
Here and There at Once, with my Mobile Phone!

Ioana Boureanu1, David Gerault2 and James Lewis3

1University of Surrey, Surrey Centre for Cyber Security, U.K.
2Nanyang Technological University, Singapore

3Sky UK Ltd, U.K.

Keywords: NFC Security, Proximity Checking, Proximity Attacks.

Abstract: Whilst proximity-checking mechanisms are on the rise, proximity-based attacks other than relaying have not
been studied from a practical viewpoint, not even in academia. Are the simplest proximity-based attacks,
namely distance frauds, a practical danger? Can an attacker make it look like they are here and there at the same
time? In this paper, we first distinguish “credible” vs. impractical distance frauds, in a quantifiable, formal
manner. Second, we implement two “credible” distance frauds on off-the-shelf NFC-enabled Android phones.
We present an initial evaluation focused on their feasibility.

1 INTRODUCTION

Consider two devices, a prover and a verifier, exe-
cuting a communication protocol. In relay attacks, a
man-in-the-middle adversary forwards the messages
from the far-away prover to the verifier and vice-versa,
unbeknown to the two devices, with the aim to gain
a privilege illicitly: e.g., authenticate as the prover.
Distance-bounding (DB) protocols were introduced
in (Brands and Chaum, 1993) as a countermeasure to
relay attacks. Distance bounding counteracts relaying
by having the verifier measure the round-trip time in its
exchanges with the prover; if these take longer than a
pre-established bound, then the verifier concludes that
a relay from a distant prover may be occurring. But,
there are other threats that distance bounding opens to.
Maybe the simplest DB-specific attack (other than re-
laying) is called distance fraud (DF). In simple words,
distance frauds are about a dishonest prover making it
look like they are in the permitted range of the verifier
when in fact they are far-away.

With the threat of relaying increasing, protection
via distance bounding is being incorporated in every-
day products, such as contactless payments by Master-
card. Thuswise, malicious relaying is slowly getting
less feasible in practice, and arguably the next step for
fraudsters is to mount other distance-bounding-specific
attacks. But are distance-bounding threats other than
relaying relevant? For instance, as contactless pay-
ments may soon log the proximity-checking measure-
ments (Chothia et al., 2019), we should be incentivised

to prevent distance frauds; otherwise, dishonest, re-
mote payees could get cryptographically-backed alibis
of being by a payment terminal when they were not, or
issue reimbursements claims to the card-issuing bank.
Yet, unlike relaying, distance frauds have not been
tried in practice, not even in academia, despite the fact
that they are much studied theoretically (Avoine et al.,
2018). To this end, we tackle a series of aspects as
follows.
Contributions:
1. Within existing white-box corruption models in-
troduced in (Avoine et al., 2011) and recently re-
visited by (Boureanu et al., 2018), we draw a new,
fine-grained distinction relevant to distance-fraud
threats: strong white-box corruption vs weak
white-box corruption. Intuitively, “ weak white-box
distance fraud” involves the dishonest prover learning
his secret key and using this knowledge to increase
his advantage in mounting a distance fraud in a trivial
manner. By contrast, a “ strong white-box distance
fraud” involves the dishonest prover further in intri-
cate cryptographic attacks. Arguably, weak white-box
distance fraud are much more plausible: it simply
requires the prover to infer its key by statistical or side-
channel attacks onto its own protocol executions, or
read it off the device with existing tools. Yet, it takes
an expert and potential collusion with other parties to
mount strong white-box distance frauds, e.g., to use
the inferred key in complicated cryptographic attacks
a la “PRF programming” in (Boureanu et al., 2012).
2. In the “weak white-box corruption-model”, we im-

478
Boureanu, I., Gerault, D. and Lewis, J.
Here and There at Once, with my Mobile Phone!.
DOI: 10.5220/0007953004780484
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 478-484
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

plement two DF attacks onto the Swiss Knife pro-
tocol (Kim et al., 2008) executing on NFC-enabled
Android phones. In line with the threat model, we
use little resources besides the knowledge of the se-
cret key and simple techniques. This demonstrates
that someone with low-to-middle level of experience
in Android and NFC programming can implement a
distance fraud attack, if they can get to the secret ma-
terial on their device. We report on our experimental
results, on what we believe to be the first DF attacks
implemented in practice.

