
A Study on the Activation of Femoral Prostheses: 
Focused on the Development of a Decision Tree based Gait Phase 

Identification Algorithm 

Sun-Jong Na a, Jin-Woo Shin, Su-Hong Eom b and Eung-Hyuk Lee 
Department of Electronic Engineering, Korea Polytechnic University, Siheung, Gyeonggi-do, Korea 

Keywords: Prothesis, Knee Angle, Decision Tree, Random Forest. 

Abstract: This paper aims to classify the phase of gait for passive transfemoral prostheses as a preliminary study for the 
development of a knee flexion angle control device in prosthetics by attaching it to the knee joint in order to 
produce a walk trajectory like a normal person, while walking on a flat. However, it is not possible to 
determine a gait stage according to the inflection point of a knee, since there are few angular changes in the 
knee joint in the form of a seat that will support the body. Thus, in previous studies, algorithms were developed 
to distinguish between three stages of the stance in the swing phase using a decision tree learning method. 
However, the decision-making tree is prone to overfitting. This can be a high level of accuracy for training 
data, but it is difficult to generalize when verification data or new data are entered. Therefore, in this paper, 
we want to develop an algorithm for preventing the overfitting step-by-step using two different methods. 

1 INTRODUCTION 

Based on the 2017 report of the WHO (World Health 
Organization), an estimated 30 million people with 
lower limb amputees are expected to double by 2050 
(Ziegler-Graham, 2008). Based on this basis, the 
research on prostheses that help to compensate lower 
limb amputees is being studied in a variety of ways 
for the convenience of the disabled.  

The prostheses are divided into passive and active 
types according to the way they operate. Passive type 
prostheses are able to walk on a level surface through 
storing and using the force of the wearer without 
power, but it is difficult to implement power for 
activities such as stair climbing and running (Yoshida 
et al., 2015);(Inoue et al., 2016). However, active type 
prostheses are able to make their own strength by 
using actuators such as cylinders or motors, so they 
can perform various motions. However, they are 
expensive (Andrés et al., 2016; Keles et al., 2017). 

The active type prostheses can create gait 
trajectories similar to normal people through actuator 
control even on level walking. However, the passive 
type prostheses work only as a supporting stand of the 
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body for the next step because they do not have the 
power to create gait trajectories like normal people.  

Thus, the objective of this study is to classify gait 
phases in passive type prostheses as a pilot study for 
the development of devices that adjust the flexion 
angle of knee joints according to the gait phase by 
attaching them to the knee joint of the passive type 
prostheses.   

Studies to distinguish gait phases have now been 
conducted in two different ways. The first method is 
to use ground reaction force to separate the point at 
which the feet do not touch the ground (Shaikh et al., 
2015). The second method is to distinguish gait 
phases according to changes in the knee angle 
(Karasawa et al., 2013). Estimates of the gait phase 
according to changes in the knee angle are divided by 
using the maximum flexion of the knee angle and the 
inflection point in the extension trajectory (Lim et al., 
2016).  

The passive prostheses, however, have little 
changes in the knee angle of the knee joint, and the 
gait trajectory varies depending on the length of the 
affected area. Also, it is not easy to apply the 
inflection point based estimation method of gait 
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phases as a result of the change in the knee angle of 
these passive prosthesis users because the new 
practice of gait habits after amputation varies from 
person to person. 

Therefore, in the previous study, an algorithm was 
developed to classify the swing phase through 
dividing the stance phase into three stages and 
separate the gait phase by using the decision tree 
learning method in the form of 'IF ~ THEN' to 
distinguish the gait phase of the passive type 
prosthesis users (Na et al., 2019).  

However, the decision tree learning method 
becomes more complex as models become more 
complex and may represent overfitting. Although this 
may be a high accuracy for training data, it is a 
disadvantage that it is difficult to generalize as 
verification data or new data are entered.  

There are two ways to prevent this overfitting. 
The first method is to simplify the decision tree and 
control the depth of the tree. The second method is to 
use a random forest model which is one of the 
machine learning ensemble techniques that results in 
more predictive ability and less overfitting in training 
data than a single decision tree by categorizing it 
through means of multiple independent decision 
trees(Rezaei et al., 2018).  

In this study, two methods are used to prevent the 
overfitting. The first method is to simplify decision 
trees, and the second method is the application of a 
random forest model. Then, this study compares the 
differences between decision trees based on previous 
studies. 

