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Abstract: This paper is devoted to the H∞ control design of positive discrete-time systems with multiple delays. Novel
bounded real lemma is presented first via linear matrix inequality technique, which reveals that H∞ norms
of a discrete-time positive system with time delays both in dynamic and output equations are identical to
that of the corresponding delay-free system. Necessary and sufficient conditions for positivity preserving
H∞ stabilization via a dynamic output feedback control are established in the forms of matrix equalities, that
guaranteeing the closed-loop system not only to be asymptotically stable and positive, but also to have a
desired H∞ performance. The proposed results are extended to interval uncertain positive systems with time
delay. Finally, an example is given to illustrate the effectiveness of the obtained design scheme.

1 INTRODUCTION

Positive systems are a class of systems whose state
variables are never negative, for any given nonneg-
ative initial state and nonnegative input. Lots of
stability and stabilization problems for time-delayed
positive systems have been reported in the literature,
see, for instance (Gao et al., 2004b), (Cui et al.,
2018). Necessary and sufficient conditions based on
linear programming technique were given to guaran-
tee the asymptotical stability of discrete-time positive
systems with constant delays in (Liu, 2009), which
proved that the magnitudes of delays have no impact
on system stability. Stability analysis of positive sys-
tems with bounded time-varying delays was studied
in (Liu et al., 2010). Exponential stability of pos-
itive time-delayed systems was investigated in (Zhu
et al., 2012) by the Lyapunov-Krasovskii functional
based method, and diagonal Riccati stability criteria
was presented in (Mason, 2012) by using the separat-
ing hyperplane theorem.

For the controller synthesis, an output feedback
controller has to be used if no full access to the system
states (Wang et al., 2015), (Shu et al., 2012), (Zhang
et al., 2018). There are generally two types of strate-
gies to avoid NP-hard problem (Blondel and Tsitsik-
lis, 1995). One is so-called relaxation, which is easy
to implement, but conservatism may be introduced in
some cases (Gao et al., 2004a). The other strategy is
the local optimization which minimizes the objective

function near the feasible point. Most accurate meth-
ods to static output feedback synthesis involve local
optimization, for instance, the direct iterative proce-
dure (D-K iteration), iterative linear matrix inequality
(ILMI) and the cone complementarity linearization
(CCL) (Geromel et al., 1994). The free-weighting
matrix method proposed in (He et al., 2007) has re-
duced the conservatism in controller synthesis, but
always introduces extra coupling terms among con-
troller gain, Lyapunov matrices and system matri-
ces (Mirkin and Gutman, 2005). To decouple these
cross-product terms, an augmentation approach was
proposed in (Shu and Lam, 2009) provided an equiv-
alent form of the H∞ stabilization criterion for positive
delay-free systems.

The bounded real lemma (BRL) and Kalman-
Yakubovich-Popov(KYP) lemma for linear positive
systems without time delays was presented by T.
Tanaka and C. Langbort in (Tanaka and Langbort,
2010) , in which the KYP lemma made the condi-
tion of H∞ controller design be convex and tractable
with the help of the small gain theorem and the hyper-
plane separation theorem. Strict/non-strict inequal-
ity versions of KYP lemma for single-input single-
output discrete-time positive systems without time
delays were developed in (Najson, 2013) where a
quadratic Lyapunov function was formulated by a di-
agonal Lyapunov matrix (Farina and Rinaldi, 2000).
BRL in terms of matrix inequality for continuous-
time positive systems with time delays in states was
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provided in (Zhang et al., 2015), and the criteria for
dynamic output feedback H∞ stabilizability were also
proposed. To the authors’ knowledge, there are still
no related results to the H∞ stabilization problem for
discrete-time positive system with discrete delays.

Based on the above observations, this paper is mo-
tivated to present BRL of discrete-time positive sys-
tems with time delays for the first time, with further
discussion on H∞ control by means of dynamic out-
put feedback control strategy. The remaining parts of
this paper are organized as follows. Preliminary is in-
troduced in Section 2 and a novel BRL is established
in Section 3. Necessary and sufficient conditions are
proposed to prove that H∞ performance of positive
time-delayed systems are independent on the magni-
tudes of delays. In the aspect of controller synthe-
sis, necessary and sufficient conditions are presented
in Section 4 to design dynamic output feedback con-
trollers, which leads to the closed-loop system to pos-
sess asymptotical stability, positivity, and desired H∞

performance simultaneously. Section 5 extends re-
sults to interval linear discrete-time systems with both
time delays and uncertainties. A numerical example
is given to illustrate the effectiveness of the obtained
results in Section 6.

