
AES: Automated Evaluation Systems for Computer Programing Course

Shivam1, Nilanjana Goswami2, Veeky Baths1 and Soumyadip Bandyopadhyay1,3

1BITS Pilani K K Birla Goa Campus, India
2University of Heidelberg, Germany
3Hasso Plattner Institute, Germany

Keywords: CPN Model, Program Equivalence, Automatic Evaluation Systems, Program Analysis.

Abstract: Evaluation of descriptive type questions automatically is an important problem. In this paper, we have con-
centrated on programing language course which is a core subject in CS discipline. In this paper, we have given
a tool prototype which evaluates the descriptive type of questions in computer programing course using the
notion of program equivalence.

1 INTRODUCTION

Due to a significant increase in the number of stu-
dents in academics, automated checking has become
very essential for many types of examination evalu-
ation system. In largely populated countries such as
India, where competitive examinations like IITJEE,
BITSAT, GATE, etc., are held, the automated evalua-
tion system is used for evaluating the results. Also for
international examination like GRE and TOEFL auto-
matic evaluation systems are used. In present day, the
Moodle and Mooc type of systems can be used for au-
tomated evaluation. However, the systems only deal
with objective type answers. In such cases, classical
OMR based technology has been widely accepted. In
recent times, the system like HackerRank 1 are being
used for the evaluation of program using test cases.
However, the generation of test cases is neither sound
nor complete, i.e., it may gives both false negative as
well as false positive result which is very dangerous
for any automated marking system. The tool called
Automata tutor 2(D’Antoni et al., 2015) can also eval-
uate descriptive type question answer symbolically. It
is worthwhile to apply symbolic analysis technique in
PL domain.

Symbolic program equivalence (Bandyopadhyay
et al., 2018; Kundu et al., 2008; Necula, 2000) is a
very useful underlying technique for building auto-
mated tool. However, the program equivalence is an
undecidable problem.

Here we would like to propose an automated eval-

1https://www.hackerrank.com/
2http://automatatutor.com/

uation systems for checking of computer programs
using symbolic equivalence checking method such
that the checking method will always be able to give
at least a sound answer, i.e., if the checker says that
the two programs are equivalent then they are indeed
equivalent. For the “No” answer, the checker will call
partial marking module.

The proposed algorithm can be applied on any in-
dustry specific training and product development pro-
gram. Furthermore, the system proposed to be devel-
oped will have impact on educational institutions (in
terms of automating examination/ evaluation systems
related to coding).

The main objective of this paper is to develop a
well proven and sound automated program evaluation
tool using program equivalence. Previously we have
developed several equivalence checking methods for
validating several human guided transformations that
have been reported in (Bandyopadhyay et al., 2018;
Bandyopadhyay et al., 2015); however, these methods
can not handle loop shifting (Kundu et al., 2008), loop
reversal, loop swapping etc. Therefore, we need to
enhance the path based equivalence checker to over-
come the limitations of the above referred works. The
objective our research problem is as follows:
• Building an efficient path based equivalence

checking algorithm for program equivalence.
Organization: Rest of the paper is organized as

follows. Section 2 states the related works on trans-
lation validation. Methodology of the overall method
is introduced in section 3. The section 4 describes a
case study of the method. The paper is concluded in
section 5.

508
Shivam, ., Goswami, N., Baths, V. and Bandyopadhyay, S.
AES: Automated Evaluation Systems for Computer Programing Course.
DOI: 10.5220/0007951205080513
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 508-513
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 STATE OF THE ART

There is no automated evaluation tools for descriptive
type question in computer science course. However,
using program verification as well as checking equiv-
alence between two programs, the automated evalu-
ation for descriptive type questions in computer pro-
gramming course is possible. To achieve this, exten-
sion of program verifier as well as program equiva-
lence checker is needed. To the best of our knowl-
edge, program verifier and the equivalence between
two programs can be established only for seman-
tic preserving transformations, for example code op-
timizing transformation, loop transformations etc.,
where there is an input program and after some hu-
man guided and (or) compiler invoked transforma-
tions transformed version can be generated. Then the
verifier checks the equivalence between two programs
either behaviourally or functionally. Behavioural ver-
ification is also called as translation validation.

