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Abstract: Special benchmarks and performance comparisons have been published to analyze and stress the 
outstanding performance of new database technologies. Quite often, the comparisons show that newly 
upcoming database technologies provide higher performance than traditional relational ones.  
In this paper, we show that these performance comparisons are not always meaningful and should not 
encourage one to jump to fast conclusions. We revisit certain statements about comparisons between the 
Neo4j graph database and relational systems and indicate a couple of possible reasons for coming up with 
bad performance such as inappropriate or default configurations, and too straightforward implementations. 
Moreover, we refute some stated issues about the bad performance of relational systems by using a 
PostgreSQL database for commonly used test scenarios. We conclude with some considerations of fairness. 

1 INTRODUCTION 

Despite the dominating market share of relational 
database management systems (DBMSs), new 
database technologies permanently come up. Object-
oriented DBMSs proclaimed in the 90s a revolution, 
promising to substitute traditional relational DBMSs 
(RDBMSs). A little time later, XML databases arose 
focussing on storing XML documents efficiently. 

Since 2009, the NoSQL movement is gaining a 
lot of attention. NoSQL stands for "not only SQL” 
(http://www.nosql-database.org) although the name 
has been chosen provokingly. Many products bring 
up new ideas taking benefit from distribution, i.e., 
using a large amount of commodity computers to 
scale out, or storing complex graph structures in a 
specialized graph database.  

Every new technology and its promoters claim 
their products to be superior to traditional RDBMSs. 
There are a lot of, sometimes emotional, discussions 
on which technology is better, NoSQL or SQL. 
(Moran, 2010) talks about techno-religious debates.  

Those discussions are indeed very shallow from 
a technical perspective. To make our discussion 
more specific, we focus on the NoSQL category of 
graph databases. Looking for existing comparisons, 
we detected enthusiastic statements stressing the 
advantages over RDBMSs accompanied by 
performance measurements: 
• “Graph    databases    outperform   RDBMS   on  

connected data” (Khan, 2016) 
• “The main benefit of native graph databases are 

performance and scalability” (Khan, Ahmed, 
and Shahzad, 2017) 

• “So the graph database was 1000 times faster 
for this particular use case” (Adell, 2013) 

•  “While MySQL did not finish within 2 hours, 
Neo4j finished a traversal in less than 15 
minutes” (Rodriguez, 2011). 

Even if graph databases possess advantages which 
are useful for specific applications, such general 
statements must be treated carefully.  

This led to our motivation for investigating those 
statements in this paper. Thereby, our goal is not to 
state that RDBMSs are still better. Rather we want 
to stress on fairness – better unfairness – of such 
statements and comparisons and prove our point of 
view by measurements. This discussion of fairness 
tackles several aspects such as:  
• Is it equitable to take rather ad-hoc 

configurations and settings? 
• Is a warm start-up fair (especially if data sets 

are larger than available main memory)? 
• Is it fair to compare a query language (SQL) 

with programming (e.g., Neo4j Pipes)? 
• Are synthetic scenarios reasonable? 
In particular, we show that: 
• seemingly similar scenarios behave differently; 
• database configurations and tuning are 

important for performance and comparisons; 
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• other data structures than the obvious or 
traditional ones are advantageous;  

• programming instead of using a query language 
can improve performance. 

The remainder of this paper is structured as 
follows: In Section 2, we collect some related work 
to underline the novelty of our investigation. 

Afterwards, we elaborate in Section 3 upon 
unfairness of existing comparisons and various 
influencing factors before we conduct performance 
measurements on PostgreSQL for common Neo4j 
test scenarios in Section 4. In Section 5, we deduct 
criteria for achieving a fair performance comparison. 

Section 6 concludes the investigation and 
presents some future work. 