2 METHOD 

In this study, changes in the knee angle are measured 
during walking of passive type prosthesis wearers and 
identify the limit of the classification of the gait phase 
in the stance phase. To solve this issue, the changes 
in the hip angles obtained using the acceleration of an 
inertia sensor attached to the surface of the prosthetic 
adapter and a three-axis gyro are divided into three 
stages based on the ground reaction force in order to 
produce training data entered as labels. The training 
data develop a convergence algorithm by adding both 
the decision tree that divides the stance phase into 
three stages using the decision tree learning method 
and an algorithm that identifies the swing phase using 
the inflection point of the knee joint. Also, this study 
applies algorithms using the random forest technique 
to compensate for the shortcomings of the decision 
tree method and compare them with previous research 
methods. 

2.1 Characteristics of Knee Angle 
Changes in Passive Type Prosthesis 
Wearers 

 
Figure 1: Gait phases according to changes in the knee 
angles, separated by a pressure sensor, of a passive type 
prosthesis wearer. 

As shown in Figure 1, the knee joint a typical passive 
type prosthesis wearer will fold the knee from the 
point (④) at which one steps off the ground. Then, 
the knee, which had been folded from the point where 
it passed through the intermediate swing phase (⑤), 
will be stretched out again for the next step. 
Therefore, the swing phase (④~⑤) can be identified 
by the change of the knee angles. 

In the stance phase, however, it is difficult to 
distinguish between the initial landing on the ground 
(①), the intermediate stance phase (②), and the final 
stance phase (③) as there is little change in the knee 
angle because the prosthesis acts as a stand to support 
the wearer.  

In order for the wearers to avoid feeling awkward 
in their gaits, it is necessary to create a gait trajectory 
of about 18 degrees like the gait by a normal person 
at the intermediate stance phase (②). Thus, it was 
possible to identify the stance phase as three different 
stages using the measured values at each FSR section 
through the FSR attached to the toe end and heel and 
the ground reaction force. It allows for the creation of 
gait trajectories through the device at the point of the 
intermediate stance phase (②). 
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2.2 Random Forest Method 

The random forest technique is one of the ensemble 
techniques among the various machine learning 
techniques that increases the accuracy of 
classification by aggregating the results from several 
classification models. It is possible to maintain biased 
data and to reduce overfitting by decreasing variance 
because the ensemble techniques apply the average 
value of the results of multiple classification models. 

 

Figure 2: Structure of the random forest algorithm. 

A bootstrap sample must be created to use the 
random forest technique. The bootstrap sample can be 
created by dividing the original dataset by attributes 
and then randomly selecting the attributes for the 
original dataset size. As the attributes are extracted 
using an iterative extraction method, they can overlap 
within a bootstrap and cause missing attributes. Thus, 
it can reliably output classification values even when 
new data is entered for classification because the 
decision tree generated by each bootstrap is 
independent of each other. 

The equation for determining the probability that 
one attribute will be excluded from the sample due to 
iterative extraction from one bootstrap sample is as 
shown in (1). lim୬→ஶ൬1 − 1n൰୬ = ݁ିଵ = 0.3678 (1)

The random forest method evaluates the accuracy 
of the model using an OOB (Out-Of-Bag) error, 
which collects 36.78% of excluded samples and 
evaluates performance with verification data 
(Breiman, 2001). 

3 EXPERIMENT AND RESULTS 

3.1 Experimental Procedures 

In this study, we intend to simplify decision trees as 
the first way of reducing overfitting. The previous 

research method was a decision tree that classifies the 
total of four categories, three stages in the stance 
phase and one swing phase. In this study, however, 
we intend to develop a convergence algorithm that 
divides only the three stages in the stance phase by 
using the decision tree learning method for 
simplifying the model, and using the inflection point 
of the knee joint in order to identify the swing phase. 
In the second option, we intend to verify that this 
method reduces overfitting but increases accuracy 
over the previous research method by using a random 
forest technique, a set of independent trees 

 

Figure 3: Passive type prosthesis adaptor and sensor 
attachment locations, experimental setting image and 
coordinate system used in this experiment. 

