
Web Application for Privacy-preserving Scheduling
using Secure Computation

Ágnes Kiss, Oliver Schick and Thomas Schneider
TU Darmstadt, Darmstadt, Germany

Keywords: Event Scheduling, Secure Two-party Computation, Web Application, Efficient Implementation.

Abstract: Event scheduling applications such as Doodle allow for very limited privacy protection. Even if the partic-
ipants are anonymous, their inputs are revealed to the poll administrator and the application server. There
exist privacy-enhanced scheduling services (e.g., Kellermann and Böhme, CSE’09), but they require heavy
computation and communication on the client’s side, leak information to the participants or poll administrator,
and allow only for a restricted scheduling functionality. In this work, we present a privacy-preserving schedul-
ing system based on secure two-party computation, that allows to schedule meetings between a large number
of participants efficiently, without requiring any participant to reveal its availability pattern or other sensitive
information to any other participant, server, or even the poll administrator. The protocol allows for various
functional extensions and requires the client to perform very little work when securely submitting its inputs.
Our protocol is secure against semi-honest non-colluding servers and malicious participants.

1 INTRODUCTION

Arranging a meeting between multiple persons is a
highly recurring task that can take a lot of time, es-
pecially when many people and organisations are in-
volved. While most bigger companies already pro-
vide internal solutions to this problem, these solutions
only apply when scheduling internal meetings. There
are multiple online solutions such as Doodle (Doodle,
2018) or DFN (DFN, 2018), but several concerns re-
garding privacy arise when using these.

In some cases, all participants can see the selec-
tions made by other participants, which might leak
information of the availability patterns. Leaking such
availability patterns might result for example in bur-
glars breaking into the user’s apartment. Moreover,
the last users submitting their votes can lie about their
availability in order to make their preferred date more
likely to be chosen.

Problems can arise even when the (potentially
anonymized) selections of the participants can only be
seen by the poll administrators. Firstly, a poll admin-
istrator cannot always be found, especially when ar-
ranging a meeting among several organizations. Sec-
ondly, the administrator has the opportunity to cheat
by selecting a preferred date instead of the winning
time slot based on the number of participants.

Our Contributions. Our main contribution is a
privacy-preserving web-based system that allows to
schedule a meeting between any number of partici-
pants using a selection function f that is used to se-
lect the winning time slot based on the availability of
the participants. We show that using generic solutions
for secure two-party computation, our practical im-
plementation is more efficient and more private than
previous protocols specifically designed for the poll
functionality. The protocol guarantees that even ma-
licious participants gain neither advantage in the se-
lection of the scheduled time nor information about
the selections made by other participants. Moreover,
the poll administrator learns no information except
the output of the computation. Our presented system
requires that all three participating servers are semi-
honest and the two backend servers do not collude in
order to guarantee correctness of the execution and
nondisclosure of the selections of the participants.

2 RELATED WORK

In this section, we review already existing schedul-
ing applications based on privacy-enhancing tech-
nologies. We summarize and compare their most im-
portant features in Tab. 1.

456
Kiss, Á., Schick, O. and Schneider, T.
Web Application for Privacy-preserving Scheduling using Secure Computation.
DOI: 10.5220/0007947704560463
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 456-463
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2.1 Doodle and DFN

The most widely used web-based scheduling appli-
cation, Doodle (Doodle, 2018), and the scheduling
service provided by the German National Research
and Education Network (Deutsches Forschungsnetz)
(DFN, 2018), do not provide any protection against
the service provider or poll administrator.

Doodle is the currently most popular web-based
solution to scheduling between multiple parties. A
poll is initiated by a poll administrator, who defines
the available time slots from which the participants of
the poll select. By default, the input of every partic-
ipant is visible to everyone and no access control is
provided, hence anyone in possession of the link can
see the selections made by all participants. Doodle
also offers hidden polls, where only the poll adminis-
trator can see the inputs of every other participant.

The DFN provides an alternative scheduling appli-
cation but promises to use the data sent to them only
for the scheduling. They guarantee to delete all data
they receive and thus require the poll administrator to
input a termination date, when all data related to the
poll is deleted. However, one has no means to check
if DFN deletes the data and does not use it elsewhere.
Therefore, DFN also provides security by trust only.