2 RELATED WORK 

An early paper of (Hohenstein, et al., 1997) 
criticizes standard benchmarks for object-oriented 
database management systems (ODBMSs) like OO7 
(Carey, et al., 1994) and statements made therein 
like “ODBMSs are faster by factor 100”. In a case 
study, a real application using Oracle was 
transformed to several ODBMSs. The surprising 
result of the performance measurements then 
conducted that only a single ODBMS-based 
implementation has the potential to be faster than the 
original Oracle-based solution, while one ODBMS 
was definitively much slower. Consequently, the 
authors state that the best benchmark is the 
application itself. The paper presents a methodology 
for deriving application-specific benchmarks.  

To our knowledge, no further work on fairness 
of performance comparisons has been published so 
far. Indeed, there are only some critical statements 
from (Baach, 2015) “Comparing Neo4j to MySQL 
without the use of Cypher is comparing apples and 
oranges”. In the forum (Hacker, 2010) others also 
argue that some comparisons are meaningless.  

However, several performance investigations can 
be found in the literature, which we tried to qualify.  

(Khan, 2016) states that the technology of graph 
databases is better than RDBMSs by explaining why 
joins are bad for graph structures. He uses a simple 
scenario that consists of Employees (E), Payments 
(P) and Departments (D), related by one-to-many 
relationships E-P and P-D. Then, qualifying two 
departments by a query, the related payments are 
retrieved via the employees. The complexity is 
evaluated in Big-O notation. While RDBMS achieve 
O(|E|*|P|) with nested loop joins and O(|E|+|P|) with 
hash joins, Neo4j has an O(k) behavior. Neo4j’s 

constant behaviour is explained as follows: “Using 
hash indexing this gives O(1). Then the graph is 
walked to find all the relevant payments, by first 
visiting all employees in the departments, and 
through them, all relevant payments. If we assume 
that the number of payment results are k, then this 
approach takes O(k).” However, it remains unclear 
what “visiting all employees“ in Neo4j means and 
how the internal data structures contribute to a better 
performance compared to hash indexes in RDBMSs.  

(Rodriguez, 2011) uses 1,000,000 nodes and 
4,000,000 edges with a synthetic distribution: 
Despite an average fan-out of 4, some nodes have a 
higher number of edges. A test measures traversal 
from a starting node to related nodes via 1 to 5 hops. 
The result reveals that Neo4j is more than twice as 
fast for 4 hops. For 5 hops, Neo4j required 14.37 
minutes while MySQL was stopped after 2 hours.  

The test of (Adell, 2013) detects if one person is 
connected to another in 4 or fewer hops. The data set 
contains 1,000,000 users with an average of 50 
friends. Neo4j required 2ms for the check, while an 
RDBMS was stopped after running several days.  

Another comparison (Baach, 2015) uses 100,000 
and 1,000,000 nodes with exactly 50 edges each. A 
test counts the number of friends up to 5 hops. As a 
surprising result, MySQL was about 6 times faster 
than Neo4j. One potential reason for that might be 
the use of the Cypher query language to perform 
queries while (Rodriguez, 2011) sticks to the Pipes 
framework, which seems to be very beneficial. 
(Baach, 2015) considers a comparison SQL vs. the 
Cypher language as fair, whereas SQL vs. Pipes 
being unfair. Another reason for the result might be 
some deeper thoughts about configuring MySQL. 

(Vicknair et al, 2010) experiment with data sets 
of size 1,000, 5,000, 10,000 and 100,000 nodes. In 
contrast to others, they set up a direct acyclic graph. 
Several tests traverse the graph, and count the nodes, 
with 4 and 128 hops, count the number of nodes 
with a certain payload, particularly with “<” 
comparisons, and find all the orphan nodes. In 
general, the execution times are less than 200 ms, 
and do not show huge differences between Neo4j 
and MySQL. In fact, the data sets are small and 
enable in-memory processing.  

(Khan, et al., 2017) compare Oracle 11g and 
Neo4j using a Medical Diagnostic System. The data 
set comprises about 28,000 patients, 625,721 patient 
visits, 869,666 patient-IssueMed records, to mention 
the main tables. Five count queries join two or three 
tables. While Oracle performs queries in a few 
seconds (depending on the query), Neo4j requires 
about 0.3 sec.  
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(Joishi and Sureka, 2015) use some process-
mining algorithms for their comparison of MySQL 
and Neo4j: finding similarity between actors based 
on the intersection of activities and analysing causal 
dependencies between actors in carrying out a 
business process. MySQL is 32 times faster than 
Neo4j for similarity, while Neo4j attains a perform-
ance boost of a magnitude of 7x over MySQL for 
the second test. 