2 PRELIMINARIES

2.1 The Swiss-Knife Protocol

In the Swiss-Knife protocol (Kim et al., 2008) (de-
picted in Fig. 1), the prover and the verifier share a
secret key x. During the initialisation phase, they re-
spectively generate random nonces NP and NV and
exchange them. Furthermore, both of them generate a
session key a as: a := fx(cte,NP), where cte denotes
a constant. Then, they compute the values Z0 and
Z1 such that: Z0 := a Z1 := a⊕ x. In each distance-
bounding round, of which there are n, the verifier se-
lects a random challenge ci (where i ∈ {1 . . .n}) and
the prover responds with ri such that: if c′i = 0 then
ri:=Z0

i , and if c′i = 1 then ri:=Z1
i , where c′i is the chal-

lenge that the prover actually received in the i-th round.
That is, c′i will be ci itself, if the transmission was cor-
rect, or c′i will be the negation ci of the sent value ci, if
ci was perturbed by noise. The verifier measures the
time each challenge-response exchange took and stores
this in a variable δi, with i ∈ {1, . . . ,n}. After the end
of the distance-bounding phase, the prover transmits
a message tB such that tB := fx(C, ID,NP,NV) where
C = c′1, . . . ,c

′
n.The verification phase is self-explained,

where tmax,errc,errr,errt ,err,T are all fixed tolerance-
parameters of the protocol denoting the upper bounds
on the duration of timed round, the acceptable number
of noise-perturbed challenges, the acceptable number
of erroneous response, the acceptable number of late
responses, the acceptable number of total errors.

.

3 REFINEMENT OF WHITE-BOX
CORRUPTIONS IN DISTANCE
BOUNDING

Existing Corruption Modes in DB. In DB security,
provers can be corrupted in a white-box (WB) man-

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV ←{0,1}m NV−−−−−−−−−−−−−−−→ NP←{0,1}m

a := fx(cte,NP) a := fx(cte,NP){
Z0 := a
Z1 := a⊕ x

NP←−−−−−−−−−−−−−−−

{
Z0 := a
Z1 := a⊕ x

Distance-bounding phase
for i = 1 to n

Pick ci ∈U {0,1}
Start Clock ci−−−−−−−−−−−−−−−→

ri :=

{
Z0

i , i f c′i = 0
Z1

i , i f c′i = 1

Stop Clock ri←−−−−−−−−−−−−−−−
End of distance-bounding phase

tB,C=(c′1,...,c
′
n)←−−−−−−−−−−−−−−− tB := fx(C, ID,NP,NV)

Check ID,
errc := #{i : ci 6= c′i}

errr := #{i : ci = c′i∧ ri 6= Zci
i }

errt := #{i : ci = c′i∧∆ti > tmax}
err := errc + errr + errt

If err ≥ T ,
then REJECT.

tA := fx(NP)

tA−−−−−−−−−−−−−−−→
Check tA

Figure 1: Swiss-Knife protocol (Kim et al., 2008).

ner, or in a black-box (BB) manner; see (Avoine et al.,
2018; Boureanu et al., 2018) for details. We sum-
marise these now.

Let P denote the algorithm of an honest prover,
as specified by a distance-bounding protocol. Let P∗

denote a malicious prover device/algorithm, mounting
a distance-bounding attack. In the BB case, the dis-
honest prover P∗ can use the algorithm P only as per
the protocol specification to mount the attack. I.e., P∗

sends inputs to and get outputs from the honest P as
if P was a black-box. In the WB case, the dishonest
prover P∗ has read/write access to all the prover’s com-
ponents, including algorithms and cryptographic keys.
As such, P∗ can run any variation of P’s specification
or even use its secrets inside any algorithm to run the
attack.
Our Refinement of Corruption Modes in DB. We
identify 2 types of white-box attacks: i.e., Def. 3.1
and 3.2.
Definition 3.1. Strong White-Box (WB) Attacks.
Strong WB attacks in DB are formed via active ac-
tions by the attacker which use knowledge of the al-
gorithm of the prover P and of P’s secrets, to subvert
cryptographic primitives.

