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Abstract: Sorting software modules in order of defect count can help testers to focus on software modules with more
defects. Many approaches have been proposed to accomplish this. In order to compare approaches more
fairly, researchers have provided publicly available data sets. In this paper, we provide a new metric selection
approach and evaluate the usefulness of software metrics of eleven publicly available data sets, in order to
investigate the quality of these data sets and find out the software metrics that are most efficient for sorting
modules in order of defect count. Unexpectedly, experimental results show that only one metric can work well
over most of these data sets, which implies that more effective metrics should be introduced. We also obtain
other findings from these data sets, which can help to introduce new metrics for sorting software modules in
order of defect count to some extent.

1 INTRODUCTION

Software testing activities play a key role in software
development, which consume a great amount of re-
sources including time, money and personnel (Os-
trand et al., 2005). Sorting software modules (files,
packages, etc) in order of defect count can help testers
to focus on software modules with more defects and
identify defects more quickly (Nam and Kim, 2015).
The process mainly includes two parts: data and
model construction methods, and a simple example
can be found in Yang et al.’s work (Yang et al., 2015).

Many approaches, such as negative binomial re-
gression and random forest (Weyuker et al., 2010),
have been proposed to construct prediction mod-
els. In order to compare approaches more fairly,
researchers have provided publicly available data
sets(D’Ambros et al., 2011; Zimmermann et al.,
2007). These data sets include numerous software
metrics, some of which have about 200 metrics. Ex-
isting software metrics include metrics based on soft-
ware scale (Akiyama, 1971), metrics based on soft-
ware complexity (McCabe, 1976), object-oriented
metrics (Basili et al., 1996), and process metrics
(Moser et al., 2008).

The inclusion of irrelevant, redundant, and noisy

a https://orcid.org/0000-0001-8569-2832

attributes can result in poor predictive performance
and increased computation (Hall and Holmes, 2003).
Therefore, some researchers study the effectiveness of
software metrics to construct software defect predic-
tion (SDP) models(D’Ambros et al., 2011; Rahman
and Devanbu, 2013), and some researchers propose
metric selection approaches in the domain of SDP, in
order to solve problems such as high dimensionality
problems (Khoshgoftaar et al., 2014; Liu et al., 2014).
Many interesting findings have been found (Menzies
et al., 2007; Rahman and Devanbu, 2013) and numer-
ous useful metric selection methods have been pro-
posed (Wang et al., 2011b). However, most of these
studies are about software metrics to classify software
modules into defect-prone and defect-free categories
(Khoshgoftaar et al., 2014; Shivaji et al., 2013). In
this paper, we analyze eleven publicly available data
sets that include the number of defects in each soft-
ware module (not only defect-prone or not), and eval-
uate the usefulness of their metrics to sort software
modules according to the number of defects, in order
to investigate the quality of these data sets and find out
the software metrics that are most efficient for sorting
modules in order of defect count.

In this paper, the key contributions include:

1. A new selection approach which can select effi-
cient software metrics for sorting software mod-
ules according to the number of defects.
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2. A comprehensive evaluation of software metrics
to sort software modules in order of defect count
over eleven publicly available data sets, including
six Eclipse data sets (file-level and package-level)
(Zimmermann et al., 2007) and five other data sets
(D’Ambros et al., 2011).

The rest of this paper is organized as follows: Sec-
tion 2 presents related work. In Section 3, we de-
tail our selection approach. Experimental setup is de-
scribed in Section 4 and experimental results are re-
ported in Section 5. Threats to validity are discussed
in Section 6. Section 7 draws the conclusions.

2 RELATED WORK

Sorting software modules in order of defect count is
one kind of software defect prediction (SDP), which
is also called as SDP for the ranking task in this pa-
per. It employs software metrics to predict their defect
information in order to support software testing activ-
ities (D’Ambros et al., 2011; Yang et al., 2015). As
mentioned above, data and model construction meth-
ods are key factors for SDP for the ranking task. Since
we focus on the effectiveness of software metrics in
this paper, we review the related work mainly from
data aspect.

In the beginning, size and complexity metrics,
such as lines of code(Akiyama, 1971) and Halstead’s
metrics (Halstead, 1997), were widely used in an at-
tempt to predict the number of defects that might re-
veal in operation or testing(Fenton and Neil, 1999).

With the development of software, more and
more software metrics were introduced in predict-
ing defect-proneness. For example, Ohlsson and Al-
berg (Ohlsson and Alberg, 1996) used design metrics,
which were derived automatically from design docu-
ments, to research on the identification of fault-prone
modules. Childamber and Kemerer (Chidamber and
Kemerer, 1994) developed and implemented a new
set of software metrics for object oriented design, and
presented empirical data on these metrics from actual
commercial systems, which demonstrated the useful-
ness of these metrics. Graves et al.(Graves et al.,
2000) explored the extent to which measurements
from the change history were successful in predict-
ing the distribution of these incidences of faults, and
they found that process measures based on the change
history were more useful in predicting fault rates than
product metrics of the code.

The inclusion of irrelevant, redundant, and noisy
attributes can result in poor predictive performance
and increased computation (Hall and Holmes, 2003).
Therefore, the rationality and effectiveness of these

metrics have been questioned and analyzed. For ex-
ample, Churcher and Shepperd argued that a number
of fundamental issues should be clarified about the
object oriented metrics developed by Chidamber and
Kemerer before applying them (Churcher and Shep-
perd, 1995). A lot of work has been done to analyze
the effectiveness of software metrics, and we divide
them into three categories.