(Martinez et al., 2016) also compare the per-
formance of MySQL and Neo4j. Using three 
randomly generated data sets (1,000, 10,000 and 
100,000 entries), 12 multi-join queries of a health 
application are tested. MySQL performs better than 
Neo4j in most cases but has a poor performance for 
larger data sets. It is important to note that no 
indexes were added in both database systems. 

3 FAIRNESS OF COMPARISONS  

In the following, we explain why we think that 
published performance comparisons are unfair and 
should be seen sceptically. 

3.1 Scope of Comparison 

As already mentioned, the literature contains many 
exciting statements about the Neo4j performance. 
For example, (Khan, 2016) proves that graph data-
bases are better than RDBMSs by a theoretical 
comparison of internal algorithms based on Big Os 
without explaining in detail why the internal Neo4j 
structures are better. A comparison of technologies 
at that level is not valid anyway. 

Similarly, a comparison between a product X 
and RDBMSs in general as in (Adell, 2013) is 
wrong per se: Showing that Neo4j is faster than 
MySQL does not prove that Neo4j is faster than any 
relational DBMS. There are other products, too. 

3.2 Small Test Data Sets 

Performance tests are often performed with small 
data sets, e.g., 1000, 5000, 10,000 (Vicknair et al, 
2010). Even graphs with 100,000 nodes (Baach, 
2015) are not really large. This means that a test is 
basically testing in-memory capabilities: All the data 
fits into the accordingly sized memory.  

These evaluations are only representative for 
applications for which the memory is available w.r.t. 
the amount of data. Results cannot be generalized 
for larger data sets since they do not cover disk 
accesses, which will then certainly be required. 

3.3 Warm Start 

The first execution of a query is slow because data is 
fetched from disk and the query execution plan has 
to be derived. Further executions, also with different 
values, are faster because the execution plan is 
already available and data is in the cache. That is 
why performance comparisons like (Baach, 2015) 
first initialize the cache by fetching all the needed 
data in a warm start. Moreover, the cache size is 
perfectly adjusted. This sounds reasonable at a first 
glance, but usually not a few (tested) tables are used 
and accessed in applications. Accesses to other 
tables will interfere and disturb the first cached data, 
but remain untested. Hence, a warm start is 
representative only if all the data – not only that 
used in tests – fits into memory completely.  

3.4 Using Standard Configurations  

DBMSs possess many parameters, which are 
important for performance. However, in 
performance comparisons, standard configurations 
are used more or less. For example, (Martinez et al., 
2016) state that “The deployed database servers 
were not optimized” and “No index was added to the 
basic implementation”.  

The cache size is one important parameter, 
which is partially considered. Other parameters, e.g., 
the space for temporal data, affect sorting and 
eliminating duplicates. Indeed, tuning database 
configurations can speed up accesses drastically.  

3.5 Over-tuning 

If a benchmark stimulates only a few parts of an 
application, tuning the benchmark can lead to a 
highly optimal test program for exactly that portion. 
There is a danger of over-tuning a specific scenario 
or query (especially with a warm start). However, 
such a specific tuning might have a negative and 
invisible impact on other – potentially non-tested – 
scenarios such as inserts or deletes. 

3.6 Synthetic Test Scenarios  

Most of the published benchmarks and comparisons 
are synthetic in the sense that they abstract from 
concrete applications. They aim at being generic 
hand and reducing the effort for implementing and 
performing tests. (Barry, 1994) states that it is easy 
to spend $100,000 for implementing a benchmark, 
especially if tests have to be implemented on 
severval systems. Certainly, standard and simplified 
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benchmarks help to reduce the implementation 
effort. However, it is questionable whether those 
tests are representative for a particular application. 
Results of comparisons are only representative if 
tests coincide with the application in mind. Thus, the 
tested operations must reflect the characteristic 
accesses of a given application.  