2 PRELIMINARIES

The notations throughout this paper are fairly stan-
dard. For two matrices A ∈ Rm×n and B ∈ Rm×n,
A ≥ B, A > B, A� (�)B, respectively, denote that
Ai j ≥Bi j, Ai j ≥Bi j but A 6=B, Ai j > (<)Bi j, for all i=
1,2, . . . ,m, j = 1,2, . . . ,n. For A ∈ Rn×n, A � 0 and
A≺ 0 mean that A is a positive semidefinite and a neg-
ative definite matrix, respectively. 〈X ,Y 〉= trace(XY )
is the inner product on Sn. The asterisk “∗” in a matrix
represents a term which can be induced by symmetry.
Moreover,

N+,R set of positive integers,set of real numbers
Rn set of n-dimensional real vectors
Rm×n set of m×n real matrieces
R̄n

+,Rn
+ nonnegative and positive orthants ofRn

Sn space of n-th order real symmetric matrices
Dn×n

+ set of all diagonal positive definite matrices
ei vector with 1 in ith position and 0 elsewhere
1, I vector [1,1, . . . ,1]T , identity matrix
Ai j ith component of matrix A
AT transpose of A
trace(A) trace of matrixA
ρ(A) spectral radius of matrix A
σ̄(A) maximum singular value of matrixA
D(A) vector composed of diagonal entries of A

Consider a linear discrete-time positive system
with time delays in state and output equations as fol-
lows,

Σ0 : x(k+1) = Ax(k)+
q

∑
i=1

Aix(k−di)+Bω(k),

z(k) =Cx(k)+
q

∑
i=1

Cix(k−di)+Dω(k),

x(k) = φ(k), k ∈ [−d,0],
(1)

where x(k) ∈ R̄n
+, ω(k) ∈ R̄m

+, z(k) ∈ R̄p
+ are the

state, exogenous input and output vectors, respec-
tively. A,Ai,B,C,Ci,D are known real matrices with
appropriate dimensions, di is a constant time delay,
φ(k) ∈ R̄n

+ is the vector-valued initial function on
[−d,0] with d,max{di}, i= 1,2, . . . ,q. Some neces-
sary definitions and lemmas are provided first, which
are useful in the subsequent technical development for
linear time-delay positive systems.
Definition 1. Matrix A ∈ Rn×n is Schur stable if
ρ(A)< 1.
Lemma 1. ((Berman and Plemmons, 1979)) For two
matrices A ∈ Rn×n

+ , B ∈ Rn×n
+ , ρ(A)≥ ρ(B) if A≥ B.

Lemma 2. (Liu, 2009) For positive system Σ0, the
following statements hold:
(i) System Σ0 is positive if and only if A ≥ 0, B ≥ 0,

C ≥ 0, D≥ 0, Ai ≥ 0, Ci ≥ 0, i = 1,2, . . . ,q;
(ii) System Σ0 is asymptotically stable if and only if

ρ

(
A+

q
∑

i=1
Ai

)
< 1.

The transfer function matrix of system Σ0 is given
by

G0(z)=
(

C+
q

∑
i=1

z−diCi

)(
zI−A−

q

∑
i=1

z−diAi

)−1
B+D,

and its H∞ norm is defined as
||G0||∞ = supθ∈[0,2π) σ̄(G(e jθ)).

A sufficient condition to check H∞ characteristics of
system Σ0 with q = 1 has been established in (Gao
et al., 2004a) as follows.
Lemma 3. (Gao et al., 2004a) Positive system Σ0
with q = 1 is asymptotically stable and ||G0||∞ < γ

if there exist matrices P� 0 and Q� 0 such that
M+diag{Q,−Q, 0} ≺ 0, (2)

where

M =

 AT PA−P+CTC AT PA1 +CTC1
CT

1 C+AT
1 PA AT

1 PA1 +CT
1 C1

DTC+BT PA BT PA1 +DTC1

CT D+AT PB
AT

1 PB+CT
1 D

BT PB+DT D− γ2I

 .
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3 BOUNDED REAL LEMMA
(BRL)

In this section, we shall point out that H∞ perfor-
mance of the discrete-time positive linear system Σ0
with constant delays is insensitive to the magnitude of
the delays. Our purpose is to give a characterization
on the BRL for system Σ0 with multiple time delays.
To this end, we first introduce two nominal delay-free
positive systems:

Σ1 : x(k+1) = Ãx(k)+Bω(k),

z(k) = C̃x(k)+Dω(k),
(3)

Σ2 : x(k+1) = Ax(k)+Bω(k),
z(k) =Cx(k)+Dω(k).

