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Abstract: In recent years, numerical methods such as the finite element method are developed for sound field prediction 

of architectural spaces. However, large-scale analysis is often necessary because of the larger domains and 

the higher frequencies that we deal with in engineering applications. Therefore, we often only consider larger 

domains at low frequencies or high frequencies in smaller domains. In this paper, the iterative domain 

decomposition method (IDDM) is applied to solve transient and steady-state acoustic problems. By applying 

the IDDM, the effectiveness of the large-scale acoustic analysis can be shown. In addition, the results of 

introducing high-order elements into the analysis are shown. 

1 INTRODUCTION 

Prediction of acoustic performance is important for 

the design of concert halls (Otsuru, 2002). As 

representative examples of the prediction, there are 

scale model experiments and computer simulations. 

Experiments have been used for a long time in many 

fields and are applied to visualization and audibility. 

However, they take a lot of time and are expensive to 

run. On the other hand, computer simulations can 

develop models in the virtual space which are a lot 

less expensive than experiments. However, due to the 

larger problems considered and the increased 

frequencies, the scale of models must also be 

increased. Hence, large scale analysis is required.  

So far, acoustic analysis methods using the finite 

difference time-domain (FDTD) (Sendo, 2002),  the 

boundary element method (BEM) (Sakuma, 2009), 

and the finite element method (FEM) (Okuzono, 

2010)  have been developed. In the FDTD method, 

mesh division is performed using a structured grid. 

Therefore, analysis with complicated shapes can be 

problematic and application to the analysis of 

architectural space is difficult. In the boundary 

element method, the boundary of the analyzed region 

is divided into elements and analyzed. The method 

leads to dense matrices which requires a large amount 

of memory. On the other hand, the finite element 
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method can use unstructured mesh grids and can deal 

with complex shapes. For these reasons, an acoustic 

analysis using the finite element method is developed. 

One of the problems of the finite element method 

is that the scale of the analysis increases with the 

increased frequency. The accuracy of the finite 

element method improves as the number of divisions 

with respect to the wavelength, increases. As the 

frequency increases, the wavelength decreases, and 

the number of elements required to obtain sufficient 

resolution increases (Urata, 2004). For this reason, 

there is a limitation on the wavelengths that can be 

analyzed with the finite element method. From such 

a background, it is necessary to develop a method 

capable of high-accuracy analysis while reducing the 

number of elements necessary for analysis, and a 

method capable of large-scale analysis. In this study, 

by introducing the high-performance finite element, 

we aim to reduce the number of elements and develop 

the technology corresponding to the expansion of the 

analysis domain and the increased frequency. 

A parallel finite element steady-state acoustic 

analysis method applying the iterative domain 

decomposition method (IDDM) as a parallelization 

method is proposed. The method have been tested and 

shown to perform the steady analysis with a 

maximum error of about 1.4 [%] compared to a 

reference solution in a benchmark problem  
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(Murakami, 2019). This has enabled large-scale 

calculations with high accuracy as a numerical 

acoustic analysis method in steady problems.  

In this paper, a transient acoustic analysis method 

is developed using time domain parallel finite 

element method based on this parallelization method. 

We report here that this method has sufficient 

accuracy in a benchmark problem and that analysis is 

also possible in real environment applications such as 

a live house.  

2 FORMULATION 

2.1 Helmholtz Equation 

Let us consider a 3D region with a boundary 𝛤 and a 

region Ω inside the boundary. The wave equation for 

the velocity potential in the sound field is expressed 

by the following equation.  

𝜕2∅

𝜕𝑥2
+
𝜕2∅

𝜕𝑦2
+
𝜕2∅

𝜕𝑧2
−
1

𝑐2
𝜕2

𝜕𝑡2
∅ = 𝑞 

(1) 

Where  ∅  is the velocity potential, 𝑐  [m/s] is the 

velocity of sound, and 𝑞 is the distribution function of 

a sound source. 

Considering a steady-state problem Eq. (2) can be 

reduced to the Helmholtz equation (Eq. (3)). 