Most comparisons fail in this respect. For 
example, benchmarks for graph databases use a 
configurable number of nodes and relationships 
(e.g., Vicknair et al, 2010), thereupon performing 
typically traversals along connections between nodes 
as the use case. The tests are thus rather synthetic. 
Thus, it is not possible to adapt a benchmark to the 
demands of a specific application beyond con-
figuring some few parameters. Tests are performed 
by changing a few factors such as the number of 
nodes (Vicknair et al, 2010) (Baach, 2015) or the 
fan-out of relationships. Such a parameterization 
does not help to let a benchmark become more 
representative. It is legitimate to question whether 
simple and slightly configurable tests could be 
representative for an application at all.  

There are mostly no tests for mixed scenarios 
with queries, inserts, updates, and deletes combined 
in one test. Hence, just a few isolated features are 
compared. Real life applications surely perform 
other accesses. 

Furthermore, there are different understandings 
of what a traversal is. Sometimes, a traversal 
retrieves all related nodes via up to n hops, 
sometimes it only counts the connected nodes. Other 
tests determine all possible connections between two 
nodes, or simply detect whether two nodes are 
related via up to n hops. Beside the fact that such 
tests are scenarios that are advantageous for graph 
databases, these similar scenarios show huge 
differences in performance as we will see later.  

3.7 Implementation Issues 

Some comparisons compare tests written in pure 
SQL with the procedural Neo4j Pipes framework 
instead of the Cypher query language. Moreover, the 
test of (Baach, 2015), comparing SQL with the 
Neo4j Cypher query language, comes along with a 
winner MySQL. Obviously, the Cypher language 
does not perform as well as the Pipes framework. 
We doubt that comparing SQL with the Pipes 
framework is fair.  

Another point is about using a straightforward 
database schema. There are other options partially 
requiring stored procedures, which should be tried 
out in a comparison. 

3.8 Data Distribution  

Performance typically depends not only on the test 
scenario and test data such as the number of nodes 
and the number of edges, but also on the distribution 
of data for individual nodes. For example, the 
selected starting node is relevant, since each node 
has a different number of related nodes over n hops. 
The best implementation solution can change when 
using different start and end nodes! 

3.9 Evaluation 

Even if a benchmark seems to be representative, the 
evaluation results may be unfair and may diminish 
the value of the results. Typically, several test sce-
narios for traversals, inserts, removals, queries are 
performed, being simple in nature and executed in 
isolation and independent of each other. Also, each 
test is often parameterized leading to several results.  

Thus, a benchmark comprises a collection of in-
dependent results. This means particular per-
formance values have to be somehow aggregated in 
order to get an overall result. Detailed analyses are 
possible, but it is questionable how to correctly 
extrapolate from results for simple operations to 
complex logic of the real application. A particular 
system is able to win a comparison by just 
aggregating and interpreting the results in the right 
way – a system might have won most test cases, 
have best average over all the test cases, be leading 
for some “relevant” weighting of test cases etc.  

4 PERFORMANCE TESTS 

All these issues often lead to results proving that 
graph databases are 100 times faster than relational 
systems, (Adell, 2013). Such statements, worded 
quite general, must at least be seen relative to the 
test scenarios and their relevance. 

In order to support our statements, we performed 
some experiments with a PostgreSQL database. We 
intentionally used an older version 9.5 because 
several comparisons of RDBMS vs. Neo4j are also 
older. Hence, there is no advantage for the RDBMS 
by using the most recent state of technology. 

We take three “traversal” scenarios from 
published comparisons: Scenario ALL(n) starts with 
a random node and determines all nodes reachable 
by less than n hops. Another scenario PATHS(n) 
determines only the paths between two given nodes 
related by k hops, while EXISTS(n) checks whether 
two given nodes are related by k hops, k<=n. 
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Table 1: PATHS(5) results for investigating indexes. 