(4)

For simplicity, define Ã = A+ Ãd , Ãd =
q
∑

i=1
Ai, C̃ =

C + C̃d , C̃d =
q
∑

i=1
Ci. The transfer functions of sys-

tems Σ1 and Σ2 are, respectively, given by

G1(z) = C̃
(
zI− Ã

)−1B+D

G2(z) =C(zI−A)−1B+D

with z = e jθ, θ ∈ [0,2π). It has been pointed out
in (Najson, 2013) that, if system Σ2 is positive and
asymptotically stable, ||G2||∞ = σ̄(G2(1)). On the ba-
sis of this fact, the following lemma can be obtained
which is useful sequentially.

Lemma 4. If system Σ0 is positive, asymptotically
stable and ||G0||∞ < γ, then ||G2||∞ ≤ ||G1||∞ < γ.

Proof: If positive system Σ0 is asymptotically stable
and ||G0||∞ < γ, one has σ̄(G0(1)) < γ. Obviously,
||G1||∞ = σ̄(G1(1)) = σ̄(G0(1)) < γ. It follows from
Lemma 2 that

(I− Ã)−1 =
∞

∑
k=0

Ãk ≥
∞

∑
k=0

Ak = (I−A)−1 ≥ 0,

which leads to 0 ≤ G2(1) ≤ G1(1). Accord-
ing to Lemma 1, ||G2||∞=σ̄(G2(1)) ≤ σ̄(G1(1)) =
||G1||∞ < γ is derived. �

Theorem 1. [Single delay] When q = 1. System Σ0
is asymptotically stable and ||G0||∞ < γ if and only if
there exist P ∈Dn×n

+ and Q ∈Dn×n
+ such that inequal-

ity (2) holds.

Proof: Necessity. Define a discrete-time system

Σ̂0 : x(k+1) = Ax(k)+A1x(k−d1)+Bω(k),

z(k) = Ĉx(k)+Ĉ1x(k−d1)+ D̂ω(k),
x(k) = φ(k), k ∈ [−d1,0],

(5)

in which Ĉ = 1
γ
C, Ĉ1 = 1

γ
C1, D̂ = 1

γ
D. Its trans-

fer function matrix is denoted by Ĝ0(z). If sys-
tem Σ0 with q = 1 is positive, asymptotically stable
and ||G0||∞ < γ, one has ||Ĝ0||∞ = || 1

γ
G0||∞ < 1. At

this point, it turn s to prove that, if system Σ̂0 is posi-
tive, asymptotically stable and ||Ĝ0||∞ < 1, there must
exist P ∈ Dn×n

+ and Q ∈ Dn×n
+ satisfying

M̂+diag{Q,−Q, 0}< 0, (6)

where M̂ is M defined in Lemma 3 with C, C1 and D,
respectively, replaced by Ĉ, Ĉ1 and D̂, and γ = 1.

The proof will be given by contradiction. Sup-
pose that, for every P∈Dn×n

+ , there does not exist any
nonzero Q ∈ Dn×n

+ such that LMI (6) holds. Define
two sets

S1 ,
{

M̂+diag{Q,−Q, 0}
∣∣Q ∈ Dn×n

+

}
,

S2 , {R|R≺ 0,R ∈ S2n+m}.

It can be easily verified that both sets S1 and S2 are
convex and nonempty. The intersection of sets S1 and
S2 is empty means that S1 ∩ S2 = /0. It follows from
the separating hyperplane theorem (Boyd and Balakr-
ishnan, 2004) and convex analysis (see (Rockafellar,
2015)) that two disjoint convex sets can be separated
by a hyperplane, that is, there exists a nonzero matrix
H ∈ S2n+m such that

〈H,Y 〉 ≥ 0, ∀Y ∈ S1, (7)
〈H,X〉< 0, ∀X ∈ S2. (8)

From condition (8), that is, 〈H,X〉 = trace(HX) < 0,
one can easily verify that H � 0. Defining

H =

 H11 H12 H13
HT

12 H22 H23
HT

13 HT
23 H33

� 0,

inequality (7) yields that, for any Q ∈ Dn×n
+ ,

trace
(
H(M̂+diag{Q,−Q, 0})

)
=trace(HM̂)+ trace((H11−H22)Q)≥ 0.