∅ = 𝛷𝑒−𝑗𝜔𝑡 (2) 

𝜕2𝛷

𝜕𝑥2
+
𝜕2𝛷

𝜕𝑦2
+
𝜕2𝛷

𝜕𝑧2
+
𝜔2

𝑐2
𝛷 = 𝑞 

(3) 

Where 𝑗  is the imaginary number, and 𝜔  is the 

angular frequency. The sound pressure can be 

calculated by the following equation using an 

imaginary number j, and medium density 𝜌 [kg/m3] 

after calculating the velocity potential 𝛷. 

𝑝 = 𝑗𝜔𝜌𝛷 (4) 

2.2 Finite Element Formulation 

To derive a weak form, the Galerkin method is 

applied to Eq. (3). Finite element approximation and 

discretization gives the following equation. 

−𝑘2[𝑀]{𝛷} − 𝑗𝜔𝜌[𝐶]{𝛷} + [𝐾]{𝛷} = {𝑞} (5) 

Where [ ∙ ] is a matrix, { ∙ } is a vector. Now, let the 

element matrix of Eq. (5) be [𝑀]e , [𝐶]e , [𝐾]e. When 

the shape function {𝑁}  and its transpose {𝑁}𝑇  are 

used, they are expressed as the following equations.  

 

[𝑀]𝑒 =∭ {𝑁}{𝑁}𝑇𝑑𝛺𝑒 
𝛺𝑒

 

[𝐾]𝑒 =∭ ∇{𝑁}∇{𝑁}𝑇𝑑𝛺𝑒
Ω𝑒

 

[𝐶]𝑒 = −
1

𝑍𝑛
∬ {𝑁}{𝑁}𝑇𝑑𝛤𝑒
𝛤𝑒

 

(6) 

Where  [𝑀]e and [𝐾]e are volume integrals, and  [𝐶]e 

, is a surface integral to the sound absorbing boundary 

surface, while 𝑍𝑛  is a specific acoustic impedance. 

Matrices  [𝑀] and [𝐾] are symmetric sparse matrices. 

Matrix [𝐶] has a complex impedance. Therefore, the 

entire coefficient matrix is a complex symmetric 

matrix. 

2.3 Time Domain Problem 

To convert to time domain representation, Inverse 

Fourier transform is applied to Eq. (5). Thus the 

following equation is achieved 

[𝐴]{𝛷}𝑡 +
1

𝑐2
[𝑀]{�̈�}

𝑡
+ 𝜌[𝐶]{�̇�}

𝑡
= {𝑞} (7) 

Where, ̈  and ̇  are first-order and second-order 

derivatives related to time. 

To solve the velocity potential {𝛷}  in the time 

domain problem, linear acceleration is applied in the 

time dimension of Eq. (8). It is assumed that velocity 

potentials {𝛷}, {�̇�} and {�̈�} are known at a time 𝑡. 

Applying the Newmark 𝛽 method (AIJ, 2011), 𝛽 =
1

6
 

and γ =
1

2
 are used in the time stepping form 𝑡 to ∆𝑡 

can be approximated in the form of the following 

equations. 

{𝛷}𝑡+∆𝑡 = 

{𝛷}𝑡 + {�̇�}𝑡∆𝑡 +
1

3
{�̈�}

𝑡
∆𝑡2 +

1

6
{�̈�}

𝑡+∆𝑡
∆𝑡2 

(8) 

{�̇�}
𝑡+∆𝑡

= {�̇�}
𝑡
+
1

2
({�̈�}

𝑡+∆𝑡
+ {�̈�}

𝑡
)∆𝑡 (9) 

From Eq. (7) to (9), the simultaneous linear equation 

is obtained. 

{�̈�}
𝑡+∆𝑡

= 

         ({𝑞}𝑡+∆𝑡 − [𝐴]{𝑄} − 𝜌[𝐶]{𝑃} )[𝐿]
−1 

(10) 

Where, 
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{𝑄} = ({𝛷}𝑡 + {�̇�}𝑡∆𝑡 +
1

3
{�̈�}

𝑡
∆𝑡2) 

       {𝑃} = ({�̇�}
𝑡
+
1

2
{�̈�}

𝑡
∆𝑡 ) 

     [𝐿] = (
1

6
[𝐴]∆𝑡2 +

1

𝑐2
[𝑀] +

1

2
𝜌[𝐶]∆𝑡) 

(11) 

From Eq. (8) to (10), the solutions of {𝛷}𝑡+∆𝑡  and 

{�̇�}
𝑡+∆𝑡

 can be obtained.  

