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Abstract: Slow feature analysis is a technique that extracts slowly varying latent variables from a dataset. These latent 
variables, known as slow features, can capture underlying dynamics when applied to process data, leading to 
improved generalisation when a data-driven model is built with these slow features. A method utilising slow 
feature analysis with neural networks is proposed in this paper for improving generalisation in nonlinear 
dynamic process modelling. Additionally, a method for selecting the number of dominant slow features using 
changes in slowness is proposed. The proposed method is applied to creating a soft sensor for estimating 
polymer melt index in an industrial polymerisation process to validate the method’s performance. The 
proposed method is compared with principal component analysis-neural network and a neural network 
without any latent variable method. The results from this industrial application demonstrate the effectiveness 
of the proposed method for improving model generalisation capability and reducing dimensionality.  

1 INTRODUCTION 

The advanced process monitoring and control of 
many industrial processes require robust and reliable 
models and measurements. The use of hardware 
sensors to provide measurements can be too costly or 
the samples may not be frequent enough for 
acceptable control or monitoring. Soft sensors (Tham 
et al., 1991) (software sensors) provide the alternative 
to hardware sensors through the use of a process 
model. Kadlec et al. (2009) provided a 
comprehensive review of the soft sensor design 
process, detailing some of the commonly used 
techniques and associated issues with soft sensor 
applications. Mechanistic and data-driven modelling 
approaches make up the two main areas for the 
development of soft sensors. Figure 1 illustrates the 
key advantages of data-driven modelling over 
mechanistic modelling. Mechanistic models are 
developed by utilising first principle mathematical 
equations and fundamental scientific and engineering 
concepts to describe the process. However, many 
modern processes are highly complex and so the 
development of mechanistic models can be very 
expensive and time consuming. Data-driven 
modelling makes use of process data to create models 
through a variety of techniques. Data-driven models 
make use of easy to measure process variables to 

predict more difficult to measure variables, such as 
polymer quality variables.  

When using data-driven techniques, the 
complexity of process can determine the necessary 
technique that is required. In its most basic form, a 
data-driven model can be produced using linear 
regression, though this can often lead to poor 
generalisation in many real world problems, 
particularly those that display nonlinearities that 
simply cannot be modelled adequately using linear 
techniques.  

 

Figure 1: Key differences between data-driven and 
mechanistic process modelling. 

Artificial neural networks are a nonlinear data-
driven technique that have been applied to nonlinear 
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process modelling and control (Bhat and McAvoy, 
1990; Chen et al., 1990; Willis et al., 1991) and in 
particular in the polymerisation industry (Gonzaga et 
al., 2009; Zhang et al., 2006; Zhang et al., 1997). 
Bishop (1995) delivered a detailed overview of neural 
networks and their function. The most common form 
of neural network is the single hidden layer feed 
forward network. Although neural networks possess 
universal approximation capability (Cybenko, 1989), 
poor performance can still be observed in may 
applications due to a variety of issues, as discussed by 
Qin (1997). One of the main issues associated with 
neural network modelling, and modelling in general, 
is overfitting. This is where the model performs well 
on the data it was trained on, but performs poorly on 
unseen validation data. The ability to perform well on 
unseen data is known as the generalisation capability. 
Many techniques have been used to improve 
generalisation in neural networks, such as 
regularisation and early stopping (Bishop, 1995), 
ensemble methods (Breiman, 1996; Yang et al., 2013; 
Zhang, 1999), and combining neural networks with 
latent variable techniques.  

Using latent variables (LVs) with regression 
models has been applied before, most commonly with 
methods such as principal component analysis (PCA) 
(Jolliffe 2002) and partial least squares (PLS) (Geladi 
and Kowalski 1986). Principal component regression 
(PCR) has been applied to soft sensors (Ge et al., 
2011; Ge et al., 2014; Hartnett et al., 1998). PCA has 
also been combined with neural networks (Dong and 
Mcavoy, 1994). The reason for applying PCA to the 
data first is to remove collinearity because a neural 
network model trained on collinear data is only valid 
when new data follows the same collinearity (Qin, 
1997). Thus using PCA on the data before the neural 
network training can improve generalisation. 