Test1 Cold Start Warm Start 
 First [sec] First [sec] Second [sec] 
Index Ø stdev Ø stdev Ø stdev 
no 62.88 3.26 59.67 0.60 60.25 1.74
yes 23.78 5.27 4.54 1.55 6.43 1.17

The tests ran in an isolated environment without 
any parallel database accesses or other running 
applications. Each test was performed 3 times. The 
average of measurements was taken. All the tests use 
the same laptop running Windows 7 with a dual-core 
processor, 12 GB of RAM, and a 465 GB SSD disk. 
Hence, the machine is not oversized. 

It is important to note that we do not perform a 
direct comparison with Neo4j – because benchmarks 
are unfair. Instead, our goal is to put some published 
statements into perspective. 

4.1 Test Results for 500,000 Nodes 

We experimented with two differently sized 
databases. The first database contains 500,000 nodes 
with 50 edges to other randomly selected nodes. 
 
Test 1: Impact of Indexes for Scenario PATHS.  
Our test series starts with a PostgreSQL standard 
configuration (especially a very small cache size of 
128 MB). We apply the frequently used database 
schema of (Adell, 2013) consisting of one table 
Friends (id int, friend int). Each node is identified by 
a unique id; friend is a foreign key that refers back to 
a friend’s node, i.e., all those records that refer to the 
same id form the collection of friends for that node.  

The first test has the purpose to illustrate the 
impact of indexes. A corresponding SQL query for 
Scenario PATHS(5) is sketched out in Figure 1. 

select f1.id, f2.id, f3.id, f4.id, f5.id, f5.friend 
from Friends f1  
join Friends f2 on f2.id=f1.friend  
join Friends f3 on f3.id=f2.friend  
join Friends f4 on f4.id=f3.friend  
join Friends f5 on f5.id=f4.friend    
where f1.id = :x and f5.friend = :y  
union 
select f1.id, f2.id, f3.id, f4.id, f4.friend, null  … 
union 
select f1.id, f2.id, f3.id, f3.friend, null, null  ... 
union 
select f1.id, f2.id, f2.friend, null, null, null  ... 
union  
select f1.id, f1.friend, null, null, null, null   
from Friends f1 where f1.id = :x and  f1.friend = :y; 

Figure 1: SQL statement for Scenario PATHS(5). 

The query computes the complete paths including all 
the intermediate nodes; :x and :y represent the start 
and end nodes, resp. The query is executed after a 
restart of the computer (cold start), and afterwards 
simply immediately executed additional three times, 
now with a “warm” cache. In a second step, different 
start and end points are taken for the same query. 
Results are summarized in Table 1.  

The test pinpoints a huge difference: Indexes are 
essential for achieving performance – this is not a 
surprise. The difference is even higher for a warm 
start. A lack of basic indexes – maybe due to a too 
naive implementation or a standard configuration 
(cf. Section 3.4) – can heavily falsify benchmark 
results. 

Due to the obvious need for indexes, all the 
further tests will be done with indexes. 
 
Test 2: Cold/Warm Start. 
Table 1 also contains the PATHS(5) results for a 
comparison between warm and cold start. The 
intention of this test is to investigate how the system 
behaves in case of loading data from disk. This is 
relevant since we cannot assume all the data in 
memory for larger applications. 

The difference between cold and warm start is 
minimal for the test without indexes because table 
data has to be loaded anyway. Using indexes, there 
is a large difference between cold and warm start. 
Thus, a test should not only be restricted to warm 
start tests (cf. Section 3.3). 

 
Test 3: Implementation Variants. 
The next test illustrates the impact of query tuning. 
Scenario EXISTS checks the existence of 
connections between two nodes. In contrast to 
PATHS, we are satisfied with an answer, connected 
or not. There are at least three possible queries: 
a) simply perform the query for PATHS (cf. 