Translation validation for an optimizing compiler
by obtaining simulation relations between programs
and their translated versions was first proposed in
(Pnueli et al., 1998); such a method is demonstrated
by Necula et. al. (Necula, 2000) and Rinder et. al.
(Rinard and Diniz, 1999). The procedure mainly con-
sists of two algorithms – an inference algorithm and a
checking algorithm. The inference algorithm collects
a set of constraints (representing the simulation re-
lation) using a forward scanning of the two programs
and then the checking algorithm checks the validity of
these constraints. Depending on this procedure, vali-
dation of high-level synthesis procedures are reported
in (Kundu et al., 2008). Unlike the method of (Nec-
ula, 2000), their procedure considers statement-level
parallelism since hardware can capture natural con-
currency and high-level synthesis tools exploit the
parallelization of independent operations. Further-
more, the method of (Kundu et al., 2008) uses a gen-
eral theorem prover, rather than the specific solvers
(as used by (Necula, 2000)). On a comparative ba-
sis, a path based method always terminates; however,
some sophisticated transformations, like loop shift-
ing, remains beyond the scope of the state of the art
path-based methods. The loop shifting can be veri-
fied by the method reported in (Kundu et al., 2008).
A major limitation the reported bisimulation based
method is that the termination is not guaranteed (Nec-
ula, 2000; Kundu et al., 2008). Also, it cannot han-
dle non-structure preserving transformations by path
based schedulers (Camposano, 1991; Rahmouni and
Jerraya, 1995); in other words, the control structures
of the source and the target programs must be identi-
cal. The authors of (Camposano, 1991) have studied

and identified what kind of modifications the control
structures undergo on application of some path based
schedulers; based on this knowledge, they try to es-
tablish which control points in the source and the tar-
get programs are to be correlated prior to generating
the simulation relations. The ability to handle control
structure modifications which are applied by (Rah-
mouni and Jerraya, 1995), however, still remain be-
yond the scope of the currently known bisimulation
based techniques.

A Petri net based verification strategy is described
in (Bandyopadhyay et al., 2012) for sequential high-
level synthesis benchmarks for several code motions.
In this method, the Petri net representations of an
original behaviour and its transformed version are
translated into equivalent FSMD models and fed as
inputs to the FSMD equivalence checkers of (Karfa
et al., 2012; Banerjee et al., 2014); no correctness
proof, however, is given for this method; moreover,
in the presence of more than one parallel thread, the
method fails to construct the equivalent FSMD mod-
els.

None of the above mentioned techniques has been
demonstrated to handle efficiently combination of
several smart human guided code transformations as
well as marking scheme for partially equivalent por-
tion of program which is the key important part for
automated program evaluation systems. Hence, it
would be desirable to have an equivalence checking
method that encompasses to verify efficiently sev-
eral human guided code transformations as well as
assign the marking scheme for equivalent code por-
tion. Since automated evaluation system for descrip-
tive type questions has not used till date, so the social
analysis of the output derive from the descriptive type
questions has not yet been studied.

3 METHODOLOGY

Through the following example, we would like to
demonstrate the overall mechanism.

3.1 Methodology for Program
Equivalence

Teacher asks to write a program which computes
d 100

i e+ b
100

j c. Teacher also provides a solution of
the program. Students write the solution in a different
way where the two loops are interchanged. This type
of transformation has been referred to as loop swap-
ping. The control data flow graph (CDFG) model
is well known paradigm for scalar programs. How-
ever, the CDFG based equivalence checking methods

AES: Automated Evaluation Systems for Computer Programing Course

509

int i = 1, j = 1;
int k;
while (i*7 <=100){

i++ ;
}
while ((j+1)*11 <=100){

j++;
}

k = i+j;

(a)

int i = 1, j = 1;
int k;
while ((j+1)*11 <=100){

j++;
}

while (i*7 <=100){
i++ ;

}

k = i+j;

Figure 1: (a)–Solution Key (b) — Student’s solution.