The first category is direct comparison. That
is, software metrics are categorized into different
sets, and then the effectiveness of these different
sets of metrics is compared by comparing the perfor-
mance of models constructed by corresponding met-
rics. D‘Ambros et al. (D’Ambros et al., 2011) com-
pared many sets of metrics over five data sets. Exper-
imental results showed that process metrics, churn of
source code metrics and entropy of source code met-
rics were more effective than other metrics for build-
ing SDP models. Graves et al. (Graves et al., 2000)
analyzed metrics for predicting the distribution of de-
fects, and concluded that process metrics were more
useful than product metrics. Moser et al. (Moser
et al., 2008) compared models respectively based on
product metrics and process metrics, and concluded
that process metrics were more useful than product
metrics for the Eclipse data. Rahman and Devanbu
(Rahman and Devanbu, 2013) analyzed the applica-
bility and efficacy of process and code metrics from
several different perspectives, and they found that
code metrics were generally less useful than process
metrics for prediction. This kind of methods can con-
clude which set of metrics are more effective but can-
not tell which specific metric plays an important role.

The second category is correlation coefficients.
Ohlsson et al.(Ohlsson and Alberg, 1996) used cor-
relation coefficients to investigate the relationship be-
tween metrics and number of defects, and the relation-
ship among eleven metrics. They found that the met-
rics that most correlated with the number of defects
were highly correlated with each other. Graves et
al. (Graves et al., 2000) computed correlation coeffi-
cients among complexity metrics and found that most
complexity metrics were highly correlated to lines of
code, which implied the existence of redundant met-
rics. Zimmermann et al.(Zimmermann et al., 2007)
applied Spearman correlation coefficients (SCC) to
analyze the relationship between complexity metrics
and number of defects over Eclipse3.0, and found that
most SCC were small. Hence, they pointed out that it
was unlikely to used one metric to predict the num-
ber of defects. This kind of methods can reflect the
relevance between metrics and number of defects in
some degree, but may not reflect the effectiveness of
software metrics for building models, which will be
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discussed in Section 3.
The third category is metric selection. Re-

searchers employed feature selection methods from
data mining domain to rank metrics or select a sub-
set of metrics. Menzies et al. (Menzies et al., 2007)
used Information Gain (IG) to select metrics. Experi-
mental results showed that two or three metrics could
work as well as all metrics, but models based on only
one metric performed inferiorly. They presented the
specific selected metrics, which included loc blanks
and call pairs. Khoshgoftaar et al. (Khoshgoftaar
et al., 2012) compared seven metric selection meth-
ods and found that IG and signal to noise ratio were
better than other methods for selecting useful metrics
to construct SDP models. Wang et al. (Wang et al.,
2011a) applied five metric selection methods to SDP
and pointed out that three metrics were enough to con-
struct an effective SDP models, some of which were
even better than models constructed based on all met-
rics. Wang et al. (Wang et al., 2011b) proposed an en-
semble method and showed its effectiveness by com-
paring it with six other metric selection methods for
SDP. This kind of methods can reflect the effective-
ness of metrics for building SDP models, although
most existing studies are about classifying software
modules into defect-prone and defect-free categories
instead of sorting modules in order of defect count.

According to Catal et al.’s review (Catal and Diri,
2009) and Jabangwe et al.’s review (Jabangwe et al.,
2015), many existing studies used private data sets,
and they pointed out the need to use publicly avail-
able data sets to enable the research community to
validate and compare each others findings. One of the
most popular used publicly data sets are the NASA
data sets, and some researchers have investigated their
quality(Gray et al., 2011; Shepperd et al., 2013).

Most above-mentioned related studies were about
metrics to classify software modules. Therefore, there
is a comparative lack of investigation of publicly data
sets for SDP for the ranking task. Yang et al. found
that two or three metrics worked well for SDP for the
ranking task over some data sets by applying IG to
select partial software metrics (Yang et al., 2015). In
this paper, we follow their work to further investigate
the effectiveness of software metrics for sorting mod-
ules in order of defect count over six Eclipse and five
other publicly available data sets.

3 OBJECT-BASED METRIC
SELECTION METHOD

In this section, we first explain why the second cate-
gory (correlation coefficients) mentioned in Section 2

may not reflect the effectiveness of software metrics
for sorting modules in order of defect count. Subse-
quently, we present our object-based metric selection
(OMS) method.

As mentioned in Section 2, correlation coeffi-
cients are commonly used for investigating the rela-
tionship between metrics and number of defects (Zim-
mermann et al., 2007), or evaluating the performance
of SDP models (D’Ambros et al., 2010). However,
Spearman correlation coefficients (SCC) and Pearson
correlation coefficient (PCC) might be inappropriate
for evaluating models for sorting modules in order of
defect count. In Table 1, we give a simple example
to explain this. According to PCC, model 3 is better
than model 2. However, model 2 and model 3 give the
same order of modules. They would lead to the same
allocation of testing resources. According to SCC,
model 1 and model 2 are the same. However, when
there are limited testing resources, only modules with
largest predicted values will be tested, so the rank-
ing of modules with more defects is more important.
To be specific, when the limited testing resources can
only test one module, model 2 would choose mod-
ule D with twelve defects and model 1 would choose
module C with only three defects. Hence, model 2
is better than model 1 for sorting modules in order
of defect count. Therefore, both SCC and PCC are
not suitable for evaluating models for sorting mod-
ules in order of defect count. Similarly, metrics most
correlated with number of defects according to cor-
relation coefficients might not be most effective for
sorting modules according to number of defects.

Table 1: An Example: Insufficiencies of Correlation Coef-
ficients.

Module Name A B C D
the actual defect number 1 2 3 12
predicted by model 1 1 2 3 2
predicted by model 2 3 2 3 5
predicted by model 3 3 2 3 15

If a metric can lead to a most desired ranking
model, the metric is most effective for sorting mod-
ules in order of defect count. Therefore, we can evalu-
ate the effectiveness of a metric by directly computing
performance of the model based on the metric, which
is the main idea of our OMS method.