Here is an example of a strong WB attack. A
prover P∗ corrupted in a WB manner has access to
his long-term secrets. Based on these secrets, P∗ can
–for instance– adaptively choose inputs for one of the
protocol’s pseudorandom function instances keyed on
his secrets, to yield a special output. For everyone else
other than P∗ (who does not know his secrets), the
pseudorandom function (PRF) still behaves pseudoran-
domly. That is, a P∗ corrupted in a white-box manner
can mount a “PRF programming attack” (Boureanu
et al., 2012). Yet, breaking cryptographic mechanisms

Here and There at Once, with my Mobile Phone!

479

in this way or, equivalently building the machinery to
do so (e.g., relying on a PRF for which P’s manufac-
turer/specifier allowed for a backdoor when the keys
are known) are demanding settings. Synonymously, it
is a strong threat-model.

Contrarily to this, the second class of WB attacks
we define, we call weak white-box (weak WB):

Definition 3.2. Weak White-Box Attacks. Weak WB
attacks in DB are formed via passive or active ac-
tions which may use knowledge of the algorithm of
the prover P and of P’s secrets, but do not subvert
cryptographic primitives.

In other words, a weak WB attacker uses his knowl-
edge to simply to decide on inflicting forged messages
but he obtains these messages by mechanisms that do
not involve adversarial manipulation of the protocol’s
cryptography. That is, a weak WB adversary mounts
his attack by non-cryptographic means: e.g., by guess-
ing in an informed manner, by blocking messages at
the right time, etc.

4 PRACTICAL
DISTANCE-FRAUDS IN THE
SWISS-KNIFE PROTOCOL

In Section 4.1, we show that, in the SwK protocol,
polynomial attackers cannot mount strong white-box
distance frauds, and that black-box distance frauds
are not beneficial; in Section 4.2, we discuss weak
white-box distance frauds. In all these attacks, we
consider no communication noise, as our experiments
in Section 5 show to be case.

4.1 Strong White Box & Black Box
Distance Frauds in the SwK
Protocol

If strong-WB DFs were mounted onto the SwK pro-
tocol, then they would entail the subversion of the
computation a := fx(cte,NP) and/or of the computa-
tion tB := fx(C, ID,NP,NV). The first amounts to a
PRF programming attack a la (Boureanu et al., 2012).
That is, the dishonest P∗ would adaptively choose
NP, on the bases of x, cte, such as to bias the out-
put a (assuming the PRF f is such that its instance
fx is “programmable” in this way). The goal of the
attacker is to lower HW (Z0⊕Z1), or equivalently to
maximise #{i ∈ {1,2, . . . ,n}|(Z0)i = (Z1)i} = #{i ∈
{1,2, . . . ,n}|ai = ai⊕ xi} = #{i ∈ {1,2, . . . ,n}|xi =
0}, where by HW we mean Hamming weight. Hence,
the attacker’s advantage depends on HW (x), which

is independant of the output a from a programmed
fx(cte,NP). Similarly, programming f to adaptively
choose tB does not improve the attacker’s advantage to
a DF, since tB is not involved in the timed exchanges.
Hence, manipulating the output of the PRF does not
help the adversary to mount a distance fraud against
the SwK protocol.

In the case of black-box DFs, as the attacker can-
not change the implementation of P, the attacker can
simply not bias HW (Z0⊕Z1) and as such he cannot
increase his advantage.

4.2 Weak White Box Distance Frauds in
the SwK Protocol

We showed that strong model did not help the adver-
sary against the SwK protocol. We now describe two
weak white-box distance frauds 1 next.