Figure 1) and check for a non-empty result; 
b) add a LIMIT 1 at the end of the PATHS query to 

obtain just a single first connection; 
c) add a LIMIT 1 for each sub-query in order to 

stop the execution early after the first hit: 
(select f5.friend … limit 1) union … union   
(select f1.friend … limit 1) 

Table 2 shows the enormous speed-up for Variant c). 
Consequently, searching for alternative implementa-
tions or queries can be very effective – even if as 
simple as here! Taking one straightforward solution 
is not reasonable (cf. Section 3.7). Note that no 
connections for 1 to 4 hops exist for our test. Hence, 
the multi-join queries are executed. 
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Test 4: Data Distribution. 
Next, we show that test data and parameters have an 
impact on performance (cf. 3.8). We use PATHS(5) 
with different start and end nodes, resulting in 
different numbers of connections. Table 2 shows 
how execution times depend on the chosen start and 
end nodes, and. The smaller the number of retrieved 
connections is, the faster the query performs.  

Table 2: Results for Test 3, 4, and 5. 

 
Test 

 
Variant 

Cold [sec] Warm [sec] Ø stdev Ø stdev 
Test 3      a) 23.78 5.27 4.54 1.55

     b) 19.81 1.61 4.79 1.07
     c) 2.39 0.13 0.057 0.02

Test 4 479 recs 15.18 1.27 3.32 0.64
797 recs 23.78 5.27 4.54 1.55

Test 5 128MB 23.78 5.27 4.54 1.55
1024MB 25.58 0.92 0.46 0.03

Similarly, the order of sub-queries is important 
for Scenario EXISTS(5) in Test 3. If there are no 
hop-1 and hop-2 but hop-3 connections, the query is 
fastest if the hop-3 sub-query occurs first and 
immediately stops execution. The possibility of 
choosing the right nodes has an influence on results. 
Knowing the data set, the implementation can be 
“improved”. This is also a form of over-tuning (cf. 
Section 3.5) by consciously “tuning” the order of 
sub-queries according to data. 
 
Test 5: Larger Cache Size.  
The default cache in PostgreSQL with 128MB is far 
too small for our table data of 864 MB and index 
data of 1607 MB. Only 5% of the overall data fits 
into the cache. Consequently, many reads happen 
from disk. To improve the cache hit ratio, we 
increase memory by factor 8 to 1024 MB in order to 
have more data in memory, but still not sufficient to 
keep all the data.  

The results for PATHS(5) with a larger cache are 
also presented in Table 2. The difference between a 
small (default) and large cache for a cold start is 
ignorable; the data must be fetched from disk 
anyway. However for a warm start, we recognize 
more than factor 8 of speed up. That is, sticking to 
default configurations falsifies results (cf. 3.4). 

Please note there are many further tuning 
parameters, e.g., the use of temporal space to speed 
up sorting and duplicate elimination.  
 
Test 6: Different Implementations and 
Structures.  
So far, we have used straightforward table structures 
and SQL for “implementing” the scenarios. How-

ever, there are alternatives for data structures and/or 
implementing the computation logic, which are often 
not considered (cf. Section 3.7). For example, in-
stead of a table Friends(id, friend), we can use an 
array-valued column in a table FriendsWithArray(id 
int, friends int[]). Each node is represented by just a 
single record independent of the number of friends. 

Turning to Scenario ALL, the query for getting 
the nodes for 4 hops starting with :x looks like: 

select distinct f1.id as fid, f1.friends  into  tmp3  
from FriendsWithArray f1 where f1.id = :x; 

insert into  tmp3  select distinct f2.id, f2.friends  
from FriendsWithArray f1, FriendsWithArray f2, 
        generate_subscripts(f1.friends,1) i1,  
where f1.id = :x and f1.friends[i1] = f2.id  
union ... union 
select distinct f4.id, f4.friends  
from FriendsWithArray f1, FriendsWithArray f2,   
        generate_subscripts(f1.friends,1) i1,  
        generate_subscripts(f2.friends,1) i2,  
        FriendsWithArray f3, FriendsWithArray f4, 
        generate_subscripts(f3.friends,1) i3,  
where f1.id = :x and f1.friends[i1] = f2.id  
and f2.friends[i2] = f3.id and f3.friends[i3] = f4.id  

Figure 2: Query for ALL scenario with arrays. 

f1.friends is an array that contains the friends of the 
1st hop. The built-in function generate_subscripts is 
applied to an array-valued column and returns a set 
of indices to which a variable i can then be bound. 
The variable is used to access a the i-th field in the 
array by means of friends[i] to be used in joins 
between array elements (i.e., sons) and Ids. 