Slow feature analysis (SFA) is a technique that 
extracts slow varying trends from data in the form of 
LVs known as slow features (SFs) (Wiskott and 
Sejnowski, 2002). The slowest SFs capture the most 
important trends, while the fastest mostly represent 
noise. Applying SFA to process modelling means that 
underlying dynamics of the process can be captured, 
as well as offering a de-noising affect when looking 
at the slower SFs. Additionally, by only selecting a 
certain number of SFs to be considered for modelling, 
the dimensionality can be reduced leading to a 
decrease in model complexity. PCA also produces 
dimensionality reduction in a similar way by retaining 
only a certain number of principal components (PCs). 
By using a reduced number of inputs that express the 
key trends, combining SFA with data-driven 
modelling can improve generalisation. This has been 

demonstrated for soft sensing applications utilising 
SFA with linear regression (Shang et al., 2015a; 
Shang et al., 2015b). 

However, since many process are nonlinear, using 
linear regression with SFA will often lead to poor 
model performance and so combining SFA with 
neural networks is a promising approach for 
improving generalisation capability.  

A method combining SFA with neural networks 
for nonlinear dynamic process modelling is proposed 
in this paper. Dynamic SFA is first applied to the 
process data and the number of retained (dominant) 
SFs is selected via inspection of the changes in 
slowness of the SFs. The dominant SFs are then used 
as inputs for a single hidden layer feed forward neural 
network. 

The paper is organised as follows: Section 2 
describes SFA, Section 3 defines the proposed 
method and Section 4 presents the application of the 
proposed method to a soft sensor for polymer melt 
index in an industrial polymerisation process. Finally, 
the conclusions of this work are presented.  

2 OVERVIEW OF SLOW 
FEATURE ANALYSIS 

Slow feature analysis aims to transform a set of inputs 
into outputs that are as slowly varying as possible. 
This allows for the extraction of information that is 
not overwhelmed by noise and it can reveal 
underlying dynamics of the inputs. 

Wiskott and Sejnowski (2002) defined the 
optimisation problem, as described below, that 
enables the extraction of the slow features from the 
input signals. Given an input vector x(t), the objective 
is to determine a function g(x) such that the output y(t) 
varies as slowly as possible, without being constant, 
so that relevant information can still be extracted, i.e. 
y(t) = g(x(t)). 

݁ݏ݅݉݅݊݅݉ ሶݕ〉
ଶ〉 (1)

subject to three constraints that y has a zero mean, 
unit variance and is decorrelated (identity covariance 
matrix), i.e. 

〈ݕ〉 ൌ 0 (2)
 

ݕ〉
ଶ〉 ൌ 1 (3)

 
,ݕ〉 〈ݕ ൌ 0 (4)
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where 〈݂〉 represents temporal averaging 

〈݂〉 ൌ
1

ଵݐ െ ݐ
න ݂ሺݐሻ	݀ݐ
௧భ

௧బ

						 (5)

The first two constraints are included so that the 
solution of a constant y is avoided. Constraint (4) 
ensures that the extract slow features are decorrelated 
and so are not duplicates of one another. 

2.1 Linear SFA 

For the linear case of SFA, the function g(x) is simply 
a vector of weights W, such that the output y(t) is a 
linear combination of all of the input variables: 

ሻݐሺݕ ൌ ሻ (6)ݐሺݔܹ

The optimisation problem can therefore be 
reduced to the following generalised eigenvalue 
problem (Shang et al., 2016): 

ሶݔሶݔ〉 ்〉ܹ ൌ  (7)		Ωܹ〈்ݔݔ〉

where 〈ݔሶݔሶ ்〉 is the covariance matrix of the first order 
derivative of X, 〈்ݔݔ〉 is the covariance matrix of X, 
and Ω is a diagonal matrix of the generalised 
eigenvalues, which are the optimal objectives of the 
objective function. 

Solving this problem first requires normalising 
the input signal to zero mean and unit variance. The 
normalised input, x(t), is then sphered (or whitened) 
to remove underlying correlations, giving the sphered 
matrix z(t). The next stage is performing singular 
value decomposition on the matrix 〈ࢠሶ ሶࢠ  :〈ࢀ

〈ሶ்ݖሶݖ〉 ൌ ܲΩ்ܲ			 (8)

From this, the slow features can be calculated: 

ሻݐሺݕ ൌ  (9)				ሻݐሺݖܲ

In reality, process data typically has discrete 
intervals and so the first order derivative can be 
approximated by a first order difference 
approximation. 

2.2 Dynamic SFA 

In many processes, the relationship between the 
inputs and outputs may involve significant time 
delay. Dynamic modelling includes inputs from 
previous sampling times so that prediction 
performance can be improved. 