2.2 Dudle

Kellermann and Böhme presented a protocol in
(Kellermann and Böhme, 2009), (Kellermann, 2010),
(Kellermann, 2011), that allows participants to sched-
ule a meeting without revealing their availabilities to
the server or other participants. Their protocol is used
in the scheduling system Dudle (Dresden, 2018).

The protocol consists of three phases. In the first
phase (poll generation), a poll administrator initiates
the poll and every participant communicates with all
other participants to obtain keys for the later phases.
In the next phase (voting), the participants encrypt
their votes for all time slots and send these cipher-
texts to the server. In the final phase (evaluation),
each participant can calculate the sum of the avail-
able participants for each time slot and define the win-
ning time slot. The authors argue that these sums do
not reveal significant information about the individual
votes. However, in some cases (e.g., with few partici-
pants) this might provide limited privacy guarantees.

Kellermann provided an extension against mali-
cious participants providing invalid inputs (Keller-
mann, 2011). The extension allows to detect mali-
cious behavior and identify the malicious participant.

The protocol proposed by Kellermann and Böhme
allows to securely schedule a date, but provides the

minimum in terms of usability. Extensions to dy-
namically insert and remove participants, to allow ad-
ditional (e.g., yes-no-maybe) options, and to change
votes retrospectively have been proposed, but these
extensions have serious limitations (Kellermann and
Böhme, 2009). For instance, removing a participant
and changing votes requires additional rounds of in-
teraction with the participants, which is unrealistic,
since users may go offline after submitting their votes.

2.3 Other Solutions for
Privacy-preserving Scheduling

Solutions to a different type of privacy-preserving
scheduling task exist, where the problem is to find a
common available time slot given the availability pat-
tern of all participants. This problem can be solved
using private set intersection or homomorphic encryp-
tion as in (Bilogrevic et al., 2011), (Demmler et al.,
2014), (Huang et al., 2011). In our work, we seek a
solution for a different functionality: we aim to find
the schedule where most participants are available but
do not require that all participants are available.

Secure computation of surveys has been imple-
mented in (Feigenbaum et al., 2004) where differ-
ent statistics of the input can be calculated. Though
this solution can be adapted to scheduling, and its
design is similar to ours, the computing servers are
required to stay online on the Internet during voting
which yields a larger attack surface. In the next sec-
tion, we introduce our design for privacy-preserving
scheduling that uses public-key encryption and where
the computing servers only participate for computing
the final result of the scheduling.

3 PRELIMINARIES

We introduce the primitives used in this paper.

3.1 Oblivious Transfer

A 1-out-of-n oblivious transfer (OT) protocol al-
lows a sender to transfer one out of n messages
m1, . . . ,mn selected by the receiver using a selection
s ∈ {1, . . . ,n}, without the receiver learning any infor-
mation about the other messages besides ms and the
sender learning selection s. OT protocols rely on pub-
lic key cryptography, but can be sped up using OT ex-
tension (Ishai et al., 2003), (Asharov et al., 2013), i.e.,
by calculating a symmetric security parameter num-
ber of so-called base OTs and then computing a large
amount of OTs using faster symmetric key cryptogra-
phy. We utilize the OT protocol of (Naor and Pinkas,

Web Application for Privacy-preserving Scheduling using Secure Computation

457

Table 1: Comparison between the security and usability features of the different solutions for privacy-preserving scheduling.
The parenthesized checkmarks (X) indicate that a feature is not fully available, or introduces security or usability concerns.

Property
Doodle (Doodle,

2018)/ DFN (DFN,
2018)

Dudle (Dresden,
2018), (Kellermann
and Böhme, 2009)

Our Work

nondisclosure
in presence of

semi-honest participants × X X
malicious participants × X X
semi-honest server(s) × X X

correctness
in presence of

semi-honest participants X X X
malicious participants × X X
semi-honest server(s) X X X

visibility of participants’ identity public not disclosed frontend server
possible selection functions any only highest sum any
dynamically add participants X (X) X
dynamically remove participants X (X) X
multiple options (e.g., yes-no-maybe) X (X) X
change votes retrospectively X (X) X

2001) for base OTs and the semi-honest secure OT
extension of (Asharov et al., 2013).

3.2 Secure Two-party Computation

Secure two-party computation allows two parties to
jointly evaluate a function without revealing any in-
formation about their inputs except for the output of
the function. For secure computation, we consider the
semi-honest (passive) adversary model, where the ad-
versary is assumed to follow the protocol and cannot
learn any information about the secret inputs.