In this study, an inertial sensor is described in 
relation to the coordinate system shown in Figure 3 
by rotating it 90° clockwise by x-axis. A total of five 
men in their 20s, two 70kg and three 80kg, walked by 
wearing a mechanical prosthesis adapter with a 5 
steps at 30cm intervals, and a total 500 steps  from 20 
times on the ground. The characteristics of the dataset 
for training consisted of knee angles, three axis of 
acceleration generated during walking, three axis of 
gyro, and three axis angles of the hip joint. The gait 
phases for each gait were labelled according to the 
gait phases using the ground reaction force and FSR. 
In the sampling of the obtained dataset, 80% of the 
total data was used as training data and 20% of the 
data was used as verification data. The inertial sensor 
was attached to the point Ⓐ  for measuring 
acceleration, angular velocity, and angle data in the 
hip joint while walking on the surface of the adapter. 
The sensor Ⓑ was a variable resistance for measuring 
knee angles by converting variations in the resistance 
value of walking into angles. The pressure sensors,  
Ⓒ, were used to separate the stance phase into three 
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stages. The specifications for each sensor are shown 
in Table 1. 

Table 1: Specifications for Each Sensor. 

Name Spesification 

Inertial Sensor 
NGIMU (x-io) 
Communication speed: 50 Hz 
Communication method: Wifi 

Variable Resistance Max. 10 kΩ 

Pressure Sensor FSR402 (10N Sensitivity) 

3.2 Results 

As the depth of the decision tree was adjusted with 
the pre-pruning of the decision tree generated by the 
previous research method and the convergence 
algorithm developed in this study, the results were 
obtained as follows. 

Table 2: Difference in Accuracy according to the Depth of 
Each Algorithm. 

    Model 

 

Depth_   

STANCE 3 STANCE 3 + SWING 

Training Test Training Test 

0 99.8% 98.4% 100% 99.2% 

1 67.9% 69.8% 61.9% 62.5% 

2 92.5% 93.5% 79.3 79.3 

3 94% 94.4% 92.8 92.9 

4 94.3% 95% 94.1 94 

5 95.2% 95.4% 95.1 94.4 

As the pre-pruning was not applied, the previous 
research models represented overfitting. It was 
possible to verify that the accuracy of the tree 
increased as it became more complex. Both the 
developed convergence algorithm and the decision 
tree generated by the previous research method with 
the same 94% verification data accuracy are as 
follows. 

 

 

Figure 4: Developed convergence algorithm (A) and the 
decision tree (B) with the same 94% verification data 
accuracy. 

In the equation for identifying the swing phase 
presented in Figure 4 (A), CKneeAngle is the knee 
angle currently being measured, and KneeAnglediff 
represents increases or decreases in the knee angle. 
SWThreshold is the boundary value for identifying 
the swing phase, in this study, the accuracy of 96.87% 
was set at about 0.4° considering the amount of 
variation in the knee angle generated by the swing 
phase. The depths of the decision tree of (A) and (B) 
represent 3 and 4 respectively with the same 
accuracy, but the decision tree in converged (A) was 
found to be simpler than (B). 

 

Figure 5: Changes in OOB error values according to the 
number of bootstrap samples. 

As shown in Figure 5, 50 bootstrap samples were 
98.6% and 50 or more were 98.7%, and the accuracy 
of the bootstrap was not significantly different even if 
the number of bootstrap increases. 
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Figure 6: Feature importance of the single decision tree (A) 
and random forest (B). 

The feature importance is an indicator of which 
properties are used most importantly as a decision 
tree is generated. It is determined as a value between 
0 and 1, which means that 0 is not used at all, and 1 
has all the information for classification. Figure 6 (A) 
represents the feature importance of the decision tree 
shown in Figure 4 (A) and uses only three features: 
Pitch, Roll, and Gyro Z. Figure 6 (B), however, (B) is 
the feature importance graph of the random forest that 
uses all the attributes in training data. Thus, it reduces 
the overfitting and shows easy generalization 
compared to (A). 

4 CONCLUSIONS 

In this study, as the first step in developing a device 
for the activation of passive prostheses, the objective 
was to identify the gait phase in the walking of 
passive prosthesis wearers. Two methods were used 
to reduce overfitting. First, a decision tree that 
identifies the three stages of the stance phase and a 
convergence algorithm that calculates threshold 
values for determining the swing phase from the 
changes in knee angles were developed. It showed 
that it becomes a simple model even though it has the 
same accuracy as the previous research method. 

Second, it was verified that the accuracy was 
improved to 98.6% while reducing the risk of 
overfitting in the decision tree through applying the 
random forest method. 

Future plans will be to develop a machine running 
algorithm to identify the gait environment on a level, 
slope, and stairs and to automatically change the gait 
mode for each environment. 
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