OMS is directly based on the model performance,
so we first describe the performance measure for sort-
ing modules in order of defect count. In this paper, we
adopt fault-percentile-average(FPA) (Weyuker et al.,
2010) as the performance measure because FPA takes
into account both practical use and the whole ranking
performance of prediction models, which is demon-
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strated to be consistent with Alberg diagram (Ohls-
son and Alberg, 1996) (also referred to as cumulative
lift chart) for measuring a ranking (Yang et al., 2015).
Considering k modules f1, f2 , . . . , fk, listed in increas-
ing order of predicted defect number, ni as the actual
defect number in the module fi, and n=n1+n2+...+nk
as the total number of defects in all modules, the pro-
portion of actual defects in the top m predicted mod-
ules to the whole defects is 1

n ∑
k
i=k-m+1 ni. Then FPA

is defined as follows(Weyuker et al., 2010):

1
k

k

∑
m=1

1
n

k

∑
i=k-m+1

ni

Actually, FPA is an average of the proportions of ac-
tual defects in the top i(i: 1 to k) predicted modules.
Larger FPA means better ranking performance.

Using FPA as the model performance measure, the
effectiveness of one metric can be evaluated by di-
rectly computing the FPA value of the model based
on the metric, which is detailed in Algorithm 1.

Algorithm 1: Metric Analysis based on FPA.

input : a set of metrics A = (A1,A2, · · · ,Ad)

for i = 1 to d do
to use Ai to predict the number of defects
and compute the corresponding FPAi

end
to rank metrics according to FPA values
return an order of metrics

Metric analysis based on FPA (Algorithm 1) di-
rectly use FPA of models based on each metric, so it
can be used to analyze the effectiveness of each metric
for sorting modules in order of defect count. How-
ever, when metrics are highly correlated with each
other, Algorithm 1 is not suitable for selecting a sub-
set of (more than one) metrics for building models,
because the selected metrics might be highly corre-
lated with each other (in another words, there exist
redundancy among the selected metrics). Therefore,
we propose the OMS method, which uses both FPA
values and SCC to measure the effectiveness of se-
lected metrics. Details are given in Algorithm 2.

4 EXPERIMENTAL SETUP

In this section, we detail research questions, data sets,
and implementation respectively.

Algorithm 2: Object-based metric selection (OMS).

input : a set of metrics A = (A1,A2, · · · ,Ad)
selected number: selectNum
subset S (initialized as empty)

for i = 1 to d do
to use Ai to predict the number of defects
and compute the corresponding FPAi

end
for j = 1 to selectNum do

for i = 1 to d do
if Ai does not belong to S then

to compute the effectiveness of Ai

Ei = FPAi−
|∑ jεS SCCi, j|
|S|

(1)

where SCCi, j is SCC between Ai
and A j

end
end
Amax is the metric with maximum
effectiveness E outside S, then S j=Amax

j++
end
return subset of selected metrics S

4.1 Research Questions

The main research questions are as follows:

* RQ1: How many software metrics are most ap-
propriate and which metrics are most effective for
sorting software modules in order of defect count
over eleven data sets?

* RQ2: Is there a small subset of metrics that can
lead to good models for sorting modules in order
of defect count over all data sets?

RQ1 could evaluate metrics for different data sets,
while RQ2 could evaluate whether partial metrics can
capture all necessary information over all data sets, or
different partial metrics are needed for different data
sets. Before investigating the two research questions,
we need to answer the following questions:

* Q01: Are the best software metrics for SDP for
the ranking task different from those for SDP for
the classification task?

* Q02: Is our OMS method comparable to Infor-
mation Gain (IG) for selecting partial metrics for
sorting software modules in order of defect count?

The reason to investigate Q01 firstly is that we may
directly employ the relevant results from SDP for the
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classification task if the answer for Q01 is a ’No’.
Even though our OMS method is directly based on the
model performance and should be able to select effec-
tive metrics, if the answer for Q02 is a ’No’, there is
no need to apply OMS method to investigate metrics.
That’s why we should investigate Q02.

4.2 Datasets

In order to facilitate others to reproduce results,
we use eleven publicly available data sets, includ-
ing five data sets proposed by D’Ambros et al.
(D’Ambros et al., 2011) and six Eclipse data sets pro-
posed by Zimmermann et al. (Zimmermann et al.,
2007). The benchmark1 presented by D’Ambros et
al. includes data over a five year period from five
open-source software systems—Eclipse JDT Core
(eclipse), Eclipse PDE UI (pde), Equinox frame-
work (equinox), Mylyn, and Apache Lucene (lucene).
There are several sets of metrics for these five sys-
tems. We combine all metrics together, and hence we
can get five datasets with one release. The Eclipse
datasets provided by Zimmermann et al. have three
releases for both file-level and package-level, so SDP
models could be used for predicting defects of a
new release, which is more like the actual situation.
For avoiding misunderstandings, we denote the latter
Eclipse as Eclipse II. The characteristics of the exper-
imental data sets are shown in Table 2. The column
of ’faulty modules’ records the number of modules
having defects with the percentages of faulty mod-
ules in the subsequent brackets, the column of ’range
of defects’ records ranges of defect numbers, and the
column of ’total defects’ records the total number of
defects in all modules of the corresponding data sets.

Table 2: Experimental Data Sets.