Yao’s Garbled Circuits Protocol. Yao’s garbled
circuits protocol (Yao, 1986) is a protocol that allows
two parties to jointly compute a function while none
of the inputs to the function is revealed to the other
party, where the function to be computed is described
as a Boolean circuit. There are several optimizations
to the original protocol such as free-XOR (Kolesnikov
and Schneider, 2008), fixed-key AES garbling (Bel-
lare et al., 2013), and half-gates (Zahur et al., 2015).

The GMW Protocol. The GMW protocol (Goldre-
ich et al., 1987) is a protocol for secure two-party
computation which also requires the function to be
represented as a Boolean circuit. In the GMW pro-
tocol every value v of each wire is shared among
the two parties using a secret sharing scheme such
that v = v1⊕ v2 for two random-looking shares v1,v2
where one party holds v1 and the other holds v2. XOR
gates can be evaluated locally, while AND-gates re-
quire using 1-out-of-4 OT or so-called multiplication
triples (Beaver, 1991).

4 WEB APPLICATION FOR
PRIVACY-PRESERVING
SCHEDULING

We present our privacy-preserving scheduling system
that is based on secure two-party computation and al-
lows for calculating any scheduling function without
compromising the privacy of the participants’ inputs.
Our aim is to reveal no additional information besides
the output of the poll, which can be specified: e.g., in
some cases, it might be enough to learn the winning
time slot, while organizing an event might require ad-
ditionally the number of expected participants (i.e.,
number of participants that voted for the time slot).
Moreover, we support yes-no-maybe votes and also
weighted sums, which enables the poll administrator
to weight certain participants over others. For exam-
ple, if a company wants to securely schedule a press
conference with different media representatives, one
could give higher weights to the representatives of
media companies with higher reach.

We discuss a too simple alternative in §4.1.
In §4.2, we present our privacy-preserving schedul-
ing system, while in §4.3 and §4.4, we describe its
security guarantees and functional extensions.

4.1 Too Simple Solutions

We note that in a straightforward solution, each par-
ticipant can additively secret share their vote and the
backend servers can add these shares together and
send the result to the frontend server, who learns the
number of votes for each option. Additively homo-
morphic encryption could also be used with a single

SECRYPT 2019 - 16th International Conference on Security and Cryptography

458

S1

S

S2

UiA

1. k1 1.
k 2

3. urli

3.
url

A2.
T , U

(a) Poll generation with public keys k1,k2 of S1 and S2, resp.

S

UiA

4. T , k1 ,k24.
T , k 1,

k 2

5. C
i5.

C i

(b) Voting with Ci = {c1,i,c2,i}, where c1,i = Enck1(
−→
φi ⊕−→ρi),

and c2,i = Enck2(
−→
ρi) with

−→
φi denoting the selections and −→ρi

the random vectors used for secret sharing.

S1

S

S2

UiA

7. STPC

8. r1 8.
r 26. c

1,i 6.
c 2,

i

9. r9.
r

(c) Evaluation with secure two-party computa-
tion (STPC) with resulting secret shares of the output,
i.e., r = r1⊕ r2.

Figure 1: Privacy-preserving scheduling with time slots T , participants Ui ∈U, i∈{1, . . . , |U|}, poll administrator A, frontend
server S, and computing backend servers S1 and S2.

computation server who sums up the votes under en-
cryption and sends this to the frontend server who
decrypts the result. Using these techniques does not
hide the sum of the votes for each time slot, i.e., this
protocol provides the same privacy guarantees as the
protocol of Kellermann and Böhme (Kellermann and
Böhme, 2009). Our aim is to design an application
that reveals only the final output of the computation.

4.2 Our System

In our system, we use secure two-party computation
(STPC) that allows two parties to jointly evaluate a
function on their private inputs without revealing any-
thing except for the (potentially secret shared) out-
put of the functionality. We use Yao’s garbled circuit
protocol (Yao, 1986) and the GMW protocol (Gol-
dreich et al., 1987) with security against semi-honest
adversaries and state-of-the-art optimizations as im-
plemented in the ABY framework (Demmler et al.,
2015). We make use of two non-colluding backend
servers S1 and S2, who perform the STPC and an ad-
ditional third frontend server S, who is responsible
for transferring messages between the clients and the
backend servers. We note that it is possible to mod-

ify our design to work with only two non-colluding
servers by letting either S = S1 or S = S2, since the in-
formation known by S and one of the backend servers
does not reveal anything about the inputs of the users
besides the output of the computation.