The velocity potential of the second derivative of 

the unknown can be obtained using the iterative 

method of Conjugate Orthogonal Conjugate Gradient 

(COCG) for the derived Eq. (11). The solution of the 

time domain problem is obtained by repeating these 

calculations step by step. 

3 PARALLELIZATION 

3.1 Interface Problem 

In this research, the IDDM is applied as a 

parallelization method. This is known as a method 

that can solve large-scale simultaneous linear system 

of equations efficiently. The procedure of the IDDM 

is shown below: 

(1). The analysis area is divided into an arbitrary 

number of areas (partial areas). 

(2). Perform finite element analysis for using 

iterative calculation of the interface problem in 

between these areas. 

(3). With the end of the iterative calculations, obtain 

the solution of the whole analysis area. 

The simultaneous linear system of equations to be 

solved is 

𝐾𝑢 = 𝑓 (12) 

Where, 𝐾 is the coefficient matrix, 𝑢 is the unknown 

vector and 𝑓 is the known vector. With the smallest 

unit as an element, the analysis area is divided such 

that there is no overlap.  

𝑉 =⋃𝑉(𝑖)
𝑁

𝑖=1

 (13) 

When the domain decomposition method is applied 

with 𝑢𝐵 degrees of freedom newly generated on the 

boundaries between the regions, and 𝑢𝐼
(𝑖) degrees of 

freedom generated on the partial areas, the following 

equations are obtained.  

 

[
 
 
 
 
 𝐾𝐼𝐼

(1) … 0 𝐾𝐼𝐵
(1)𝑅𝐵

(1)𝑇

0 ⋱ ⋮ ⋮

0 … 𝐾𝐼𝐼
(𝑁) 𝐾𝐼𝐵

(𝑁)𝑅𝐵
(𝑁)𝑇

𝑅𝐵
(1)𝐾𝐼𝐵

(1)𝑇 … 𝑅𝐵
(𝑁)𝐾𝐼𝐵

(𝑁)𝑇 ∑𝑅𝐵
(𝑖)𝐾𝐵𝐵

(𝑖)𝑅𝐵
(𝑖)𝑇

𝑁

𝑖=1 ]
 
 
 
 
 

{

𝑢𝐼
(1)

⋮
𝑢𝐼
(𝑁)

𝑢𝐵

}

=

{
 

 𝑓𝐼
(1)

⋮

𝑓𝐼
(𝑁)

𝑓𝐵 }
 

 

 

(14) 

Where, 𝑅𝐵
(𝑖) is a 0-1 matrix that limits 𝑢𝐵

(𝑖) to the 

internal degrees of freedom of the partial area. Eq. 

(14) leads to the following equations: 

𝐾𝐼𝐼
(𝑖)𝑢𝐼

(𝑖) = 𝑓𝐼
(𝑖) − 𝐾𝐼𝐵

(𝑖)𝑢𝐵
(𝑖)，𝑖

= 1,… , 𝑁  
(15) 

[∑𝑅𝐵
(𝑖) {𝐾𝐵𝐵

(𝑖) − 𝐾𝐼𝐵
(𝑖)𝑇(𝐾𝐼𝐼

(𝑖))
−1
𝐾𝐼𝐵

(𝑖)} 𝑅𝐵
(𝑖)𝑇

𝑁

𝑖=1

] 𝑢𝐵  

=∑𝑅𝐵
(𝑖) {𝑓𝐵

(𝑖) − 𝐾𝐼𝐵
(𝑖)𝑇(𝐾𝐼𝐼

(𝑖))
−1
𝑓𝐼
(𝑖)}

𝑁

𝑖=1

 

(16) 

Where, 𝑓𝐵
(𝑖)

  is the right hand vector for 𝑢𝐵 , and 

(𝐾𝐼𝐼
(𝑖))

−1
  is the inverse of 𝐾𝐼𝐼

(𝑖) . Eq. (16) is the 

interface problem (Ogino, 2016) which represents a 

connection between areas in the domain 

decomposition method. 

3.2 IDDM 

IDDM is a method to obtain the degrees of freedom 

for nodes inside partial areas contained in DDM 

iteratively.  