Figure 2: An Illustrative Example for Equivalence Checking.

(Banerjee et al., 2014; Kundu et al., 2008; Necula,
2000) fails to establish the equivalence between two
programs because CDFGs are sequential MoCs. To
establish the equivalence for loop swapping, we need
parallel MoC’s like Petri net. Figure 2(a) corresponds
Figure 1(a) and Figure 2(b) corresponds Figure 1(b).
Note that the semantics preserving model construc-
tion from programs to CPN models has been reported
in (Bandyopadhyay, 2018).

Example 1. Figure 1(a) represents a simple scalar C
program given by teacher. Figure 1(b) represents one
version of students program. The PRES+ model gen-
erator generates Figure 2(a) (N0) from the source code
depicted in Figure 1(a). Similarly, from the source
code Figure 1(b), the generator module generates the
CPN model as shown in Figure 2(b) (N1). Then the
analyzer module has been triggered. The equiva-
lence checking algorithm is the main functional part
for the analyzer module. Each CPN model has been
broken in to paths. In Figure 2 (a) the set of paths
are α1 = 〈{t1}〉,α2 = 〈{t2}〉,α3 = 〈{t3}〉,α4 = 〈{t6}〉
and α5 = 〈{t4, t5},{t7}〉. Similarly in Figure 2 the
set of paths are β1 = 〈{t1}〉,β2 = 〈{t2}〉,β3 = 〈{t3}〉,
β4 = 〈{t6}〉 and β5 = 〈{t4, t5},{t7}}〉. Then equiva-
lence checking method gives α1 ' β1,α2 ' β2,α3 '
β3,α4 ' β4 and α5 ' β5. It is to be noted that equiva-
lence between two expressions will be checked using

SMT solver(z3,).
Report Generation. This phase declares that the
two models N0 and N1 in path level. Therefore stu-
dent gets full marks. For several semantics preserving
transformations like loop shifting, code motion across
loop etc., the method fails to detect the equivalence.
The current version of the tool is available in (Bandy-
opadhyay, 2018).

4 CASE STUDY

Example 2. In this example, we have taken one ex-
ample Suppose the test input of the program is n =
7,a = 5,b = 6, then the outputs of both the programs
are 2. Figure 3 (a) correspondences to the teachers’
solution and Figure 3 (b) corresponds to a sample of
students’ solution. The CPN models constructed au-
tomatically for these two programs (Bandyopadhyay
et al., 2017). The models are then validated using
CPN simulator for the same data set. Then we have
fed these two examples one by one as inputs to our
equivalence checker module. Figure 4 depicts the out-
put of the equivalence checking module. The output
of the equivalence checking module depicts the condi-
tion of execution and the data transformation for each
path in normalized form. Although in this method has

ICSOFT 2019 - 14th International Conference on Software Technologies

510

main() {
int s, i, n, a, b, sout;
s = 0;
for (i = 0; i <= 15; i++) {

if (b % 2 == 1)
s = s + a;

if (s >= n)
s = s - n;

a = a * 2;
b = b / 2;
if (a >= n)

a = a - n;
}
sout = s;

}
(a)

main() {
int s, i, n = 6, b = 6, sout,

a = 120,k, l, t;
s = 0;
i = 0;
do {

if (i <= 15) {
i = (i + 1);
k = (b % 2);
l = (a * 2);
b = (b / 2);
if (k == 1) {

s = (s + a);
t = (l - n);
a = l;

} else {
t = (l - n);
a = l;

}
if (s >= n) {

s = (s - n);
}
if (l >= n) {

a = t;
}

}
else

break;
} while (1);
sout = s;

}
(b)

Figure 3: (a) Solution Key – (b) Students’ solution.

no scope for path extension (as cut-points are present
only at loop entry points apart from the in-ports and
the out-ports) and paths cannot extend beyond the
loop entry points, In Figure 4, it may be noted that
the path extension is indeed not needed for this exam-
ple.