To prevent the frontend server S from gaining any
information about the selections made by the partici-
pants, S receives public keys k1 and k2 from backend
server S1 and S2, respectively, which S then forwards
to the participants of the poll. The keys k1 and k2 are
public keys of any semantically secure public-key en-
cryption scheme, e.g., based on RSA or ElGamal.

We present our protocol which consists, similarly
to the protocol of (Kellermann and Böhme, 2009), of
three phases poll generation, voting and evaluation as
depicted in Fig. 1, with the respective steps numbered
both in the figure and in the description below.

Poll Generation (Fig. 1a): The data needed for
the poll (i.e., identity of the participants, available
time slots) are initialized.

1. S receives public keys k1 and k2 from backend
servers S1 and S2, respectively.

2. The poll is initiated by the poll administrator A,
who defines the sets of time slots T and partici-

Web Application for Privacy-preserving Scheduling using Secure Computation

459

pants U and sends them to the frontend server S.

3. S generates and sends a unique URL to each par-
ticipant Ui ∈U.

Voting (Fig. 1b): The participants submit their
availability.

4. S sends the available time slots t1, . . . ,t|T | ∈ T and
the two public keys k1 and k2 to the participants,
who request the previously sent URL. The partic-
ipants Ui ∈ U, who followed the URL proceed
by selecting one of the options “yes”, “no” (or
“maybe”) for every time slot t j ∈ T , but instead of
sending their selections

−→
φi = (φ1,i, . . . ,φ|T |,i) di-

rectly back to the frontend server S, they generate
a vector of random numbers−→ρi = (ρ1,i, . . . ,ρ|T |,i).

5. The participants Ui ∈ U calculate
the share of their selection vector−→
di = (φ1,i⊕ρ1,i, . . . ,φ|T |,i⊕ρ|T |,i) and send

ciphertexts Enck1(
−→
di) and Enck2(

−→
ρi) to S, where

they are stored. Due to the semantic security of
the encryption scheme, S learns no information
about

−→
di or −→ρi .

Evaluation (Fig. 1c): A winning time slot is se-
curely calculated and revealed, without revealing the
selections of the participants to any party.

6. When every participant submitted its input or the
deadline the poll administrator set is reached, S
sends encryptions {Enck1(

−→
d)}u∈U to S1 and en-

cryptions {Enck2(
−→
ρ)}u∈U to S2.

7. S1 (resp. S2) possesses the private key correspond-
ing to the public key k1 (resp. k2), and decrypts
{Enck1(

−→
d)}u∈U (resp. {Enck2(

−→
ρ)}u∈U). S1 and

S2 then securely evaluate the previously defined
selection function f , using secure two-party com-
putation (STPC).

8. As result of the STPC, S1 and S2 obtain shares r1
and r2 of f (−→ρ), i.e., the winning time slot r,
which are sent to S.

9. S recombines and sends the result r = r1⊕ r2 to
each participant and the poll administrator A.

4.3 Security Guarantees

Our protocol provides security against malicious par-
ticipants and semi-honest servers with the assumption
that the backend servers do not collude. We describe
the security guarantees against each party below.

Frontend Server S. A semi-honest frontend
server S is not able to decrypt the encrypted vectors
obtained by the participants, due to the semantic secu-
rity of the public-key encryption scheme. Assuming a

semi-honest frontend server is realistic, since a mali-
cious frontend server S could always, instead of send-
ing Javascript code to encrypt the participant’s selec-
tions before submitting them, send malicious code
(e.g., to not encrypt the selections at all or exfiltrate
the votes to another machine).

Backend Servers S1 and S2. The non-colluding
backend servers can only decrypt the shares encrypted
using their public keys and therefore can only learn
their own shares in clear. Security follows from
the underlying secure two-party computation proto-
col (STPC), and therefore semi-honest servers learn
no information about the selections.

Participants Ui ∈U. Participants send only a sin-
gle message, which (given that it can be correctly de-
crypted) corresponds to a valid input: e.g., their input
is regarded as a single bit, even if they provide larger
numbers, and for polls with yes-no-maybe options a
simple circuit has to be added to check that the non-
allowed combination of the four possible 2-bit values
does not occur. Since a malicious participant can thus
only send valid inputs to the frontend server, our pro-
tocol is secure against malicious participants.