Test ALL(4) “Old” is computed with a single 
SQL query similar to Figure 1, however, returning 
related nodes for a start node :x instead of paths. The 
“New” variant proceeds stepwise using a stored 
procedure following the query structure of Figure 2. 
The result is stored in a temporary table tmp4, which 
is then used in another query to unnest the node Ids: 

select distinct t3.id, friends[i] as friend into  tmp4 
from tmp3 t3, generate_subscripts(t3.friends,1) i 

For ALL(5) “New”, two additional steps are added: 

select f5.id, f5.friends  into  tmp5  
from FriendsWithArray f5, tmp4 t4  
where f5.id = t4.friend; 

select distinct t5.friends[i]  -- unnest 
from tmp5 t5, generate_subscripts(t5.friends,1) i; 

 
Table 3 shows that the computation of related 

nodes over 5 hops is possible in about half a minute 
– as opposed to several hours as stated in 
(Rodriguez, 2011) (Adell, 2013). As expected, the 
results with the larger cache size are even better. 

DATA 2019 - 8th International Conference on Data Science, Technology and Applications

248



 

Table 3: Results for Scenario ALL. 

 
Variant [sec] 

Small Cache Large Cache Ø stdev Ø stdev 
ALL(4) “Old” 16.43 3.21 16.28 2.87 
ALL(4) “New” 8.76 3.54 4.54 1.98 
ALL(5) “New” 28.67 3.26 24.55 1.75 

 
The improved performance is paid by some 
drawbacks. The table violates the first normal form 
but is still easy (maybe even easier) to understand. 
Also, inserts and deletes become more complicated. 
A stored procedure might help to handle the logic. 
 
Test 7: Differences in Traversal Scenarios. 
Comparing the previous results, we recognize the 
different performance behaviour of the various 
“traversal” scenarios ALL/PATHS/EXISTS: In a 
warm start, PATHS(5) is fast with about 5 seconds, 
and EXISTS(5) is even very fast (a few milli-
seconds) with an optimized query. However, finding 
nodes in ALL(5) is slower with half a minute. This 
illustrates how important the chosen scenario and its 
semantics is, even if scenarios might look quite 
similar (cf. Section 3.6). 
 
Test 8: JDBC Configuration. 
So far, we have executed tests interactively with the 
PostgreSQL console. However, database access will 
be typically invoked by means of JDBC, ADO.NET, 
or an object/relational mapping tool. Hence, another 
factor enters the game having impact on 
performance. 

We consider fetching the query result in Java 
with JDBC. One important option in JDBC is the 
fetch size, which can be set by setFetchSize(n). The 
fetch size determines how many records are 
transferred from the database server to the client 
program: If a record is requested by the client, a bulk 
of n records is physically prefetched, already serving 
this and the next n-1 successive requests, too.  

We used ALL(4) and executed the “Old” query 
with different fetch sizes. The query executed in 30 
seconds with a size of 1 (typically being the default) 
and 18 seconds with a size of 1000. This a huge 
difference, especially since the query execution itself 
consumes about 15 sec. Again, relying on defaults 
affects the performance negatively (cf. Section 3.4). 

4.2 Second Database 

In order to elaborate more on another facet of 3.8, 
we use a larger database with 5,000,000 nodes each 
having four randomly chosen friends. The results for 
the bad performing One-SQL-statement of ALL(n) 

(cf. Figure 1) are shown in Table 4. Even n=9 and 
n=10 achieve moderate execution times despite the 
higher number of hops. Thus, compared to the 
previous database, the fan out seems to be one 
decisive factor for performance results (cf. 3.8). 

Table 4: Results for ALL scenario (large cache). 