In this research, COCG method is applied as an 

iterative solution method of IDDM. Where 𝛿  is a 

convergence determination value and ‖ ∙ ‖ is 2-norm. 

Figure 1 shows COCG method algorithm for interface 

problem.  

In (I) and (II) shown in Figure 1, there is a need 

for a vector product operation of the Schur 

complement matrix. The construction of this matrix 

involves a lot of calculations. Therefore, as shown in 

Figure 1, calculations are performed by substituting 

the finite element method calculation of the partial 

area.  

The finite element method calculations are 

performed for each partial area in each step of the 

iterative solution of the interface problem. Therefore, 

high parallelism can be expected because it can be 

calculated independently. 
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Choose 𝑢𝐵 

 𝑟0 = 𝑆𝑢𝐵
0 − 𝑔 ................................................. (I) 

𝑧0 = 𝑀−1𝑟0  

𝑝0 = 𝑧0  

 

For n=0, 1, 2, ...... 

𝑞𝑛 = 𝑆𝑝𝑛............................................................ (II) 

𝛼𝑛 =
(𝑟𝑛)𝑇𝑧𝑛

(𝑝𝑛)𝑇𝑞𝑛
  

𝑢𝐵
𝑛+1 = 𝑢𝐵

𝑛 − 𝛼𝑛𝑝𝑛  

𝑟𝑛+1 = 𝑟𝑛 − 𝛼𝑛𝑞𝑛  

 

IF ‖𝑟𝑛+1‖ < 𝛿‖𝑟0‖,  break 

𝑍𝑛 = 𝑀−1𝑟𝑛+1  

𝛽𝑛 =
(𝑟𝑛+1)𝑇𝑧𝑛+1

(𝑟𝑛)𝑇𝑧𝑛
  

𝑝𝑛+1 = 𝑧𝑛+1 − 𝛽𝑛𝑝𝑛  

End For 

(Ⅰ) In each subdomain  

Compute 𝑢𝐼
(𝑖)0

    by 

𝐾𝐼𝐼
(𝑖)
𝑢𝐼
(𝑖)0

= 𝑓𝐼
(𝑖)0

− 𝐾𝐼𝐵
(𝑖)
𝑅𝐼𝐵
(𝑖)𝑇
𝑢𝐵
0   

𝑟(𝑖)0 = 𝐾𝐼𝐵
(𝑖)𝑇

𝑢𝐼
(𝑖)0

− 𝐾𝐵𝐵
(𝑖)
𝑅𝐵
(𝑖)𝑇
𝑢𝐵
0 − 𝑓𝐼

(𝑖)0
  

   𝑝0 = 𝑟0 =∑𝑅𝐵
(𝑖)
𝑟(𝑖)0

𝑁

𝑖=1

 

 (Ⅱ) In each subdomain 

Compute 𝑝𝐼
(𝑖)𝑛

    by 

𝐾𝐼𝐼
(𝑖)
𝑝𝐼
(𝑖)𝑛

= −𝐾𝐼𝐵
(𝑖)
𝑅𝐵
(𝑖)𝑇
𝑝(𝑖)𝑛  

𝑞(𝑖)𝑛 = 𝐾𝐼𝐵
(𝑖)𝑇

𝑢𝐼
(𝑖)𝑛

− 𝐾𝐵𝐵
(𝑖)
𝑅𝐵
(𝑖)𝑇
𝑝(𝑖)𝑛  

    𝑞𝑛 =∑𝑅𝐵
(𝑖)
𝑞𝑖𝑛

𝑁

𝑖=1

 

 

Figure 1: COCG method algorithm for IDDM. 

3.3 HDDM 

The hierarchical domain decomposition method 

(HDDM) is a DDM having a 2-step hierarchy in 

which the entire analysis area is first divided into an 

arbitrary number of parts, and then divided into 

multiple subdomains (Takei, 2010). HDDM is a 

method of allocating divided parts to 1 process or 1 

thread, performing internal finite element analysis at 

each step of the iterative solution method of the 

interface problem, and obtain a solution of the whole 

analysis area. 

The assignment to each computation node of this 

method is shown in Figure 2. 

 

Figure 2: Assignment of HDDM to each compute node. 