Theorem 1. The security of our outsourcing scheme
follows from the proof of (Kamara et al., 2011)
that turns an N-party secure multi-party computa-
tion (SMPC) scheme into an outsourcing scheme to
N non-colluding servers. We can thus turn the ABY
secure two-party computation framework into an out-
sourcing scheme with N = 2 non-colluding servers
and the security follows from that of the protocols im-
plemented in ABY (Demmler et al., 2015).

4.4 Functional Extensions

Our protocol maintains almost all the flexibility of in-
secure solutions such as Doodle or DFN, does not re-
veal the number of participants who voted for each
time slot, and allows any selection function that can
be represented by a Boolean circuit.

Dynamic insertion and removal of participants is
trivial, and requires no cryptographic operations. Al-
lowing the participants to change their votes retro-
spectively is also straightforward: the participant can
send a new encrypted selection vector and an en-
crypted random vector to S, who replaces the old vec-
tors with the new ones. However, as the former se-
lection is encrypted with the public keys of S1 and S2,
the participant cannot obtain it from S.

Another extension is to assign weights to the par-
ticipants, in order to make the votes of more important
participants count more. This extension is important
for scenarios where there is an obvious hierarchy be-
tween the participants: it can be an internal meeting

SECRYPT 2019 - 16th International Conference on Security and Cryptography

460

101 102 103 10410−1

100

101

102

103

104

105

Number of participants

C
om

m
un

ic
at

io
n

(K
B

yt
e) GMW-offline

GMW-online
Yao-offline
Yao-online

(a) 10 time slots

101 102 103 10410−1

100

101

102

103

104

105

Number of participants

C
om

m
un

ic
at

io
n

(K
B

yt
e) GMW-offline

GMW-online
Yao-offline
Yao-online

(b) 30 time slots

Figure 2: Backend communication in KBytes. Both axes are in logscale.

101 102 103 104102

103

104

105

Number of participants

R
un

tim
e

(m
s)

GMW-offline
GMW-online
Yao-offline
Yao-online

(a) 10 time slots

101 102 103 104102

103

104

105

Number of participants

R
un

tim
e

(m
s)

GMW-offline
GMW-online
Yao-offline
Yao-online

(b) 30 time slots

Figure 3: Backend runtime in milliseconds. Both axes are in logscale.

of a large company or a press conference with journal-
ists of newspapers with varying popularity. The ex-
tension is easy to include since it only requires some
more computation on the backend servers: the poll
administrator specifies the weights in the poll genera-
tion phase and sends them to S along with U. In the
beginning of the evaluation, S forwards these weights
to S1 and S2, who include these in the computation.

5 IMPLEMENTATION AND
EVALUATION

We implemented our event scheduling system
as a web application and use the ABY frame-
work for secure two-party computation. Our
open-source implementation can be found at
https://encrypto.de/code/scheduling. We present the
empirical evaluation of our system with yes-no-
maybe scheduling. All communication is secured by
Transport Layer Security (TLS) (Tim Dierks, 2008),

to ensure the integrity of the messages sent between
the entities.

5.1 Implementation Details

Frontend. When the poll administrator creates the
poll, the frontend server S generates and sends a ran-
dom and unique link for every participant. When a
participant follows the link, the server sends the two
different 2048-bit RSA public keys of S1 and S2, and
the participant can submit its secret shared and en-
crypted availability. With one RSA encryption we
can encrypt multiple messages, e.g., for 2-bit inputs
(i.e., yes-no-maybe options), 3 selections can be ex-
pressed by one base64 digit, enabling 1 byte to hold
3 selections, which means that the number of possi-
ble time slots we can encrypt using one RSA encryp-
tion with the padding described in PKCS #1 Version
1.5 (Kaliski, 1998), is 3 · (2048/8−11) = 735, which
is enough for (almost) all real-world applications. Our
implementation supports yes-no-maybe options (2-bit

Web Application for Privacy-preserving Scheduling using Secure Computation

461

inputs), but can also be used with only yes-no options
(1-bit inputs). When all participants made their se-
lections, the server sends the encrypted inputs of the
participants to the two backend servers.

Backend. In order to achieve the security guaran-
tees described in §4, the two backend servers are re-
quired to be executed on two different machines that
are connected via a WAN network. As soon as they
receive data from the frontend server, they decrypt the
encrypted data using their private keys and generate
and securely evaluate the Boolean circuit finding the
optimal time slot with the fewest unavailable partici-
pants using secure two-party computation.