Datasets module metric faulty rangeof total
name number number modules defects defects
Eclipse II File2.0(File2.0) 6729 198 975(14.5%) [0,31] 1692
Eclipse II File2.1(File2.1) 7888 198 854(10.8%) [0,9] 1182
Eclipse II File3.0(File3.0) 10593 198 1568(14.8%) [0,17] 2679
Eclipse II Package2.0 377 207 190(50.4%) [0,88] 917
(Package2.0)
Eclipse II Package2.1 434 207 194(44.7%) [0,71] 662
(Package2.1)
Eclipse II Package3.0 661 207 313(47.4%) [0,65] 1534
(Package3.0)
eclipse 997 212 206(20.7%) [0,9] 374
equinox 324 212 129(39.8%) [0,13] 244
lucene 691 212 64(9.3%) [0,9] 97
mylyn 1862 212 245(13.2%) [0,12] 340
pde 1497 212 209(14.0%) [0,28] 341

1http://bug.inf.usi.ch/

4.3 Implementation

In this subsection, we present the implementation ap-
proaches.

According to the research questions, we conduct
the following experiments.

1. In order to answer Q01, we use IG as the selection
method, since it has been applied to both classi-
fying modules (Menzies et al., 2007) and sorting
modules(Yang et al., 2015). To be specific, we
apply IG to select three metrics according to both
ranking (sorting modules) and classification tasks,
and compare the results, in order to see whether
the selected metrics are different. If there exist
differences among the selected metrics, the an-
swer is a ’Yes’. Otherwise the answer might be
a ’No’, and we should dig deeper to find the an-
swer. Since the dependent variable is number of
defects for sorting modules, we convert the depen-
dent variable by defining zero as defect-free and
other values as defect-prone for the classification
task.

2. We use Yang et al.’s strategy (Yang et al., 2015) to
conduct experiments to answer Q02. To be spe-
cific, we compare OMS with IG by comparing the
performance of models based on different num-
bers of selected metrics over eleven data sets, us-
ing the learning-to-rank (LTR) as model construc-
tion method.

3. In order to investigate RQ1, we use OMS or IG
(depending on the comparison results of Q02)
as the selection method, and use random for-
est(RF) as the model constructed method, which
was demonstrated to perform best over the origi-
nal data sets (Yang et al., 2015). In order to inves-
tigate which metrics are most effective for sorting
modules in order of defect count, we use Algo-
rithm 1 to rank software metrics over all data sets
(the metric with largest FPA values ranks 1, so the
metric with smallest rank value is most effective).

4. For RQ2, we use a small subset of most effec-
tive metrics to construct prediction models to see
whether partial metrics can capture all necessary
information for sorting modules over all data sets.
Since data sets have different original metrics,
we categorize data sets according to their metrics
firstly, and use different subsets of metrics for dif-
ferent categories. A ’Yes’ answer for RQ2 might
imply that other metrics should not be used be-
cause they are redundant or noisy for sorting mod-
ules in order of defect count, and A ’No’ answer
might imply that we still should keep other met-
rics because the redundant or noisy metrics for
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Table 3: Three Best Metrics Selected by IG According to Different Tasks and Mean FPA of Their Corresponding Models.

datasets classification ranking selected metrics according selected metrics according
name results results to classification to ranking
Files2.0 0.801 0.804 NBD max,SimpleName NBD max,SimpleName

NORM VariableDeclarationStatement SUM
Files2.1 0.765 0.765 NBD max,SimpleName,SUM SimpleName,NBD max,SUM
Files3.0 0.737 0.787 NBD max,NORM MethodInvocation NBD max,Block

NORM TypeDeclaration SimpleName
Package2.0 0.769 0.766 NBD max,PAR max NBD max,NOM max

ImportDeclaration ImportDeclaration
Package2.1 0.759 0.774 NBD max,PAR max NBD max,Modifier

ImportDeclaration ImportDeclaration
Package3.0 0.811 0.807 NBD max,TLOC max NBD max,NOCU

ImportDeclaration TLOC max
eclipse 0.824 0.824 CvsEntropy,ent-wmc CvsEntropy,ent-wmc

ent-numberOfLinesOfCode ent-numberOfLinesOfCode
equinox 0.791 0.806 CvsLogEntropy,CvsEntropy CvsLogEntropy,cbo

CvsLinEntropy CvsEntropy
lucene 0.828 0.841 CvsLinEntropy,log-churn-wmc CvsLinEntropy,log-churn-wmc

log-ent-numberOfLinesOfCode CvsExpEntropy
mylyn 0.740 0.740 fanOut,exp-ent-numberOfLinesOfCode fanOut,exp-ent-numberOfLinesOfCode

lin-churn-numberOfLinesOfCode exp-churn-numberOfLinesOfCode
pde 0.748 0.748 CvsLinEntropy,lin-ent-rfc CvsLinEntropy,lin-ent-rfc

CvsExpEntropy CvsExpEntropy

one data set might be useful metrics for another
data set.

IG is a metric selection method based on informa-
tion (Menzies et al., 2007). RF is implemented in R2,
and LTR is implemented in Java. The details can be
found in Yang et al.’s work (Yang et al., 2015).

We apply 10-folds cross-validation to evaluate
the methods. To conduct cross-validation, we ran-
domly produce the index before splitting and hence
all methods use the same training and testing sets each
time. The Wilcoxon rank-sum test (Fay and Proschan,
2010) (which is called ranksum for short) at 0.05 sig-
nificance is used as the statistical test.

5 EXPERIMENTAL RESULTS

The experimental results are reported according to the
research questions: Q01, Q02, RQ1, RQ2.

5.1 Q01: Comparison of Best Metrics
Selected According to Different
Tasks

Since linear regression (Khoshgoftaar and Allen,
1999; Yang et al., 2015) could work well when there
are only a few metrics, we use linear regression as the
construction method in this subsection. 10 runs of 10-
fold cross-validation are performed to achieve results.

2http://www.r-project.org./

Table 3 gives the three metrics selected by IG ac-
cording to different (ranking and classification) tasks
and mean FPA of models based on the corresponding
metrics. To be noted, the three metrics are not listed
in order. The column of ’classification results’ gives
mean FPA of models based on metrics selected ac-
cording to the classification task, and the column of
’ranking results’ is the corresponding results accord-
ing to the ranking task. We apply ranksum at 0.05 sig-
nificance to test whether or not FPA of models based
on three metrics selected according to different tasks
are significantly different. If they are different, the
better results are in boldface.