5 CONCLUSION

In this paper we have given a program equivalence
checking technique for validating several code op-
timizing transformations like uniform, non-uniform
code optimization, variable renaming, code motion
across loop and several loop transformations like dy-
namic loop scheduling and loop swapping. Some of
the limitations of the present work are its inability
to handle loop-shifting and software pipelining based
transformations(Kundu et al., 2008). To solve this we
have planned to extend this equivalence checker using
the following technique. we reuse the front-end Petri
net compiler part of the approach in (Bandyopadhyay
et al., 2018) to construct a parallel model for the se-

quential programs. However, we use a different ap-
proach for equivalence checking. We use Static Sin-
gle Assignment (SSA) logical formalism to model
Petri net models and a bi-simulation-based equiva-
lence between them. SSA formalism has been widely
and effectively used in several state-of-art symbolic
model checkers for C-programs, such as CBMC 3

and 2LS. This allows us to seamlessly integrate our
tool to state-of-art symbolic model checker and also
leverage several advanced proof techniques, such as
K-induction (Brain et al., 2015) and invariant gener-
ation to scale our verification method. Our research
will include the following main tasks.

1. Develop a method to model behaviour of Petri
nets using SSA formalism

2. Develop a symbolic method to prove bi-
simulation based equivalence of two Petri net
models represented SSA and apply this method
to verify a catalogue of parallel compiler transfor-
mations targeted for parallel reactive SW.

• Explore how K-induction and invariant gen-

3www.cprover-org

AES: Automated Evaluation Systems for Computer Programing Course

511

##################### PATH EQUIVALENCE #######################
FOR PATH 1 ...
THE CONDITION IS -- THE TRANSFORMATION IS s := 0 + 1 * s
PATH 1 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2
FOR PATH 2 ...
THE CONDITION IS -- THE TRANSFORMATION IS i := 0
PATH 2 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2
FOR PATH 3 ...
THE CONDITION IS -- THE TRANSFORMATION IS a := 0 + 1 * a
PATH 3 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2
FOR PATH 4 ...
THE CONDITION IS -- THE TRANSFORMATION IS b := 0 + 1 * b
PATH 4 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2
FOR PATH 5 ...
THE CONDITION IS -- THE TRANSFORMATION IS n := 0 + 1 * n
PATH 5 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2
FOR PATH 6 ...
THE CONDITION IS (-15 + 1 * i > 0) THE TRANSFORMATION IS s := 0 + 1 * s
PATH 6 OF MODEL 1 IS MATCHED WITH PATH 6 OF MODEL 2
. . . .
. . . .
FOR PATH 10 ...
PATH 10 OF MODEL 1 IS MATCHED WITH PATH 9 OF MODEL 2
THE CONDITION IS
(-15 + 1 * i <= 0)AND(0 - 1 * n + 1 * s >= 0)AND(0 + 1 * a - 1 * n >= 0)
THE TRANSFORMATION IS
K := 0 + 1 * a + 0 + 1 * n + 0 + 1 * n + 0 + 1 * b + 0 + 1 * s
. . . .
<<<<<<<<<<<<<<<<< THE TWO MODEL ARE EQUIVALENT >>>>>>>>>>>>>>>>>
###################### Verification Report ##############################
Exec time is 0 sec and 16324 microsecs
##

Figure 4: Output of AES.

Prog Trans

Prog

CPN 1 CPN 2

SSA1 SSA2

PN2SSA

EqChek

with VC

Back end

Model

Const Front end

Figure 5: Future Tool Overview and Verification Process for loop shifting.

eration techniques can be used to automati-
cally generate inductive invariants needed in
our equivalence checking.

• We also plan to explore compiler transforma-
tions for programs that manipulate arrays and
pointers.