Dynamic SFA is simply the inclusion of time 
lagged process inputs into the input signals for SFA. 
For a given time lag d, the input matrix is as follows: 
 

Xሺtሻ ൌ 
xሺtሻ ⋯ xሺt െ dሻ
⋮ ⋱ ⋮

xሺt  N െ 1ሻ ⋯ xሺt  N െ d െ 1ሻ
൩ (10)

where ݔሺݐሻ is a vector of the process inputs at time t 
and N is the number of samples. 

2.3 Selection of Dominant Slow 
Features 

Given a set of m derived slow features, it is necessary 
to select the number of dominant slow features, M, 
that best capture the dynamics of the process since 
many of the faster features represent mostly noise. 
Including these faster features in model building 
could decrease generalisation performance because 
the model is fitting the noise as opposed to the 
underlying trends. Additionally, decreasing the 
number of slow features reduces the model 
complexity, as with other latent variable methods, 
such as PCA. 

There are very few standard procedures for the 
selection of the dominant slow features but there are 
some ways this can be accomplished.  

2.3.1 Cross Validation Slow Feature 
Selection 

A common method for selecting LVs in general is 
through cross validation, which has been applied to 
slow feature regression previously (Shang et al., 
2015b). This can work well enough when this is the 
only parameter to be determined, however, in the case 
of neural networks, cross validation is often already 
used for the selection of the number of hidden 
neurons. Therefore, also using cross validation for 
slow features selection can lead to poor 
generalisation, especially for complex processes 
where it can be difficult to obtain the optimal values 
for such hyper parameters.  

2.3.2 Slowness Criterion based on 
Reconstruction 

Shang et al. (2015c) derived a slowness criterion 
based on a de-noised reconstruction, suggesting to 
discard slow features that are faster than all of the 
input variables. This method gives good model 
performance when the number of inputs is not too 
large, however, when using dynamic SFA for a 
system with a large number of process variables (such 
as the case study in this work), the number of M slow 
features calculated is too great and produces poor 
generalisation. 
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2.3.3 Slowness Gradient Slow Feature 
Selection 

This work proposes using the changes in slowness of 
the slow features to determine M. This is done by 
observing the first relatively significant change in the 
gradient of the sorted eigenvalues, which relate to the 
Ω matrix from equation 7, and then selecting all of 
the slow features up until this point. The values of the 
eigenvalues directly relate to the slowness of the 
features. Slow feature selection in this way ensures 
that the selected features carry the most significant 
slow varying trends without too much noise. Figure 2 
provides an example of the trend in eigenvalues. In 
this case, the significant change in slowness occurs 
after 11 slow features and so this is the number that 
would be selected for M.  

 
Figure 2: Eigenvalue trend for slow features used for 
dominant slow features selection. 

3 SLOW FEATURE ANALYSIS 
WITH NEURAL NETWORK 
METHODOLOGY 

A simplified block diagram of the proposed method 
is illustrated in Figure 3. 

The neural networks used are single hidden layer 
feed forward networks (SLFNN) that were trained 
using the Levenberg-Marquardt algorithm with 
regularisation and early stopping. The proposed 
method utilising SFA and neural networks (SFA-NN) 
is described in the following steps: 
 
Step 1: Add d time lagged inputs to the input data 
matrix for dynamic modelling, as detailed in Section 
2.2. 

 
Step 2: Partition data into a training and testing (TT) 
set and an unseen validation set.  

 

Step 3: Normalise and sphere TT data and apply SFA 
as described in Section 2.1 to derive the P matrix and 
obtain m slow features via	ࢀࢀ࢟ሺ࢚ሻ ൌ  .ሻ࢚ሺࢀࢀࢠࡼ

 
Step 4: Select the M dominant slow features by the 
slowness gradient based method as described in 
Section 2.3.3. 

 
Step 5: Randomly partition this dynamic slow feature 
TT data into training and testing data sets. 

 
Step 6: The training data is used to train a neural 
network model for each number of hidden neurons in 
a given range, e.g. from 1 to 30. 

 
Step 7: Optimal number of hidden neurons is selected 
by cross validation using the testing data set. 

 
Step 8: The unseen validation data set is normalised 
and sphered to give	࢜ࢠሺ࢚ሻ. Slow features for this data 
set are calculated based on the previously derived P 
matrix: ሻ࢚ሺ࢜࢟	 ൌ ሻ࢚ሺ࢜ࢠࡼ . These validation slow 
features are applied to the trained neural network 
model to assess the model’s performance on unseen 
data. 

 

Figure 3: Simplified block diagram of the SFA-NN method. 