It follows from Q > 0 that

trace(HM̂)≥ 0, (9)
D(H11−H22)≥ 0, (10)

otherwise, there must exist nonzero H � 0 and Q ∈
Dn×n
+ such that trace(HM̂)+ trace((H11−H22)Q) <

0 for any fixed P ∈ Dn×n
+ .

Define a nonzero vector h,
[

hT
1 hT

2 hT
3
]T ∈

R2n+m
+ with hi =

√
Hii, i = 1,2,3. From inequality (9)

and Lemma 1, one has trace(hhT M̂) ≥ 0 which is
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equivalent to,

Ω,hT
1 (A

T PA−P+ĈTĈ)h1 +hT
2 (A

T
1 PA+ĈT

1 Ĉ)h1

+hT
3 (B

T PA+ D̂TĈ)h1 +hT
1 (A

T PA1+ĈTĈ1)h2

+hT
2 (A

T
1 PA1+ĈT

1 Ĉ1)h2+hT
3 (B

T PA1+D̂TĈ1)h2

+hT
1 (A

T PB+ĈT D̂)h3+hT
2 (A

T
1 PB+ĈT

1 D̂)h3

+hT
3 (B

T PB+D̂T D̂−I)h3 ≥ 0.
(11)

From (10), one has h1 ≥ h2 ≥ 0. Note that vector h is
nonzero, and two cases will be discussed as follows.

Case 1: h2 = 0. Inequality (11) leads to

hT
1 (A

T PA−P+ĈTĈ)h1 +hT
3 (B

T PA+ D̂TĈ)h1

+hT
1 (A

T PB+ĈT D̂)h3+hT
3 (B

T PB+D̂T D̂−I)h3 ≥ 0
(12)

which can be rewritten as[
h1
h3

]T

ϒ

[
h1
h3

]
≥ 0.

in which

ϒ,

[
AT PA−P+ĈTĈ AT PB+ĈT D̂

BT PA+ D̂TĈ BT PB+D̂T D̂−I

]
.

It means that there exists a nonzero vector[
hT

1 hT
3
]T such that the above inequality holds.

Equivalently, there does not exist P ∈ Dn×n
+ such that

ϒ ≺ 0. According to the KYP Lemma (in (Rantzer,
2016)) and Lemma 4, one has || 1

γ
G2||∞ ≥ 1. This is a

contradiction.
Case 2: h2 > 0. Due to the fact that h1 ≥ h2, Ω

defined in condition (11) satisfies

Ω≤[
h1
h3

]T[
(A+A1)

T P(A+A1)−P+(Ĉ+Ĉ1)
T (Ĉ+Ĉ1)

BT P(A+A1)+ D̂T (Ĉ+Ĉ1)

(A+A1)
T PB+(Ĉ+Ĉ1)

T D̂
BT PB+D̂T D̂−I

][
h1
h3

]
,

which is inconsistent with the fact that || 1
γ
G1||∞ < 1.

Hence, if system Σ0 is positive, asymptotically
stable and ‖G0‖∞

< γ, there must exist P ∈ Dn×n
+ and

Q ∈ Dn×n
+ satisfying M+diag{Q,−Q, 0} ≺ 0.

Sufficiency condition can be immediately ob-
tained from Lemma 3 and Theorem 1 given in (Wu
et al., 2009). This completes the proof. �

After an algebraic manipulation, a simple equiva-
lent form of (2) in Theorem 1 can be obtained in the
following corollary, in which the matrix variable Q
appearing in Theorem 1 has been removed.

Corollary 1. Positive system Σ0 with q = 1 is asymp-
totically stable and ‖G‖

∞
< γ if and only if there exists

P ∈ Dn×n
+ such that[

(A+A1)
T P(A+A1)−P+(C+C1)

T (C+C1)
BT P(A+A1)+DT (C+C1)

(A+A1)
T PB+(C+C1)

T D
BT PB+DT D− γ2I

]
≺ 0.