From Table 3, we can see that even using the same
metric selection method, the best metrics selected
according to different tasks can be different, which
means that the most effective metrics for SDP for the
classification task may not be most effective for SDP
for the ranking task. In addition, the three metrics
selected according to the ranking task achieve mod-
els with significantly better FPA over some datasets
and no significantly worse FPA over all datasets than
those according to the classification task. Therefore,
we need to analyze metrics using methods specifically
for SDP for the ranking task.

5.2 Q02: Comparison of OMS and IG

The FPA results based on different numbers of met-
rics selected by IG using the learning-to-rank (LTR)
as model construction method have been reported
(Yang et al., 2015). In order to compare OMS with
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IG, we use OMS to replace IG to obtain results, which
are shown in Table 4. The ranksum at 0.05 signifi-
cance is used to test whether or not models based on
partial metrics selected by OMS perform significantly
worse than models based on all metrics, but there ex-
ist no differences. That is, models based on two met-
rics selected by OMS work comparably with models
based on all metrics over all data sets, while in (Yang
et al., 2015), models based on only two metrics work
worse than models based on all metrics over Files3.0.

Table 4: Mean FPA Based on Different Number of Metrics
Selected by OMS using LTR Approach.

dataset 2 3 5 8 13 21 34 55 89 144 all
Files2.0 0.81 0.81 0.81 0.81 0.81 0.82 0.82 0.82 0.82 0.82 0.82
Files2.1 0.77 0.77 0.77 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
Files3.0 0.79 0.79 0.79 0.79 0.79 0.80 0.80 0.80 0.79 0.79 0.80
Package2.0 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.79 0.77 0.78 0.79
Package2.1 0.77 0.77 0.77 0.77 0.76 0.76 0.78 0.77 0.77 0.77 0.77
Package3.0 0.81 0.81 0.81 0.81 0.80 0.80 0.80 0.80 0.81 0.81 0.78
eclipse 0.83 0.83 0.79 0.80 0.80 0.83 0.82 0.81 0.82 0.83 0.82
equinox 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
lucene 0.85 0.85 0.83 0.80 0.79 0.78 0.79 0.79 0.78 0.80 0.80
mylyn 0.74 0.77 0.78 0.78 0.78 0.77 0.76 0.78 0.79 0.79 0.79
pde 0.79 0.79 0.79 0.79 0.79 0.76 0.76 0.77 0.77 0.78 0.76

Since experimental results show that using three
metrics selected by both IG and OMS can achieve re-
sults as good as using all metrics, we compare models
based on only one, two and three metrics selected by
them directly in Table 5. The worse results according
to statistical tests are underlined.

With one metric, OMS achieves significantly bet-
ter results than IG over three data sets and no signif-
icantly worse results over other datasets. With two
metrics, OMS achieves one significantly better result
and no significantly worse results. With three met-
rics, OMS achieves one significantly better result and
one significantly worse result than IG. As a whole,
OMS performs better than or comparable to IG for
most cases. This implies that OMS might be able to
better reflect the effectiveness of software metrics for
sorting modules in order of defect count than infor-
mation entropy. Considering that applying IG to rank-
ing problems might need an appropriate split strategy,
OMS is a good choice to select metrics for sorting
modules in order of defect count.

5.3 RQ1: Appropriate Metric Number
and Effective Metrics

A. Appropriate Metric Number
In this subsection, we further investigate the appro-
priate number of metrics that can achieve competitive
results with all metrics for SDP for the ranking task
over eleven data sets.

Table 5: Means FPA Results with One to Three Metrics
Selected by OMS and IG.

one metric two metrics three metrics
Data OMS IG OMS IG OMS IG

Files2.0 0.805 0.761 0.806 0.804 0.806 0.805
Files2.1 0.766 0.766 0.766 0.766 0.766 0.766
Files3.0 0.789 0.743 0.789 0.777 0.789 0.789
Package2.0 0.769 0.728 0.769 0.757 0.769 0.763
Package2.1 0.765 0.736 0.766 0.751 0.766 0.777
Package3.0 0.808 0.765 0.808 0.800 0.807 0.815
eclipse 0.829 0.817 0.828 0.822 0.828 0.819
equinox 0.794 0.794 0.793 0.795 0.800 0.808
lucene 0.843 0.813 0.849 0.805 0.848 0.837
mylyn 0.727 0.727 0.737 0.744 0.772 0.739
pde 0.777 0.776 0.785 0.783 0.785 0.782

From Table 4, when using LTR as model con-
struction method, models based on only two met-
rics selected by OMS work well over all data sets.
How about one? In order to answer it, we also com-
pare models based on only one metric (which can be
seen from Table 5) with models based on all metrics
(which can be seen from Table 4). Unexpectedly, no
results are significantly different over all data sets.
Over some data sets such as lucene and pde, using
one metric even achieves larger mean FPA than using
all metrics.

Investigating relationship between metric number
and model performance involves two issues: met-
ric selection methods and model construction meth-
ods. The above results are achieved using LTR as the
model construction method. In order to investigate the
effect of model construction methods, we also use RF
to construct models, which was demonstrated to per-
form best over the original data sets (Weyuker et al.,
2010; Yang et al., 2015). The results are shown in
Table 6. The ranksum at 0.05 significance is used to
test whether or not models based on partial metrics se-
lected by OMS are significantly different from models
based on all metrics, and the results are underlined if
they are significantly worse. Since RF is not suitable
for constructing models using only one metric, the re-
sults of one metric in Table 6 are actually the results
in Table 5, but they are compared to results of RF with
all metrics in Table 6.