4.3 Early-reply in SwK: A Weak White
Box DF with “Imperfect DB-timing”

In this attack, the dishonest, far-away prover P∗ gener-
ally acts as follows. With his WB access to P, the
attacker P∗ gathers the indexes i of P’s key x for
which the corresponding key-bit is 0, i.e., P∗ computes
S = {i ∈ {1, . . . ,n}|xi = 0}. For the rounds appearing
in S, the answers are the same irrespective of value
of the challenge and therefore the prover P∗ can and
will answer early. For the rounds not appearing in
S, P∗ will await V ’s challenges despite gathering DB-
timing errors, and answer correctly as each arrives. A
step-by-step description follows.
The Detailed Attack. First, being in weak-WB mode,
P∗ runs the initialisation phase correctly.

Second, in the DB phase, for rounds not in S, the
prover behaves honestly. For the rounds in S, P∗ an-
swers early but cannot do it in a manner that does
not consider the NFC/RFID timing issues. That is, if
P∗ sends his predetermined responses too early, then
the verifier will halt due to NFC timing issues. To
avoid this, the dishonest prover P∗ acts as follows: P∗

approximates the duration between the end of the ini-
tialisation phase tend-o f -init-phase and the start of the DB
phase over a number of executions. Further, depending
on P∗’s distance d from V and the speed vcomm of the
communication medium, P∗ approximates the times
tk at which to send the responses Z0

k , for k ∈ S. These

1Note that these attacks were known in the literature.
We add two things: (1) we identify them as being of our
type called “weak WB” attacks; (2) we detail their workings,
the exact parameters they affect in a way that allows us
to measure, in the next sections, their effectiveness as DF
attacks.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

480

times can in fact be refined on the bases of the time
tarrivalck−1

of arrival at P∗ of the challenge ck−1 which
precedes the early-send rk. In other words, the time tk
to send preemptively a predetermined answer rk in the
round k ∈ S is a function F :

tk =

{
F(tend-o f -init-phase, d,vcomm), if k = 1
F(tend-o f -init-phase, d,vcomm, [tarrivalck−1

]), if k > 1

Note a square bracket around the time tarrivalck−1
: it

denotes that this parameter is optional. It would make
the attack online and more accurate, but it would re-
quire more real-time computations and measurements
by P∗ in the timed phased. Such precision-driven,
real-time computations themselves can inflict delayed
response-times, hindering the feasibility of the attack
in practice; see Section 5 for details.

Third, after the timed phase, the dishonest prover
sends the values c′i equal the values ci that it received,
both inside C and inside tB.
High-level Success Analysis. In this attack, errc=0,
since the dishonest prover sends the correct challenges
in the verification phase. Also, errr =0, since the dis-
honest prover sends the correct responses through-
out. However, errt = n−#{S} = HW (x), where HW
is the Hamming weight. Hence, we dubbed this at-
tack “imperfect DB-timing”. So, in this case, err=
errt ' HW (x).

4.4 Pre-ask & Early-reply in SwK: A
Weak White-box DF with “Perfect
DB-timing”

The Detailed Attack. First, let us look at the pre-attack
phase, when the pre-computed response-table is built.
For rounds k ∈ S, the prover has already predetermined
answers, as in the previous strategy. For each round
j 6∈ S for which the attacker does not have a predeter-
mined answer, this dishonest, far-away prover will now
guess, at random, a challenge c∗j , and pre-compute the
answer for this anticipated challenge c∗j . In this way,
the dishonest prover now builds a full table containing
one answer ready for each round.

Second, in the DB, P∗ will send all his answers
early. To send these answers in “good” time, the prover
P∗ acts as per the previous strategy and pre-computes
the times ti of sending each answer ri, i ∈ {1, . . . ,n}
using the function F .

Third, in the verification phase, P∗ declares c′j to
be equal to c∗j for all the guessed challenges and to be
equal to the really-sent c j otherwise.