Cold [sec] Warm [sec] Number of 
returned valuesØ stdev Ø Stdev 

ALL(9)  20.66 0.22 8.01 0.05 334,247
ALL(10) 37.44 3.86 26.40 0.41 1,172,908

5 THOUGHTS ABOUT FAIRNESS  

Having discussed some performance scenarios and 
thereby achieving different results than often 
presented in the literature, we turn to the question 
what fairness of performance comparisons means. 

At first, it is an absolute precondition for fairness 
to supply the same environment with the same 
resources such as hardware, processor, operating 
system, network, disks, RAM, degree of test 
isolation and the same overall test conditions etc.  

But if the size of memory for the DBMS is pre-
fixed, it is starting to become unfair. DBMSs like 
Neo4j are Java-based and execute queries at the 
client, making a lot of memory in the JVM more 
advantageous. RDBMSs process queries in the 
server instead. Consequently, a smaller JVM might 
be sufficient in order to leave more RAM for the 
DBMS. Hence, resources cannot be set equally for 
all the test candidates since the settings not only 
depend on an application and its data, but also on the 
type of DBMS. 

The rules for performing benchmarks also have a 
strong impact on the expressiveness of results. 
Conditions must not be too restrictive: Every test 
should implement the same universe of discourse 
with the same functionality. But a tester should not 
be forced to use a specific database schema, a query 
language etc. For example, benchmarks for 
ODBMSs, e.g., (Carey, DeWitt, and Naughton, 
1994), often dictated testers the same neutral 
implementation. Instead, there should be freedom 
for using SQL or not.  

The execution of benchmarks or tests often relies 
on default configurations. Parameters such as the 
database cache size are set to default or configured 
at good guess, and tuning is neglected. The OO7 
benchmark (Carey, DeWitt, and Naughton, 1994) 
legitimates such a proceeding by stating that normal 
programmers cannot tune a system effectively. This 
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statement is doubtful in our opinion. Most DBMSs 
do require an appropriate tuning in order to optimize 
performance. As we have demonstrated, simple 
tuning measures like creating indexes already 
improve performance considerably; but there are 
much more screws to turn. This potential must be 
used for sustainable results. 

Performance comparisons are certainly fair if 
infinite time is at the tester’s disposal.  This is quite 
infeasible, however, the following attenuation makes 
sense: Each tester of a DBMS should obtain the 
same, sufficient, amount of time. Furthermore, each 
implementer of a test must have the same degree of 
skills and knowledge of a particular database 
candidate. Otherwise, different skills should be 
considered for restricting the time. Anyway, the time 
limit must not be too tight, there should be sufficient 
time to avoid too straightforward, often naive, 
solutions. Having enough time allows a programmer 
to try out concepts in several variants and to tune the 
overall system.  

Finally, it is important to have realistic and 
holistic test scenarios. This particularly means that 
scenarios should cover representative and complete 
use cases with a mixed set of operations. This also 
reduces the risk of over-tuning and evaluating or 
aggregating partial results in a convenient manner. 

6 CONCLUSIONS 

Publications about new database technologies often 
claim to be superior to traditional technologies such 
as relational database products. This is proven by 
means of technical performance comparisons.  

We picked up some published statements that 
compare the graph database Neo4j with relational 
systems coming up with some huge performance 
gains for Neo4j. The overall goal of this paper was 
to discuss those “sweeping” statements. We revealed 
some common test scenarios with a PostgreSQL 
database and illustrated a huge spectrum of 
performance depending on factors such as 
configuration, database schemas, tuning etc. 
Moreover, we achieved good results for those 
critical scenarios that were proven to be bad for 
RDBMSs. One important conclusion was that a 
good and comparable performance can often be 
achieved if doing it in the right way. The message 
should be that each system can be tuned for 
particular use cases: A deeper investigation becomes 
absolutely indispensable for reliable results.   

Hence, we want to encourage people to perform 
own benchmarks if tools have to be compared 

instead of blindly believing in published 
comparisons. We made an attempt to give some 
recommendations to achieve fair comparisons. 

Our future work will enlarge the scope to other 
NoSQL categories. That said, we want to focus on 
covering further potential advantages of NoSQL 
products such as distribution, scalability etc.  
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