4 CASE STUDY: AN INDUSTRIAL 
POLYMERISATION PROCESS 

4.1 Process Description 

The process used for application of the proposed 
method is a propylene polymerisation process based 
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in China. The data from this process has been used in 
previous work on data-driven modelling using 
bootstrap aggregated neural networks (Zhang et al., 
2006). Two continuously stirred tank reactors 
(CSTR) and two fluidised bed reactors (FBR) in 
series make up the main section of this process, as 
illustrated in Figure 4. The feed to the first CSTR 
consists of a catalyst, hydrogen and propylene. The 
melt index (MI) of polypropylene in the reactor is a 
key variable of interest in assessing product quality, 
however, it is difficult to measure and so creating a 
model to estimate MI from easy to measure process 
variables could lead to improvements in process 
monitoring and product quality by providing MI 
measurements at shorter intervals. 

 
Figure 4: Simplified diagram of a polymerisation process 
(Zhang et al., 2006). 

4.2 Modelling of MI 

The data provided covered 31 days and consisted of 
MI measurements in reactors 1 and 4 that were made 
every 2 hours, and measurements of 30 process 
variables that were made every half an hour. All of 
the process variables are shown in Figure 5. The melt 
index in reactor 1 is shown in Figure 6. For 
confidentiality reasons, the units of the variables are 
omitted.  

Table 1: Performance of SFA-NN for training, testing and 
unseen validation data. 

d Validation 
MSE / r2 

Testing 
r2 

Training 
r2 M 

0 188.8 / 0.9496 0.9373 0.9483 11 
1 224.3 / 0.9401 0.9310 0.9461 11 
2 243.7 / 0.9349 0.9404 0.9474 10 

3 1271.5 / 
0.6605 0.9433 0.9480 10 

4 622.4 / 0.8338 0.9482 0.9623 17 

5 2326.7 / 
0.3788 0.9425 0.9540 16 

Table 2: Performance of PCA-NN for training, testing and 
unseen validation data. 

d Validation  
MSE / r2 

Training 
r2 

Testing 
r2 

#PCs 

0 305.1 / 0.9186 0.9474 0.9229 23 
1 636.9 / 0.8300 0.9783 0.9422 37 
2 402.6 / 0.8925 0.9749 0.9459 50 
3 785.5 / 0.7903 0.9813 0.9476 61 
4 1059.5 / 

0.7171 
0.9943 0.9460 70 

5 876.5 / 0.7660 0.9897 0.9363 81 

Table 3: Performance of NN for training, testing and unseen 
validation data. 

d Validation MSE 
/ r2 

Testing  
r2 
 

Training 
r2 
 

0 287.0 / 0.9234 0.9423 0.9593 
1 708.9 / 0.8107 0.9385 0.9756 

2 1088.5 / 0.7094 0.9443 0.9856 

3 627.0 / 0.8326 0.9469 0.9921 

4 471.2 / 0.8742 0.9400 0.9956 

5 384.0 / 0.8975 0.9385 0.9815 

 

Figure 5: Time series plots of all thirty of the process 
variables. 
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Figure 6: Melt index data for reactor D201. 

Often in complex chemical processes such as this, 
there are time delays between some of the inputs and 
outputs and so it is necessary to consider time lagged 
inputs, hence a dynamic model is considered. The 
form of the input matrix is as follow: 

ܺሺݐሻ ൌ ሾ	ݑଵሺݐሻ ,ሻݐଷሺݑ… … , ݐଵሺݑ െ ݀ሻ…ݑଷሺݐ
െ ݀ሻ ሿ (11)

where X is the input matrix and ݑ is the nth process 
input. 

The number of inputs is already large and 
including time lagged inputs would only increase this 
significantly. This is where the merit of latent variable 
methods, which lead to dimensionality reduction, 
comes in. To better understand and assess the effect 
of adding in different time lagged inputs, models were 
created for time lags d from 0 to 5 (representing 0, 
0.5, 1, 1.5, 2, and 2.5 hours respectively).  

 

Figure 7: Simplified block diagram of the PCA-NN 
method. 

The SFA-NN method, as described in Section 3, 
was applied and compared to single neural network 

(NN) and principal component analysis with neural 
networks (PCA-NN). The number of dominant slow 
features was selected by the gradient based method 
that was described in Section 2.3.3. For PCA-NN, the 
number of retained principal components (PC) was 
selected as the PCs that captured up to 99% of the 
variance. Retained PCs up to 90% variance was also 
tested although using 99% produced much better 
generalisation. Figure 7 shows a basic block diagram 
of the main steps involved in the PCA-NN method.  