High-level Success Analysis. In this attack,
errc=#{c∗j 6= c j | j ∈ {1, . . . ,n} ∧ x j = 1}, since
the dishonest guesses some challenges in the DB
phase and reports the facts as such in verification
phase. Also, errr =0, since the dishonest prover sends
the correct responses for challenges where c′j= c j
(which is what errr checks for). However, errt = 0,
as for the challenges that coincide on both side the
timing is right (in fact, the timing is right throughout).
Hence, we dubbed this attack as “perfect DB-timing”.
So, in this case, err= errc ' HW (x)

2 .
Alternative Version. Depending on the distance d be-
tween the dishonest prover and the verifier (i.e., if
the prover is just superficially outside of the distance-
bounding or it is considerably further) and on the tol-
erance of the verifier w.r.t. NFC timing issues (i.e.,
if the verifier allows fewer or more NFC time er-
rors), a variant of this attack is as follows. Instead
of computing the times ti to send the answers early
as per the above, the prover will wait for the first
challenge c1 to send back the response r1, and –after
a time δ1– will send the rest of the response table.
(The value δ1 is close to the RTT for the distance d
in the medium given.) In this variant of the attack,
errc=#{c∗j 6= c j | j ∈ {2, . . . ,n}∧ x j = 1}. Also, errr
=0, as before. However, errt = 1, as the prover awaits
for the first challenge to arrive at it. So, in this case,
err= errc ' (HW (x2...xn)

2 +1).
Theoretically, in this attack, the guessing of the

challenges ci for i 6∈ S and the computation of the
corresponding ri can be done in real time. In practice,
this takes too long hindering the attack; see Section 5.

5 DISTANCE FRAUD ON
ANDROID PHONES

In this section, we describe the implementation of DF
attacks on the Swiss-Knife protocol, similar to the
ones presented in the previous section, using two NFC-
enabled Android phones. The attacks’ implementation
is given in Section 5.1, but first we present some back-
ground and preliminaries.
Existent SwK Implementation. We base our DF
implementations on an existing proof-of-concept im-
plementation of the Swiss-Knife protocol on NFC-
enabled, Android phones presented in (Gambs et al.,
2016). The implemented Swiss-Knife protocol follows
the ISO/IEC 14443 standard and allows two smart-
phones to communicate via the ISO-DEP protocol.
One phone acts as a prover which emulates a ISO/IEC
14443-4-compliant NFC-A tag through host-card em-
ulation, and the other phone is a verifier behaving as

Here and There at Once, with my Mobile Phone!

481

a card reader. The implementation is split out into
two parts, one for the reader and one for the tag. The
resulting applications can be installed on smartphones
running Android 4.4 (KitKat) or higher. The execu-
tion of the SwK protocol is initiated by the reader, and
triggered when a card-emulating phone is in range.
Pre-attack Time-measurements. A dishonest prover
would first run a series of tests to see how a protocol
works and discover its potential weak points. This
amounts to the practical computation of the measures
stated theoretically in Section 4: the values tk (i.e., the
moments in time to send the answer k early) and the
function F (i.e., used to compute these tk, based on
different parameters and measurements), etc. From
this viewpoint, a dishonest prover would measure or
ascertain: 1. How long one single challenge takes to
arrive from the verifier and/or how long it takes for the
response to go the verifier. 2. The difference in com-
munication time for a challenge or response containing
a 0 or a 1. 3. How long it takes to process a challenge
and send back a response (possibly again varying these
upon the specific values of the challenge); an instance
of this was denoted as δ1 in Section 4. 4. The total
duration of the whole timed phase. 5. The time it takes
from the end of the initialisation phase to the begin-
ning of the fast/time phase; we denoted this as t1 in
Section 4. 6. The time it takes from the end of the
fast/timed phase to the beginning of the verification
phase; this is important in case the dishonest prover
has to process some additional aspects after the fast
phase so that only after he becomes ready to pass the
verification phase. 7. All of the above can (in a first
instance) be done from several distinct distances (still)
within the usual bound, to get the time differentials as
the prover would gets further from the verifier. Using
the commonly-known transmission-speed on the chan-
nel, the attacker would then extrapolate (with some
error) what the communication times would be over
larger distances d outside the bound.

A dishonest prover will/should do variations of
the measurements 1-7 above in repeated executions
and average the results. In the weak WB corruption-
model, such dishonest provers would undertake most
of these measurements from their side, during correct
executions (i.e., with no direct access to the verifier’s
side or measurements, no intricate hardware attacks,
etc).