(13)

Remark 1. From Lemma 4 and Theorem 1, it is clear
that the exact value of ‖G0‖∞

is given by σ̄(G0(1)) if
positive system Σ0 with q = 1 is asymptotically stable.
That is, H∞ norm of system Σ0 is equivalent to that of
system Σ1, which is independent of time delays. Due
to this fact, Theorem 1 can be easily extended to the
case of multiple time delays, that is, q> 1, and A1 and
C1 being replaced by ∑

q
i=1 Ai and ∑

q
i=1 Ci.

The BRL for positive system Σ0 with multiple
time delays can be directly obtained in the following
theorem, in which Ã and C̃ are given in system Σ1.

Theorem 2. [Multiple delay] Positive system Σ0 with
q > 1 is asymptotically stable and ‖G0‖∞

< γ if and
only if there exists a matrix P ∈ Dn×n

+ such that[
ÃT PÃ−P+C̃TC̃ ÃT PB+C̃T D

BT PÃ+DTC̃ BT PB+DT D− γ2I

]
≺ 0.

(14)

4 DYNAMIC OUTPUT
FEEDBACK H∞ CONTROL

Due to the fact that full access to the system state is
usually impossible in real plants and often only par-
tial information of the state can be measured, one has
to use a controller based on output measurements.
It becomes necessary to develop H∞ control theory
via output feedback control signal. On the basis of
the above preparatory work, next an explicit delay-
independent characterization of the positivity preserv-
ing H∞ control will be developed. Since H∞ norms of
positive time-delay systems only depend on system
matrices, our attention is restricted to the case of sin-
gle delay (that is, q = 1) and then the derived results
can be easily extended to the case of multiple delays
(that is, q > 1).

Consider a discrete-time positive system with one
constant delay as follows

x(k+1) = Ax(k)+A1x(k−d)+Bω(k)+B1u(k),
z(k) =Cx(k)+C1x(k−d)+Dω(k)+B2u(k),
y(k) = Fx(k)+Hω(k),
x(k) = φ(k), k ∈ [−d,0],

(15)

On Dynamic Output Feedback H Control for Positive Discrete-Time Delay Systems

763



where x(k) ∈ Rn is the state, ω(k) ∈ Rm is the exoge-
nous input, u(k) ∈ Rl is the control input, z(k) ∈ Rp

is the controlled output, y(k) ∈ Rr is the measure-
ment. A,A1,B,B1,B2,C,C1,D,F,H are real matrices
with compatible dimensions. A dynamic output feed-
back controller is given by

ξ(k+1) = AKξ(k)+BKy(k),
u(k) =CKξ(k)+DKy(k),

(16)

where ξ(k)∈Rr is the controller state, AK ,BK ,CK ,DK
are the controller gain matrices to be designed. The
following closed-loop system is conducted from sys-
tem (15) via the output feedback controller (16) .[

x(k+1)
ξ(k+1)

]
=

[
A+B1DKF B1CK

BKF AK

][
x(k)
ξ(k)

]
+

[
A1 0
0 0

][
x(k−d)
ξ(k−d)

]
+

[
B+B1DKH

BKH

]
ω(k),

z(k)=
[

C+B2DKF B2CK
][ x(k)

ξ(k)

]
+
[

C1 0
][ x(k−d)

ξ(k−d)

]
+(D+B2DKH)ω(k),

(17)
The validity of the performance-based design lies in
whether the closed-loop performance requirement can
be satisfied easily. Let us take an exploration of H∞

performance-based control design upon the BRL rep-
resentation through an output feedback control, which
allows that the closed-loop system is positive, asymp-
totically stable and ‖G‖

∞
< γ.

Theorem 3. Given positive system (15) and a con-
stant scalar γ > 0, the existence of a dynamic out-
put feedback controller (16) such that the closed-
loop system (17) is positive, asymptotically stable
and ‖G‖

∞
< γ, is equivalent to the existence of ma-

trices P1 ∈ Dn×n
+ ,P2 ∈ Ds×s

+ ,Q1 ∈ Dn×n
+ ,Q2 ∈ Ds×s

+ ,
L1 ∈Rs×s, L2 ∈Rs×r, L3 ∈Rl×s, L4 ∈Rl×r satisfying
P1Q1 = I, P2Q2 = I, A+B1L4F ≥ 0, B1L3 ≥ 0, L2F ≥
0, L1 ≥ 0, B+B1L4H ≥ 0, L2H ≥ 0, C+B2L4F ≥ 0,
B2L3 ≥ 0, D+B2L4H ≥ 0, and

−P1 0 0 A+A1 +B1L4F B1L3 B+B1L4H
∗ −P2 0 L2F L1 L2H
∗ ∗ −I C+C1 +B2L4F B2L3 D+B2L4H
∗ ∗ ∗ −Q1 0 0
∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ −γ2I

≺ 0.