3.4 BDD Pre-processing 

The balancing domain decomposition (BDD) pre-

processing is based on the multigrid method, and can 

greatly improve the convergence of the interface 

problem (Mandel, 1993). The algorithm of BDD pre-

processing is shown in Figure 3. This figure shows 

finding z = 𝑀−1𝑟 for the residual 𝑟 obtained in each 

step of the COCG method. 

Step 1 : 𝜆(𝑖) is calculated 

𝑍(𝑖)
𝑇
𝐷(𝑖)

𝑇
𝑅(𝑖)

𝑇
(𝑟 − 𝑆∑𝑅𝐵

(𝑗)
𝐷(𝑗)𝑍(𝑗)𝜆(𝑗)

𝑁

𝑗=1

) = 0,  𝑖 

                  = 1,… ,𝑁 

Step 2: 𝑆(𝑖) is calculated 

 𝑠 = 𝑟 − 𝑆∑𝑅𝐵
(𝑗)
𝐷(𝑗)𝑍(𝑗)𝜆(𝑗)

𝑁

𝑗=1

= 0,   

𝑆(𝑖) = 𝐷(𝑖)
𝑇
𝑅(𝑖)

𝑇
𝑠,    𝑖 = 1,… , 𝑁  

 

Step 3: Solve the local problem in each region. 

𝑆(𝑖)𝑢(𝑖) = 𝑠(𝑖),   𝑖 = 1,… , 𝑁  

 

Step 4: 𝜇(𝑖)is calculated 

𝑍(𝑖)
𝑇
𝐷(𝑖)

𝑇
𝑅(𝑖)

𝑇
(𝑟 − 𝑆∑𝑅𝐵

(𝑗)
𝐷(𝑗)(𝑢(𝑗) + 𝑍(𝑗)𝜇(𝑗))

𝑁

𝑗=1

)   

              = 0, 𝑖 = 1,… , 𝑁 

 

Step 5: z is calculated 

 𝑧 =∑𝑅𝐵
(𝑗)
𝐷(𝑗)(𝑢(𝑗) + 𝑍(𝑗)𝜇(𝑗))

𝑁

𝑗=1

 

 

Figure 3: Algorithm of BDD pre-processing. 
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Figure 4: AHLV100. 

4 PERFORMANCE EVALUATION 

4.1 Benchmark Model 

An acoustic problem benchmark model is used to 

verify our method. The analysis uses the test model 

AHLV100 of Code_Aster known as a representative 

benchmark problem of acoustic problems. The model 

is shown in Figure 4.  

This model is an acoustic tube having a length of 

1 [m], a height of 0.1 [m] and a width of 0.2 [m], and 

has a vibration boundary (sound source) at the left end 

and a sound absorption boundary at the right end. 

Specific acoustic impedance 𝑍𝑛 = 445.9 [kg/m3 ∙ s] 

is given as a sound absorbing boundary condition.  

The analysis environment uses 1 PC equipped 

with Intel Core i7-8700 multi-core CPU and 32GB of 

memory. 

4.2 ADVENTURE System 

ADVENTURE system is a generic term for a group 

of system modules in a large-scale computational 

dynamics development project for design 

(ADVENTURE Project, Accessed on: April 15, 

2019). The system is developed by several 

universities research groups. ADVENTURE project 

is centered at the University of Tokyo. This system 

has the following features.  

(1). Analysis by meshes of hundreds to 100 million 

degrees of freedom is possible. 

(2). Even in a parallel computing environment of 

2,000 processors, high parallel efficiency can be 

achieved. 

(3). It is free and open source. 

(4). Scalability and maintainability are secured by 

standardization of modular structure and I/O. 

In this research, the ADVENTURE system is used 

for analysis model creation, mesh generation, and 

setting of boundary conditions.  

 

 

 

 

4.3 Analysis Result (AHLV100) 

The results of a steady-state analysis of AHLV100 are 

shown in Figure 5, and the results of transient state 

analysis are shown in Figure 6.  

 

Figure 5: Result of steady-state. 

 

Figure 6: Result of transient state. 

From Figure 6, the acoustic phenomenon of the 

closed tube can be confirmed. Also, it can be 

confirmed that the plane wave from the sound source 

propagates vertically in the x-direction.  