For the weak WB DFs’ implementations presented
next, we did not carry out all the measurements pre-
sented in the “real-world DF considerations” above.
Notably, we did evaluate points 1, 5 and 6 above and a
few other aspects (detailed further in Sec. 5.1). To this
end, one important aspect for the DF attacks described
in Section 3 is the time between two consecutive re-

sponses by the prover. Concretely, we were interested
in the measurements shown in Fig. 2.

Figure 1: Fast-phase communication-times diagram

round-to-round
time

The verifier does not process anything
here. He just samples a random bit.
This time can be considered negligibly
small, for dishonest provers in DFs
who do not have access to this
measurement.

Figure 2: Communication & Computation Times in DB.

Using the notations in Fig. 2, we have
that “two-way communication time” = (“round
to round time” - “prover processing time” -
“verifier processing time”). However, again, a
weak WB dishonest prover does not have access
the verifier processing time, but can approximate
this to zero. So, “response communication time
' “two-way communication time′′/2. This gives
the prover an estimate for the time-travel of a response
from itself to the verifier.

Based on the SwK implementation, with the prover
and verifier within the distance-bound (at 2cm apart),
over 100 iterations, we measured the above from the
perspective of a (dishonest) prover, i.e., keeping time
logs only on the prover’s side. The results of these
are given in Table 3. By performing the same mea-
surements from the verifier’s viewpoint, we observed
that the prover’s estimates only differ by cca. 0.5ms,
i.e., that a dishonest prover can reliably approximate
these times, without having access to information on
the time-measurements on the verifier’s side.

Table 1: Relevant Timing Measurements Executed from the
Prover’s Side (avg. over 100 iterations).

round-to-round time 12.56746 ms
average round processing time 0.324687 ms
two-way communication time 12.24277 ms
response communication time 6.121385 ms

5.1 Implementations of DF Attacks

In all our experiments, we used two off-the-shelf
Google Nexus 5 smartphones. Our implementation
and tests are available at: people.itcarlson.com/ioana/
df.zip.

5.1.1. The “Imperfect DB-timing” Attack

This is the DF in Section 3.1.1. Based on x, we con-
struct a table of precomputed answers rk for each k ∈ S.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

482

Then, for any index j ∈ {1, . . . ,n}, the provers will
send answers k ≥ j early if k ∈ S, until k 6∈ S. Other-
wise, if still k 6∈ S, then P∗ waits for the challenge by
the verifier. Note that, depending on the fixed value of
the key x, the prover P∗ may send not one but several
answers at once in advance. This can cause NFC tim-
ing issues: the larger the number of consecutive early
responses, the larger the chance that the verifier may
receive a (NFC) response before the (NFC) challenge,
or simply the chance to produce NFC framing/timing
issue. To avoid this, we did implement a small wait in
between two such consecutive early sends. This wait
was in line with pre-attack measurement 1 and the
“response communication time” reported in Table 3,
i.e., 6ms (which we later fine-tuned further as per the
below). Also, this amounts to approximating the times
tk for the answers rk in Section 3.1.1.

To describe the rest of the implementation (i.e.,
the verification phase), we first need to develop on
an aspect linked to pre-attack measurement 6, as well
as the APDU-based communications2 and their treat-
ment in NFC under Android. Namely, initially, we
implemented the (rest of) attack exactly as per Sec-
tion 3.1.1: i.e., in the verification phase, the dishonest
prover would send C as it received it. However, de-
spite the fact that we fine-tuned the sending of early re-
sponses with waiting times, we noticed that the attack
resulted in errC 6= 0. Upon inspection, it transpired
that sending some answers early results in the prover’s
list of receiver challenges be no longer in order. This
made us revisit the waiting time between consecutive
early sends: we further fine-tuned the waiting time in
between two consecutive early sendings at the 5ms
mark. Also, helped by the fact that the indexes of
the answers sent early are always the same (i.e., in-
dexes k ∈ S, predetermined by xk=0), we determined
how the challenges’ list was unordered. Moreover, our
pre-attack measurement 6 turned useful. The standard
implementation does allow enough time for us to have
our dishonest P∗ to reorder the list of challenges it
receives and thus send out the verification-phase ector
C such that errC=0, as per Section 3.1.1.