(18)

Then the desired controller gain matrices are given by

AK = L1,BK = L2,CK = L3,DK = L4.

Proof: Applying Schur complement lemma and set-
ting P−1

1 = Q1, P−1
2 = Q2, AK = L1, BK = L2, CK =

L3, DK = L4, inequality (18) and two equality con-
straints can be derived from Theorem 2. Other in-
equalities used for guaranteeing the positivity of the
closed-loop system (17) can be derived directly from
Lemma 2. The proof is completed. �

5 ROBUST H∞ CONTROL

It is noted that, for two Schur stable matrices A1 ≥ 0
and A2 ≥ 0 with A1 ≥ A2, we have A−1

1 ≥ A−1
2 . Mo-

tivated by this fact, there is a possible extension of
Theorem 1 to uncertain time-delay positive systems.
In this section, consider an interval uncertain discrete-
time positive system with a time delay as follows

x(k+1) = AIx(k)+AI
1x(k−d)+BI

ω(k)+B1u(k),

z(k) =CIx(k)+CI
1x(k−d)+DI

ω(k)+B2u(k),
y(k) = Fx(k)+Hω(k),
x(k) = φ(k), k ∈ [−d,0],

(19)

where AI ∈
[
A,A

]
, AI

1 ∈
[
A1,A1

]
, BI ∈

[
B,B

]
, CI ∈[

C,C
]
, CI

1 ∈
[
C1,C1

]
, DI ∈

[
D,D

]
, A ≥ 0, A1 ≥ 0,

B ≥ 0, C ≥ 0, C1 ≥ 0, D ≥ 0,and A, A, A1, A1, B, B,
C, C, C1, C1, D, D are all constrained in metric space.

Theorem 4. Interval uncertain positive system (19)
is robustly asymptotically stable and ‖G‖

∞
< γ if and

only if there exists a matrix P ∈ Dn×n
+ satisfying that[

(A+A1)
T P(A+A1)−P+(C+C1)

T
(C+C1)

BT P(A+A1)+DT
(C+C1)

(A+A1)
T PB+(C+C1)

T D
BT PB+DT D− γ2I

]
≺ 0.

Proof: If system (19) is positive and robustly asymp-
totically stable, ρ(AI) < 1 for any AI ∈ [A,A]. It fol-
lows that CI +CI

1(I−AI−AI
1)
−1BI +DI ≤C+C1(I−

A−A1)
−1B+D. Furthermore, from Lemma 2, one

gets ∥∥CI +CI
1(I−AI−AI

1)
−1BI +DI∥∥

∞

≤
∥∥C+C1(I−A−A1)

−1B+D
∥∥

∞
< γ.

Therefore, according to Theorem 1, sufficiency and
necessity conditions are obvious. �

Next, our objective is to design a dynamic out-
put feedback controller in (16) such that the following
closed-loop system
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[
x(k+1)
ξ(k+1)

]
=

[
AI+B1DKF B1CK

BKF AK

][
x(k)
ξ(k)

]
+

[
AI

1 0
0 0

][
x(k−d)
ξ(k−d)

]
+

[
BI+B1DKH

BKH

]
ω(k),

z(t)=
[

CI+B2DKF B2CK
][ x(k)

ξ(k)

]
+
[

CI
1 0

][ x(k−d)
ξ(k−d)

]
+
(
DI+B2DKH

)
ω(k).