Table 1 shows the results of accuracy verification. 

Here, the verification is performed at the time when 

the sound pressure distribution becomes the same as 

the solution shown in Figure 5. Comparison with the 

reference solution is made at node A belonging to the 

sound absorbing surface shown in Figure 4. 

Table 1: Analysis result. 

Point A 

Theoretical [Pa] 6.0237 

Numerical [Pa] 5.9721 

Error [%] -0.8566 

4.4 Analysis of Real Environment 
Model 

Perform analysis based on the real environment to 

confirm whether large-scale analysis is possible. The 

analysis target is a small acoustic environment (live 

house). This is a model based on an existing live 

house. The appearance and dimensions of the analysis 

target are shown in Figure 7 and Figure 8. 

The live house model used has a shape that 

simulates a sound source, a stage, human bodies, and 

(1) 

(2) 

(3) 
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structures inside. From the sound source, a sound 

pressure of 0.2 [Pa] is released where assuming the 

performance of the instrument is given as a tone burst. 

Sound absorption boundary conditions are set to the 

specific acoustic impedance, the floor is set to wood, 

and other wall surfaces and structures are set to glass 

wool. The cylinder that simulates the human body 

gives the boundary condition as total stiffness. The 

medium is air 𝜌 =1.2 [kg/m3], the speed of sound is 

𝑐 =340[m/s] and the frequency is 560 [Hz].  

The analysis environment is a PC cluster 

composed of 25 PCs (100 cores) equipped with a 

multicore CPU of Intel Core i7 2600K (3.4GHz / L2 

256KB x4 / L3 8MB) and 32GB of memory. 

 

Figure 7: Appearance of model shape. 

 
(a) Z axis viewpoint [m]. 

 

 
(b) Y axis viewpoint [m]. 

Figure 8: Dimensions of model shape. 

4.5 Analysis Result (Live House) 

The visualization results of the sound pressure viewed 

from the Y, Z axes directions are shown in Figure 9(a) 

and (b). Visualization is the result of the green dotted 

line in Figure 8. 

4.6 Higher Order Elements 

For large-scale analysis, in addition to the 

development of solvers as described above, the 

reduction of the number of necessary elements is also 

an issue. Therefore, in addition to the commonly used  

  

  

  

  
(a) Z axis (b) Y axis 

Figure 9: Appearance of model shape. 

2nd order elements, authors introduce 3rd order 

elements. This is introduced to the non-parallel code 

which is the test code described above. The analysis 

target is AHLV100 shown in 4.1. Analysis frequency 

is 1 [kHz], 2 [kHz]. 

The analysis results of the error rate of 0.5 [%] are 

shown in Table 2.  Where, NOE is number of 

elements, NOI is number of iterations and NOD is 

number of divisions.  

From these results, it can be seen that the number 

of elements is greatly reduced by the introduction of 

the high-order elements, and highly accurate analysis 

can be performed with a small number of divisions. 

The impact is particularly large when the frequency 

is high. However, further reduction of the number of 

elements is necessary for practical use. 

Table 2: Analysis result (high order element). 

Freq. 1 [kHz] 2 [kHz] 

Nth elm. 2 3 2 3 

NOE 822 142 24 808 1 487 

NOI 274 122 2 867 2 180 

NOD 6.92 3.86 10.8 4.22 

5 CONCLUSIONS 

This paper describes a large-scale acoustic analysis 

method using a parallel finite element method based 
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on the IDDM, and discusses the introduction of high 

order elements.  

In the transient analysis using the test model 

AHLV100, the analysis was performed correctly, and 

the usefulness of this method could be confirmed. 

Also shown that transient analysis can be performed 

correctly even in real environmental problems such as 

the live house.  

Moreover, it was shown that high precision 

analysis is possible to reduce the number of elements 

by introducing high order element. In particular, it 

was found that the higher the frequency, the greater 

the benefit of high order elements. By introducing this 

into the parallelized code, further efficiency of 

analysis can be expected. 

However, application to large-scale and complex 

sound environments requires further reduction of the 

number of elements. For this reason, to introduce 

high-performance elements such as the partition of 

unity FEM (PUFEM) with high tracking ability to 

waveforms, and promote research and development. 
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