We use the ABY (Demmler et al., 2015) frame-
work for secure two-party computation (STPC) that
allows to create and evaluate Boolean circuits se-
curely. The decrypted selections of the participants
are known as XOR shares by S1 and S2. We can di-
rectly use these as inputs to the STPC protocol using
a Boolean circuit that is minimized for the number of
AND gates in order to minimize the communication
and computation time. A summation is made for each
time slot t, yielding the number of unavailable partic-
ipants nt , of which the minimal value is selected and
the index of the column tr is returned as XOR shares
to the backend servers, who forward them to the fron-
tend server. The frontend server recombines the result
and publishes tr or sends it to the poll administrator.

We support weighted sum as a selection function,
i.e., the poll administrator is able to assign pre-defined
weights (1 ≤ w ≤ 28−1) to all participants such that
the vote of more important participants count more.

5.2 Experimental Evaluation

We show that our implementation is efficient, even
when scheduling meetings between thousands of par-
ticipants. The only cryptographic operation besides
the backend servers’ computation step (and efficient
RSA decryptions) is the client’s RSA encryption in
Javascript. As mentioned before, encrypting all the
shares costs one RSA encryption in realistic scenar-
ios (with up to 735 available time slots). However, the
time taken for the encryption depends on the browser
and operating system. For instance, it takes around
450 ms to perform an RSA encryption in Google
Chrome 62.0.3202 in Windows 10 on a standard PC.

Backend Communication. Secure two-party com-
putation requires communication between the com-
puting parties. In Figs. 2a and 2b, we depict the com-
munication required by the protocols in the setup and
online phases for 10 and 30 time slots, respectively.

101 102 103 104100

101

102

Number of participants

O
nl

in
e

ro
un

ds

GMW-30-slots
GMW-10-slots

Yao

Figure 4: Backend online rounds. Both axes are in logscale.

In the setup phase, any computation independent of
the private inputs (i.e., the two shares possessed by
the backend servers) is performed. We observe that
the GMW protocol requires less online communica-
tion, while Yao’s protocol requires an oblivious trans-
fer per input wire of the underlying Boolean circuit.

Backend Runtime (WAN). For our runtime mea-
surements we use two machines with an Intel Core
i7-4790 CPU at 3.6 GHz and 32 GB of RAM that
support Intel’s AES-NI for fast AES encryption and
decryption. Our benchmarks are run in a simulated
WAN setting with 100 Mbit/s throughput and 100 ms
latency. Reported runtimes are averages of 10 execu-
tions. In Figs. 3a and 3b, we depict the performance
of our protocols for 10 and 30 time slots, respec-
tively. Yao’s protocol is more efficient than the GMW
protocol due to the lower number of communication
rounds, though its offline phase becomes less efficient
with increasing circuit sizes due to the large amount
of communication. The total runtime of our privacy-
preserving scheduling system with realistic parame-
ters is at most 10 seconds. We note that the partic-
ipants do not expect immediate response – everyone
has to participate before the result is computed.

Backend Online Rounds. As opposed to Yao’s
protocol, which has a constant number of communi-
cation rounds, the GMW protocol requires d rounds
of communication, where d denotes the depth of the
underlying Boolean circuit. We depict the online
round complexities of the yes-no-maybe protocol in
Figs 4.

6 CONCLUSION

In this paper, we presented a privacy-preserving, web-
based scheduling application based on secure two-
party computation that provides the same flexibility

SECRYPT 2019 - 16th International Conference on Security and Cryptography

462

as existing web-based scheduling applications such
as Doodle or DFN and additionally preserves privacy.
Our system guarantees security against malicious par-
ticipants and semi-honest non-colluding servers, and
we have shown that it is truly practical even for a large
number of participants and time slots.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Min-
istry of Education and Research (BMBF) and the Hes-
sen State Ministry for Higher Education, Research
and the Arts (HMWK) within the National Research
Center for Applied Cybersecurity CRISP, and by the
DFG as part of project E4 within the CRC 1119
CROSSING and project A.1 within the RTG 2050
“Privacy and Trust for Mobile Users”.

REFERENCES

Asharov, G., Lindell, Y., Schneider, T., and Zohner, M.
(2013). More efficient oblivious transfer and exten-
sions for faster secure computation. In ACM SIGSAC
Conference on Computer and Communications Secu-
rity (CCS’13), pages 535–548. ACM.