From Table 6, using RF as the model construction
method, models based on only one metric still per-
form comparably with models based on all metrics
over seven out of eleven data sets. This is different
from previous observation (Zimmermann et al.,
2007) and the case for classification task (Menzies
et al., 2007). The results indicates the possibility to
find one key metric for sorting modules in order of
defect count. However, the results also reflect that
most existing metrics are redundant and even noisy.
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Table 6: Mean FPA Based on Different Number of Metrics
Selected by OMS using RF.

datasets 1 2 3 5 8 13 21 34 55 89 144 all
Files2.0 0.80 0.79 0.81 0.82 0.85 0.85 0.86 0.86 0.86 0.86 0.85 0.85
Files2.1 0.77 0.73 0.76 0.76 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
Files3.0 0.79 0.76 0.78 0.80 0.80 0.81 0.81 0.81 0.81 0.81 0.80 0.80
Package2.0 0.77 0.74 0.74 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
Package2.1 0.77 0.75 0.73 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.77
Package3.0 0.81 0.77 0.78 0.80 0.80 0.80 0.81 0.81 0.81 0.81 0.81 0.81
eclipse 0.83 0.82 0.83 0.84 0.86 0.86 0.86 0.87 0.86 0.87 0.86 0.86
equinox 0.79 0.79 0.79 0.80 0.81 0.82 0.83 0.82 0.82 0.82 0.82 0.82
lucene 0.84 0.81 0.82 0.84 0.85 0.84 0.85 0.85 0.85 0.85 0.86 0.86
Mylyn 0.73 0.73 0.77 0.79 0.79 0.81 0.81 0.82 0.81 0.81 0.81 0.81
pde 0.78 0.76 0.76 0.78 0.78 0.80 0.80 0.80 0.81 0.81 0.81 0.81

In this case, metric selection can not only solve the
problem of high dimension, but also improve model
performance by deleting noisy metrics.

B. Effective Metrics
In order to investigate which metrics are most effec-
tive for sorting software modules in order of defect
count, we use Algorithm 1 to rank software metrics
over all data sets (the metric with largest FPA val-
ues ranks 1). According to original software met-
rics, these data sets can be categorized into three
sets: file-level (File2.0, File2.1,File3.0), package-
level(Package2.0, Package2.1, Pack-age3.0) and oth-
ers (other five data sets). We average the ranks of each
category, so metrics with smallest ranks are most ef-
fective for the corresponding category. The top ten
metrics are shown in Table 7. Eclipse II include two
kinds of metrics: complexity metrics and structure
metrics (metrics of structure of abstract syntax trees).
The structure metrics are underlined in Tables 7.

From Table 7, total lines of code is useful (ranks
5 and 3 respectively for file-level and package-level
data sets). Nevertheless, structure metrics seem to be
more effective than the size of modules because the
top ten metrics include more structure metrics than
complexity metrics, and ’SUM’, which is the sum of
all structure metric values, is the top one metric for
both file-level and package-level.

There exist some metrics with only one value
for Eclipse II (42 structure metrics for package-level
and 44 structure metrics for file-level). For file-level
Eclipse II, the metrics ’CompilationUnit’ and ’Pack-
ageDeclaration’ have only one value. However, the
corresponding ’Norm’ metrics (’NORM Compilatio-
nUnit’ and ’NORM PackageDeclaration’), have more
than one values and have the same ranks as ’SUM’.
This is because the values of ’Norm’ metrics are val-
ues of ’SUM’ divided by values for the corresponding
original metrics. Their rankings and the rankings by
’SUM’ are exactly opposite so their effectiveness for
building SDP models for the ranking task is the same.

If we use Algorithm 1 to select metrics, we might se-
lect metrics that are totally correlated with each other.
Therefore, we need to use OMS which considers the
redundancy of selected metrics.

For other five datasets (eclipse, equinox, lucene,
mylyn, pde), there are six kinds of metrics: change
metrics, bug metrics, source code metrics, entropy
of changes, churn of source code metrics and en-
tropy of source code metrics. From D’Ambros et
al.’s work (D’Ambros et al., 2011), entropy of source
code metrics are most effective for constructing SDP
models for the ranking task, and then comes churn
of source code metrics and change metrics. From
our results, all top ten metrics are churn and en-
tropy of source code metrics, so they seem to be con-
sistent with D’Ambros et al.’s experimental results.
Nevertheless, by checking metrics that rank behind
with mean ranks larger than 190, which are (from the
last one with largest mean ranks) churn-noc(Number
Of Children), weighted-churn-noc, weighted-ent-noc,
lin-churn-noc, exp-churn-noc, log-churn-noc, log-
ent-noc, log-ent-dit(Depth of Inheritance Tree),lin-
ent-dit, exp-ent-dit, ent-noc, ent-dit,weighted-ent-dit,
lin-ent-noc, exp-ent-noc, exp-churn-dit, log-churn-dit
and lin-churn-dit, we find that the metrics with larger
mean ranks are also entropy and churn of source code
metrics. Hence, only part of churn and entropy of
source code metrics are effective for sorting modules
in order of defect count, which further demonstrates
that we should not simply conclude which kind of
metrics are more effective.

All top metrics for other five datasets in Table 7
are churn and entropy of linesOfCode(loc) and Re-
sponseForClass(rfc). All metrics that rank behind,
which are mentioned above, are churn and entropy of
noc and dit. Therefore, the effectiveness of process
metrics might be decided more by churn and entropy
of which source code metrics than by which churn and
entropy of source code metrics. Although source code
metrics have been widely debated (Fenton and Neil,
1999), metrics based on changes of source code have
been always recommended (D’Ambros et al., 2011;
Graves et al., 2000; Moser et al., 2008). From our
analysis results, choosing the right basic source code
metrics is very important.