Similarly, as per Section 3.1.1, we did try a real-
time adaptation of the time tk to send out an early rk
based on the time tarrivalck−1

arrival of the previous
challenge ck−1, but –due to the way in which the An-
droid APDU service “stacks” challenges– this proved
ineffective.

2APDU (Application Protocol Data Unit) is the “atomic”
message sent/received between a reader and a card as per
ISO 7816.

5.1.2. The “Perfect DB-timing” Attack

This is the DF in Section 3.1.2. Before the DB phase,
dishonest prover P∗ builds a table with answers r j for
the rounds j ∈ S, as well as for a fixed, guessed value
for the challenges ci for i > 1 and i 6∈ S. Then, there
are two possible cases: (1) P∗ calculates an approx-
imation the time tend-o f -init-phase from the end of the
initialisation phase to the start of the DB phase, and
based on this he starts sending his answers early, or
(2) P∗ waits for the first challenge to arrive and sends
all his answers thereafter. The latter is the so-called
“alternative” of the second attack in Section 3.1.2. We
implemented both cases, but our experiments report
on the first.

W.r.t. sending the answers early, we added a wait
of 5ms before pre-emption; again, this is akin to com-
puting the times tk to emit early answers rk in Section
3.1.1. An interesting note is the following: if we send
the pre-computed response table at once, without the
wait in between answers, then the APDU service in
Android works in our favour3. I.e., for a prover that is
not too distant from the verifier (as to not cause NFC
timeouts), the NFC responses are “stacked” by the
APDU service and treated by the verifier in the right
order.

5.2 Experiments

We aimed to see the limits of the relatively simple
DF attacks in Section 3, by using just standard NFC
implementations, i.e., no amplification by special an-
tennas, no modification of the NFC stack, etc. So, in
this case, the first thing that matters is the distance
at which the two phones can be from each other and
still communicate via NFC; this is determined by the
power of NFC antenna in smartphones. Limited by
this and our constraints (i.e., no extra amplification),
in our experiments the dishonest prover is not tech-
nically “far-away”, as the tag and reader need to be
at a maximum of 2cm apart (less than the ISO/IEC
14443 bound of 10cm) for an NFC connection to be
established.

Due to the above, in fact our implementation of the
attacks and our measurements only extrapolate how
much distance could be gained via these DFs, i.e., are
not performed with a distant prover. In other words,
we are closer to studying distance-lowering attacks
than mounting “fully-fleged” DFs.

In our experiments, we write a log to register the
results of each attack of a series of runs, as well as

3This may not work if 2 devices are further apart than
in our setup; see the “Experiments” section. Similarly, the
approximation tend-o f -init-phase may be improper.

Here and There at Once, with my Mobile Phone!

483

the timings that each run produces. For this, we add
code on the verifier side that measures the duration of
the DB phase (in nanoseconds). No other modification
besides this logging is done to the verifier. The verifier
can run multiple executions uninterrupted. So, we set
the verifier run 10 executions per batch, and we ran 20
batches. We used the same parameters as in (Gambs
et al., 2016): n=32, err=3, errT =70500000ns. Some
results are given in Tables 2, 3.

Table 2: Measurements Averaged over 200 Iterations.
No Attack Imperfect DB-Timing DF Perfect DB-Timing DF

Avg. DB-phase 425.18 ms 312.80 ms 292.58 ms
Avg. errc 0 0 3
Avg. errr 0 0 0
Avg. errt 0 5 0

Table 3: Full-Runs’ Durations (in ms, avg. over 200 itera-
tions).

Min Max Mean
No attack 315.08 591.39 425.18

Imperfect DB-Timing DF 254.4 447.87 312.80
Perfect DB-Timing DF 252.53 401.84 292.58

The “perfect DB-timing” DF shows a higher num-
ber of low execution times. Meanwhile, the “imperfect
DB-timing” DF has a higher variance in times since
the prover has to wait for a certain number challenges
before being able to respond.

