting, Communication and Applications (BWCCA),
2010 International Conference on, pages 297–300.
IEEE.

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

208