(20)

is positive, robustly asymptotically stable and
||G||∞ < γ. �

Theorem 5. Given positive system (19) and a scalar
γ > 0, there exists a dynamic output feedback con-
troller (16) such that the closed-loop system (20) is
positive, robustly asymptotically stable and ||G0||∞ <
γ if and only if there exist matrices P1 ∈ Dn×n

+ ,P2 ∈
Ds×s
+ ,Q1 ∈ Dn×n

+ ,Q2 ∈ Ds×s
+ , L1 ∈ Rs×s, L2 ∈ Rs×r,

L3 ∈ Rl×s, L4 ∈ Rl×r such that A + B1L4F ≥ 0,
B1L3 ≥ 0, L2F ≥ 0, L1 ≥ 0, B+B1L4H ≥ 0, L2H ≥ 0,
C+B2L4F ≥ 0, B2L3 ≥ 0, D+B2L4H ≥ 0, P1Q1 = I,
P2Q2 = I, and

−P1 0 0 A+A1 +B1L4F B1L3 B+B1L4H
∗ −P2 0 L2F L1 L2H
∗ ∗ −I C+C1 +B2L4F B2L3 D+B2L4H
∗ ∗ ∗ −Q1 0 0
∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ −γ2I


≺ 0.

(21)

If the above conditions hold, then the desired con-
troller gain matrices are given by

AK = L1,BK = L2,CK = L3,DK = L4.

Proof: It is obvious that A+B1DKF ≤ AI +B1DKF
for any AI ∈ [A,A]. If A + B1L4F ≥ 0 holds, then
AI +B1L4F ≥ 0. Setting P−1

1 = Q1, P−1
2 = Q2, AK =

L1, BK = L2, CK = L3, DK = L4, and taking a similar
line as the proof of Theorem 3, the detailed proof is
omitted. �

6 NUMERICAL EXAMPLE

This section presents one numerical example to illus-
trate the effectiveness of the proposed results. Con-
sider a discrete-time interval uncertain positive sys-
tem in (19) with one delay in the system state, and
system matrices given as follows:

A =

 0.3648 0.3986 0.2695
0.3178 0.4146 0.4423
0.4812 0.1218 0.3757

 , A =

 0.3931 0.4181 0.2914
0.3398 0.4527 0.4718
0.5054 0.1470 0.3990

 ,
A1 =

 0.0221 0.0982 0.0322
0.0313 0.1001 0.0271
0.0182 0.0235 0.0283

 , A1 =

 0.0323 0.1002 0.0385
0.0348 0.1320 0.0334
0.0293 0.0264 0.0379

 ,
B =

 0.1560
0.1820
0.141

 , B =

 0.1835
0.2273
0.1705

 ,B1 =

 0.2318
0.4836
0.1931

 , B2 = 0.2358,

C =
[

0.2170 0.1911 0.2143
]
,C =

[
0.2321 0.2233 0.3097

]
,

C1 =
[

0.0243 0.0435 0.0219
]
,C1 =

[
0.0339 0.0500 0.0254

]
,

F =
[

0.1408 0.1619 0.2045
]
, D = 0.2970, D = 0.3102.

It can be verified that this system is not robustly sta-
ble. We now apply the proposed approach to find
a reduced-order dynamic output feedback controller
in (16) with r = 2 such that the closed-loop system is
positive, robustly asymptotically stable and ||G||∞ <
1. One group of feasible solutions of the constrained
conditions in Theorem 3 is obtained as follows,

P1 =

 0.9972 0 0
0 1.2481 0
0 0 0.8515

 , Q1 =

 1.0028 0 0
0 0.8012 0
0 0 1.1744

 ,
P2 =

[
0.9733 0

0 0.9733

]
, Q2 =

[
1.0275 0

0 1.0275

]
,

L1 =

[
0.1724 0.1724
0.1724 0.1724

]
, L2 =

[
0.0423
0.0423

]
,

L3 =
[

0.0363 0.0363
]
, L4 =−3.8956.

The desired controller gain matrices AK , BK , CK and
DK are given by L1,L2,L3,L4, respectively. Figure 1
gives the maximal singular value plots of the closed-
loop system when d = 2, d = 50, and d = 0. It shows
clearly in this example that H∞ norm of discrete-time
interval uncertain positive system with time delays is
independent of the delay magnitude.
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Figure 1: Maximal singular value plots of the closed-loop
system.
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7 CONCLUSIONS

This paper has established the BRL for discrete-
time positive linear system with multiple time delays.
The proposed delay-independent criteria results re-
veal that H∞ performance of positive systems with
time delays in state and output equations is equivalent
to the characterization of the corresponding delay-
free systems. The necessary and sufficient conditions
in the forms of matrix (in)equalities are established
for the H∞ control problem via dynamic output feed-
back controls, which can be easily solved by using
Matlab toolbox, although the proposed approach is
not guaranteed to find a feasible solution even it ex-
ists.
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