To sum up, the experimental results lead to the fol-
lowing findings.

* Models based on only one metric can perform
comparably with models based on all metrics over
most datasets, which is different from previous
observation and the case for classification task.

* The most effective metrics and the most useless
metrics can belong to the same kind of metrics (
entropy and churn of source code metrics), and we
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Table 7: Top Ten Metrics and Their Mean Ranks According to FPA Scores Over Three Sets of Metrics.

File Level Rank Package Level Rank Other Level Rank
SUM 1.7 SUM 2.7 log-churn-linesofcode 15.4
NORM-CompilationUnit 2.7 SimpleName 2.3 lin-churn-linesofcode 16.4
NORM-PackageDeclaration 2.7 Totallinesofcode 4.0 log-ent-NlinesofcodeLOC 16.6
SimpleName 3.3 QualifiedName 4.0 lin-ent-linesofcode 18.0
Totallinesofcode 4.7 Block 7.3 log-churn-ResponseForClass 19.2
NORM-TypeDeclaration 5.3 VariableDeclarationFragment 7.7 log-ent-ResponseForClass 19.2
Block 8.7 SimpleType 8.0 lin-churn-rfc 22.0
MethodInvocation 9.0 NullLiteral 9.3 lin-ent-ResponseForClass 22.0
Methodlinesofcode-sum 10.7 MethodInvocation 11.0 exp-churn-ResponseForClass 24.0
Numberofmethodcalls-sum 11.0 SingleVariableDeclaration 11.0 exp-ent-linesofcode 24.6

should not simply conclude which kind of metrics
are more effective.

* The effectiveness of process metrics might be de-
cided more by churn and entropy of which source
code metrics than by which kind of churn and en-
tropy of source code metrics.

* There exist many redundant and useless metrics
among these datasets and we should apply metric
selection methods to delete them.

5.4 RQ2: The Same Metrics for
Different Data Sets

In the above subsection, experimental results reveal
that models based on only one metric can perform
well over most data sets. Therefore, in this subsec-
tion, we investigate whether one most effective met-
ric can capture all necessary information for sorting
modules over all data sets with the same original met-
rics. According to original metrics, eleven data sets
are divided into three categories, as shown in Table 7,
and the metric that ranks best in Table 7 is the most ef-
fective metric for the corresponding category of data
sets, i.e., ’SUM’ for file-level and package-level data
sets and ’log-churn-loc’ for other five data sets. To be
noted, the most effective metric for each specific data
set, which is shown in the last column of Table 8, is
not necessarily the most effective metric for the cor-
responding category of data sets. We compare models
based on the most effective metric for the specific data
set and models based on the most effective metric for
the corresponding category of data sets (metric that
ranks best in Table 7). Ranksum at 0.05 significance
is used to test whether they are different. If they are
different, the better results are in boldface. The results
are shown in Table 8.

In Table 8, models based on the most effective
metric for specific data sets perform better than mod-
els based on the metric that ranks best in Table 7 over
five data sets, which means that there is no single met-
ric that performs well over all five data sets. The most

Table 8: Comparison of the Most Effective Metric for
Specific Datasets and the Most Effective Metric for All
Datasets.

dataset using using metric metric name
name log-churn selected by selected by

-loc OMS OMS
Files2.0 0.81 0.81 SUM
Files2.1 0.77 0.77 SimpleName
Files3.0 0.79 0.79 Totallinesofcode
Package2.0 0.77 0.77 SUM
Package2.1 0.77 0.77 SUM
Package3.0 0.81 0.81 SUM
eclipse 0.82 0.83 CvsWEntropy
equinox 0.76 0.79 CvsLogEntropy
lucene 0.80 0.84 numberOfBugsFoundUntil
mylyn 0.69 0.73 fanOut
pde 0.71 0.78 numberOfNonTrivial-

BugsFoundUntil

effective metric over one data set might be less effec-
tive for another data set. Table 7 can only show that
churn and entropy of loc and rfc rank relatively in the
front over these five data sets, but the most effective
metric depends on the specific data set.

However, using ’SUM’ can achieve comparable
models over all Eclipse II data. Although SCC be-
tween ’SUM’ and the number of defects are not large
(less than 0.5 over most data sets), the FPA of models
constructed based on only ’SUM’ over Eclipse II are
larger than 0.76. It seems that we can use the same
metric ’SUM’ for these six data sets. Nevertheless,
’SUM’ is sum of all structure metric values, and its
effectiveness is based on all structure metrics instead
of a single metric. Although it is possible to find one
metric (’SUM’) to effectively sort modules in order
of defect count over Eclipse II data, other metrics are
still useful and should be kept. In addition, the effec-
tiveness of ’SUM’ implies the possibility of improv-
ing metric quality by combining metrics.

To sum up, the experimental results lead to the fol-
lowing findings.

* Using only ’SUM’ can lead to good models over
all Eclipse II data. However, ’SUM’ is sum of
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all structure metric values, and its effectiveness is
based on all structure metrics instead of a single
metric.

* There is no single metric that performs well over
other five data sets. The most effective metric for
one data set might be less effective for another
one.

* The effectiveness of ’SUM’ implies the possibil-
ity of improving metric quality by combining met-
rics.

5.5 Other Discussions

Zimmermann et al. (Zimmermann et al., 2007) com-
puted SCC between complexity metrics and defects
over release 3.0 and they pointed out that finding a
single indicator for the number of defects was un-
likely because the coefficients were not large. How-
ever, our experimental results show that only one met-
ric can work well over most data sets although SCC
are not large. The main reason is that SCC could not
reflect that the ranking for modules with more defects
is more important than the ranking for modules with
less defects, which has been shown in Table 1. There
is no absolute relationship between SCC and the ef-
fectiveness of metrics for sorting modules in order of
defect count.