5.3 Discussions

The success of the prover depends on the total err pa-
rameter. An accepted err of 10% is common (Boure-
anu and Vaudenay, 2015), and err fixed at 3 in the
implementation. Hence, according to our experiments,
in a third of the cases the dishonest prover would be
accepted. Also, when the illicit prover passes, the
“Perfect DB-Timing” DF displayed a 31% reduction
in execution time and the “Imperfect DB-Timing” DF
exhibited a 26% reduction. If we also look at the gain
in time, this could translate in DFs over thousands
of kilometres. Of course, if an amplification antenna
were used and thus NFC timing/framing aspects would
become more difficult to tune, it is not guaranteed
that the rate of increasing the distance compared to
the distance-bound would be maintained at around
30%. Also, this would likely not translate to “pure”
NFC communication, which do not need to interface
with Android. Moreover, if errT was smaller, then the
success rate would also drop. Also, these results are
for a fixed key and a full assessment for DF in SwK
should be averaged over uniformly sampled keys on
the prover’s side. We leave this for future experiments.

The “perfect DB-timing” DF appears more suited
for use further away from a verifier, due to the reduced
execution times, and the ability to perfectly send back

responses without timing errors. Though, this is at
the expense of yielding response errors. “Imperfect
DB-timing” DF results in no challenge or response
errors, but the dishonest prover needs to be closer to
the verifier, because in some rounds, a wait is required
before the prover can respond. There is a chance of
the verifier timing out when waiting for a response if
the prover is too far away. All these also indicate, once
more, than the error-tolerance parameters in DB need
to be carefully chosen and possibly not compound into
a single error factor.

6 CONCLUSIONS

Most distance-frauds (DFs) attacks are white-box: i.e.,
they require a dishonest modify its implementation.
We singled out feasible, “weak” white-box DFs: a
dishonest prover will not subvert cryptographic primi-
tives in the attack. We implemented two such DFs and
tested their feasibility on mobile phones, with no extra
hardware resources, showing that with a DF-attacker
can make it look like they are here and there at the
same time! Much work remains to be done to use, e.g.,
amplification antennas in stronger versions of these
attacks, run over large distances.

REFERENCES
Avoine, G., Bingöl, M., Kardas, S., Lauradoux, C., and

Martin, B. (2011). A Framework for Analyzing RFID
Distance Bounding Protocols. Journal of Computer
Security, 19(2):289–317.

Avoine, G., Bingöl, M. A., and Boureanu, I. e. (2018). Se-
curity of distance-bounding: A survey. ACM Comput.
Surv., 51(5):94:1–94:33.

Boureanu, I., Gerault, D., and Lafourcade, P. (2018).
Implementation-level corruptions in distance bound-
ing. Cryptology ePrint Archive, Report 2018/1243.
https://eprint.iacr.org/2018/1243.

Boureanu, I., Mitrokotsa, A., and Vaudenay, S. (2012). On
the pseudorandom function assumption in (secure)
distance-bounding protocols. In LATINCRYPT, pages
100–120. Springer.

Boureanu, I. and Vaudenay, S. (2015). Challenges in distance
bounding. IEEE Security Privacy, 13(1):41–48.

Brands, S. and Chaum, D. (1993). Distance-Bounding Pro-
tocols. In Proc. of EUROCRYPT’93, pages 344–359,
Lofthus, Norway.

Chothia, T., Boureanu, I., and Chen, L. (2019). Making con-
tactless EMV payments robust against rogue readers
colluding with relay attackers. In Financial Crypto.

Gambs, S., Lassance, C. E. R. K., and Onete, C. (2016). The
Not-so-Distant Future: Distance-Bounding Protocols
on Smartphones. In CARDIS, pages 209–224. Springer.

Kim, C. H., Avoine, G., Koeune, F., Standaert, F., and
Pereira, O. (2008). The Swiss-Knife RFID Distance
Bounding Protocol. In ICISC, LNCS. Springer.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

484