The data was partitioned into training, testing and 
unseen validation data sets as described in Section 3. 
The first 55% of the data was used for training and 
testing, with the remaining 45% used as unseen 
validation data. The single hidden layer feedforward 
neural networks were trained using the Levenberg-
Marquardt algorithm with early stopping and 
regularisation. Regularisation was necessary for this 
problem because the complexity of the system meant 
that producing good generalisation performance on 
the validation data was difficult without it. A 
sigmoidal activation function was used for the hidden 
layer neurons and the output layer used a linear 
function. The optimal number of hidden neurons was 
selected by cross validation on the testing data’s mean 
squared error (MSE). 

Tables 1-3 show the MSE on the validation data 
along with the R2 for all three data sets, for each time 
lag for SFA-NN, PCA-NN and NN. The MSE values 
in bold show the best model for that time lag across 
the three techniques. It can be seen that SFA-NN 
produces the best generalisation for the first three 
time lags, with these models being the top three for 
any model across all of the time lags and techniques. 
The performance of SFA-NN decreases significantly 
for time lags greater than 1. This is likely because the 
number of inputs becomes extremely large (e.g. 120 
model inputs for d = 3) and SFA struggles to capture 
the relevant slow varying information with such a 
number of inputs. PCA-NN and NN offer quite 
similar performance, however, PCA-NN suffers a 
similar drop in performance as SFA-NN for d > 1, 
while NN seems to handle the increasing number of 
inputs much better than the other two methods since 
it displays consistent performance across the different 
time lags. Another apparent advantage of SFA-NN is 
that it reduces the dimensionality greater than PCA-
NN for all time lags, thus reducing model complexity. 
The fact that d = 0 is the best model for SFA-NN 
shows that it does not require the additional 
information from added time lagged inputs since it 
captures the key trends via the slow feature 
extraction. 
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Figure 8: Predictions of MI for full data set using SFA-NN 
with d = 0. 

 

Figure 9: Predictions of MI for full data set using PCA-NN 
with d = 0. 

 

Figure 10: Predictions of MI for full data set using NN with 
d = 0. 

Focusing on the models with d = 0, since these are 
the best models across the three techniques, SFA-NN 
provided a 34.2% and 38.1% improvement in 
validation MSE when compared to NN and PCA-NN 
respectively. Figures 8 to 10 show the predictions of 
MI for the full data set using SFA-NN, PCA-NN and 
NN respectively, all using d = 0. These figures 
confirm that SFA-NN fits the data the best, 
particularly on the unseen validation data, represented 
by the last 45% of the samples. PCA-NN has some 
predictions that produce a negative MI, highlighting 
inadequacies in this model.  

5 CONCLUSIONS 

In this paper, combining slow feature analysis with 
neural networks for nonlinear process modelling has 
been presented. Slow feature analysis is used on 
process data to extract underlying trends in the form 
of slow features. By retaining a lower number of slow 
features, model complexity can be reduced through 
having fewer inputs. Selection of the dominant slow 
features was performed by observing the slowness for 
each slow features, represented by the eigenvalues 
derived from the SFA. The slow features up until a 
relatively large change in slowness were selected as 
the dominant features. These dominant features were 
used as the inputs for building a neural network 
model. Many industrial processes are complex and 
nonlinear, and so using neural networks as opposed 
to linear techniques is often necessary. The proposed 
SFA-NN method was applied to an industrial 
polymerisation process for predicting polymer melt 
index, which is a difficult to measure quality variable 
with a relatively low sampling rate. 

SFA-NN was compared to PCA-NN and NN. 
Additionally, different time lags for the dynamic 
inputs were assessed to see the effect on 
generalisation capability for each technique. The 
prediction error on unseen validation data was the 
lowest for SFA-NN for the first three time lags. These 
were also the best performing models across all of the 
18 models that were created for the different time lags 
and techniques. The d = 0 models had the best 
generalisation performance for each technique and 
when comparing these models, SFA-NN showed a 
34.2% and 38.1% improvement in generalisation over 
NN and PCA-NN respectively. SFA-NN also used a 
lower number of latent variables than PCA-NN, 
reducing the model complexity. Application of the 
proposed SFA-NN method for the nonlinear 
modelling of an industrial polymerisation process 
shows its effectiveness in improving generalisation 
capability and reducing dimensionality. 
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