Beaver, D. (1991). Efficient multiparty protocols using
circuit randomization. In Advances in Cryptology –
CRYPTO’91, volume 576 of LNCS, pages 420–432.
Springer.

Bellare, M., Hoang, V. T., Keelveedhi, S., and Rogaway,
P. (2013). Efficient garbling from a fixed-key block-
cipher. In IEEE Symposium on Security and Privacy
(S&P’13), pages 478–492. IEEE Computer Society.

Bilogrevic, I., Jadliwala, M., Kumar, P., Walia, S. S.,
Hubaux, J.-P., Aad, I., and Niemi, V. (2011). Meet-
ings through the cloud: Privacy-preserving scheduling
on mobile devices. Journal of Systems and Software,
84(11):1910–1927.

Demmler, D., Schneider, T., and Zohner, M. (2014). Ad-
hoc secure two-party computation on mobile devices
using hardware tokens. In USENIX Security Sympo-
sium, pages 893–908. USENIX Association.

Demmler, D., Schneider, T., and Zohner, M. (2015). ABY -
a framework for efficient mixed-protocol secure two-
party computation. In Network and Distributed Sys-
tem Security Symposium (NDSS’15). The Internet So-
ciety.

DFN (2018). Scheduler. https://terminplaner.dfn.de/.
Doodle (2018). Get together with doodle. https://www.

doodle.com.
Dresden, T. U. (2018). Dudle. https://dudle.inf.tu-

dresden.de/.
Feigenbaum, J., Pinkas, B., Ryger, R., and Saint-Jean, F.

(2004). Secure computation of surveys. In EU Work-
shop on Secure Multiparty Protocols.

Goldreich, O., Micali, S., and Wigderson, A. (1987). How
to play any mental game or A completeness theorem
for protocols with honest majority. In ACM Sympo-
sium on Theory of Computing (STOC’87), pages 218–
229. ACM.

Huang, Y., Chapman, P., and Evans, D. (2011). Privacy-
preserving applications on smartphones. In USENIX
Workshop on Hot Topics in Security (HotSec’11).
USENIX Association.

Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. (2003).
Extending oblivious transfers efficiently. In Advances
in Cryptology - CRYPTO’03, volume 2729 of LNCS,
pages 145–161. Springer.

Kaliski, B. (1998). RFC 2313: PKCS #1: RSA encryption
version 1.5. https://tools.ietf.org/html/rfc2313.

Kamara, S., Mohassel, P., and Raykova, M. (2011). Out-
sourcing multi-party computation. IACR Cryptology
ePrint Archive, 2011:272. https://ia.cr/2011/272.

Kellermann, B. (2010). Open research questions of privacy-
enhanced event scheduling. In Open Research Prob-
lems in Network Security (iNetSec’10), LNCS, pages
9–19. Springer.

Kellermann, B. (2011). Privacy-enhanced web-based event
scheduling with majority agreement. In Information
Security Conference (SEC’11), volume 354 of IFIP
Advances in Information and Communication Tech-
nology, pages 235–246. Springer.

Kellermann, B. and Böhme, R. (2009). Privacy-enhanced
event scheduling. In Conference on Computational
Science and Engineering (CSE’09), pages 52–59.
IEEE Computer Society.

Kolesnikov, V. and Schneider, T. (2008). Improved garbled
circuit: Free XOR gates and applications. In Interna-
tional Colloquium on Automata, Languages and Pro-
gramming (ICALP’08), volume 5126 of LNCS, pages
486–498. Springer.

Naor, M. and Pinkas, B. (2001). Efficient oblivious trans-
fer protocols. In Symposium on Discrete Algorithms
(SODA’01), pages 448–457. ACM/SIAM.

Tim Dierks, E. R. (2008). RFC 5246: The trans-
port layer security (TLS) protocol version 1.2.
https://tools.ietf.org/html/rfc5246.

Yao, A. C.-C. (1986). How to generate and exchange
secrets. In Annual Symposium on Foundations of
Computer Science (FOCS’86), pages 162–167. IEEE
Computer Society.

Zahur, S., Rosulek, M., and Evans, D. (2015). Two halves
make a whole - reducing data transfer in garbled cir-
cuits using half gates. In Advances in Cryptology –
EUROCRYPT’15, volume 9057 of LNCS, pages 220–
250. Springer.

Web Application for Privacy-preserving Scheduling using Secure Computation

463