In this paper, we adopt FPA as the performance
measure, which has been found to equals to 1/(2k)
plus the area under cumulative lift chart (CLC), where
k is the number of modules (Yang et al., 2015). Since
k is larger than 300 over all data sets, the values given
by them should be approximate. However, the FPA
results are very different from the results given by
D’Ambros et al. (D’Ambros et al., 2011). To be
noted, they actually used 1− (Sopt − Smodel) instead
of area under CLC. Sopt is the area under CLC of op-
timal models, and Smodel is the area under CLC of ac-
tual models. The best results given by D’Amrbos et
al. are 0.89, 0.91, 0.86, 0.83 and 0.81 for eclipse,
equinox, lucene, mylyn and pde. In order to com-
pare our results with theirs, we transform part of our
results: results based on only one metric are respec-
tively 0.89, 0.90, 0.87, 0.78 and 0.83, and the results
based on all metrics constructed by RF are 0.92, 0.93,
0.89, 0.86 and 0.86 for eclipse, equinox, lucene, my-
lyn and pde.

6 THREATS TO VALIDITY

6.1 Threats to Internal Validity

A threat to internal validity of the results presented
in this study is the choice of performance measure.
There are reasons to choose FPA. For example, FPA
was demonstrated to be similar to the area under Al-
berg diagram (Yang et al., 2015), which has been
demonstrated to be reasonable for evaluating SDP
models for the ranking task (Ohlsson and Alberg,
1996), and FPA is a performance measure specifi-
cally proposed for sorting modules in order of de-
fect count, which has been shown to overcome the
shortcoming of ’percentages of defects found in top
m modules’ (Weyuker et al., 2010). However, when
other goals of sorting modules in order of defect count
are considered (for example, only percentages of de-
fects found in the top m modules are considered), the
choice should be changed, which may lead to a differ-
ent conclusion.

Another threat is the choice of experimental meth-
ods. Cross-validation is applied to obtain results,
which are popularly used in SDP domain(D’Ambros
et al., 2011), in order to reduce bias. However, there
still exists the instability that may affect the conclu-
sions, which can be shown in three aspects. First
of all, although LTR and RF can perform better than
methods such as regression tree (Yang et al., 2015),
LTR and RF are not stable. That is, given the same
training data, LTR and RF might obtain different re-
sults. Secondly, the parameters for RF are set as sug-
gested by Weyuker et al. (Weyuker et al., 2010) and
the parameters for LTR are set as Yang et al.’s work
(Yang et al., 2015). For different data sets or different
number of metrics, the best parameters might be dif-
ferent, which might lead to different results. Finally,
although cross-validation can reduce bias (Khoshgof-
taar and Allen, 2003), it still depends on the splitting.
When the splitting is different, the results can be dif-
ferent.

The learning algorithms used would be also an in-
ternal threat. LTR and RF are used as model con-
struction methods, which have been demonstrated to
be best for sorting modules in order of defect count
(Yang et al., 2015), in order to obtain reasonable re-
sults. However, if a different algorithm is applied, the
conclusion might be different.

6.2 Threats to External Validity

The main threat to external validity is data sets. There
are not many existing publicly available data sets for
sorting modules in order of defect count. Our ex-
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periments are based on eleven data sets, including
not only the commonly used Eclipse II (Zimmermann
et al., 2007), but also the data sets which include many
process metrics (D’Ambros et al., 2010). Therefore,
the conclusions are convincing. Having said that,
these two sets of data are only a very small part of all
data sets, among which there are many data sets based
on industrial software systems (Gao and Khoshgof-
taar, 2007) that are not publicly available. Other data
sets might include different metrics and totally dif-
ferent modules. Therefore, the conclusions over these
two sets of data sets might not hold for other data sets.

7 CONCLUSIONS

With more and more metrics introduced, numerous
metric selection methods have been applied to inves-
tigate the effectiveness of software metrics for clas-
sifying software modules into defect-free and defect-
prone, while few metric selection methods have been
proposed to investigate software metrics for sorting
software modules in order of defect count. In this
paper, an object-based metric selection (OMS) ap-
proach is proposed for sorting module in order of de-
fect count. Experimental results over eleven publicly
available data sets show that OMS works better than
IG in most cases. Comprehensive empirical studies
are also conducted to investigating the effectiveness
of metrics over these data sets, and the following find-
ings are obtained, which can help to select effective
metrics among existing metrics and direct the intro-
duction of new metrics (for example, churn and en-
tropy of other source code metrics).

1. Different from previous observation (Zimmer-
mann et al., 2007) and the case for classification
task (Menzies et al., 2007) , models based on
only one metric can perform well over most
data sets for sorting modules in order of defect
count. However, there is no single metric that
performs well over all data sets. Although ’SUM’
is good to predict the number of defects over
Eclipse II data sets, ’SUM’ is sum of all structure
metric values, and its effectiveness is based on all
structure metrics instead of a single metric. This
implies that no single metric can actually capture
all the necessary information for ranking. The
most effective metric is data set dependent.

2. The most effective metrics and the most useless
metrics can belong to the same kind of metrics,
and we should not simply conclude which kind of
metrics are more effective.

3. The effectiveness of process metrics might be de-
cided more by churn and entropy of which source
code metrics than by which kind of churn and en-
tropy of source code metrics.

4. There exist many redundant and useless metrics
(e.g. metrics having only one value) among these
data sets and metric selection methods should be
applied to delete them.

5. The effectiveness of ’SUM’ over Eclipse II im-
plies the possibility of improving metric quality
by combining metrics.

To some extent, the new findings show the status quo
of software metrics and help to introduce new metrics
for sorting software modules in order of defect count.
In our future work, we will focus on introducing new
effective metrics for sorting modules in order of de-
fect count.
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