3. Automate the verification process by implement-
ing our method in a tool

The overall picture of the proposal is given in Fig-
ure 5. The Model Const box will re-use the Petri net
compiler part of the tool reported in (Bandyopadhyay
et al., 2018). PN2SSA is a Petri net to SSA trans-

ICSOFT 2019 - 14th International Conference on Software Technologies

512

lator that we need to build. EqCheck with VC box
will be implemented by instrumenting the CBMC and
2LS code infrastructure. Other loop transformations
for array handling programs is also a future endeav-
our. Further, the other aspect of the work is to do
social analysis. Here we would like to analyse why a
group of students in particular examination of particu-
lar course, for example computer programming, does
better than the other group of students. This analysis
technique will be helpful to improve the efficacy of
AES.

REFERENCES

Z3 SMT Solver. http:/www.z3.codeplex.com/.
Bandyopadhyay, S. (Jan 2018). SamaTulyata. https:

//cse.iitkgp.ac.in/∼chitta/pubs/rep/thesisBench.zip,
https://www.informatik.uni-hamburg.de/TGI/
PetriNets/tools/db/samatulyata.html.

Bandyopadhyay, S., Banerjee, K., Sarkar, D., and Mandal,
C. (2012). Translation validation for pres+ models of
parallel behaviours via an fsmd equivalence checker.
In Progress in VLSI Design and Test (VDAT), volume
7373, pages 69–78. Springer.

Bandyopadhyay, S., Sarkar, D., Banerjee, K., and Man-
dal, C. (2015). A path-based equivalence checking
method for petri net based models of programs. In
ICSOFT-EA 2015 - Proceedings of the 10th Interna-
tional Conference on Software Engineering and Ap-
plications, Colmar, Alsace, France, 20-22 July, 2015.,
pages 319–329.

Bandyopadhyay, S., Sarkar, D., and Mandal, C. (2018).
Equivalence checking of petri net models of programs
using static and dynamic cut-points. Acta Informatica.

Bandyopadhyay, S., Sarkar, S., and Banerjee, K. (2017). An
end-to-end formal verifier for parallel programs. In
Proceedings of the 12th International Conference on
Software Technologies, ICSOFT 2017, Madrid, Spain,
July 24-26, 2017., pages 388–393.

Banerjee, K., Karfa, C., Sarkar, D., and Mandal, C. (2014).
Verification of code motion techniques using value
propagation. IEEE TCAD, 33(8).

Brain, M., Joshi, S., Kroening, D., and Schrammel, P.
(2015). Safety verification and refutation by k-
invariants and k-induction. In Static Analysis -
22nd International Symposium, SAS 2015, Saint-
Malo, France, September 9-11, 2015, Proceedings,
pages 145–161.

Camposano, R. (1991). Path-based scheduling for synthe-
sis. IEEE transactions on computer-Aided Design of
Integrated Circuits and Systems, Vol 10 No 1:85–93.

D’Antoni, L., Weavery, M., Weinert, A., and Alur, R.
(2015). Automata tutor and what we learned from
building an online teaching tool. Bulletin of the
EATCS, 117.

Karfa, C., Mandal, C., and Sarkar, D. (2012). Formal ver-
ification of code motion techniques using data-flow-

driven equivalence checking. ACM Trans. Design Au-
tom. Electr. Syst., 17(3):30.

Kundu, S., Lerner, S., and Gupta, R. (2008). Validating
high-level synthesis. In Proceedings of the 20th in-
ternational conference on Computer Aided Verifica-
tion, CAV ’08, pages 459–472, Berlin, Heidelberg.
Springer-Verlag.

Necula, G. C. (2000). Translation validation for an optimiz-
ing compiler. In PLDI, pages 83–94.

Pnueli, A., Strichman, O., and Siegel, M. (1998). Transla-
tion validation for synchronous languages. In ICALP,
pages 235–246.

Rahmouni, M. and Jerraya, A. A. (1995). Formulation and
evaluation of scheduling techniques for control flow
graphs. In Proceedings of EuroDAC’95, pages 386–
391, Brighton.

Rinard, M. and Diniz, P. (1999). Credible compilation.
Technical Report MIT-LCS-TR-776, MIT.

AES: Automated Evaluation Systems for Computer Programing Course

513

