
Problem of Incompleteness in Textual Requirements Specification

David Šenkýř a and Petr Kroha b

Faculty of Information Technology, Czech Technical University in Prague, Czech Republic

Keywords: Requirements Specification, Text Processing, Grammatical Inspection, Incompleteness, Domain Model.

Abstract: In this contribution, we investigate the incompleteness problem in textual requirements specifications. In-
completeness is a typical problem that arises when stakeholders (e.g., domain experts) hold some information
for generally known, and they do not mention it to the analyst. A model based on the incomplete require-
ments suffers from missing objects, properties, or relationships as we show in an illustrating example. Our
presented methods are based on grammatical inspection, semantic networks (ConceptNet and BabelNet), and
pre-configured data from on-line dictionaries. Additionally, we show how a domain model has to be used
to reveal some missing parts of it. Our experiments have shown that the precision of our methods is about
60–82 %.

1 INTRODUCTION

Textual requirements do not contain complete infor-
mation about the system to be constructed. There are
more reasons for that.

First, the software system describes only a spe-
cific part – a simplified model omitting some details
– of the real system to be modelled. We are interested
only in a subset of all existing objects, properties, and
relationships the real system consists of. For exam-
ple, when writing information systems, this subset is
given by supposed queries. So, the first source of in-
completeness is a natural one. We do not model and
describe the complete reality, but only the part of it
that we need to answer the user’s queries.

Second, stakeholders working with the analyst on
the textual version of requirements suppose that some
facts are obvious, and they do not mention them.
However, what is obvious for a user of a biological
information system, is usually not obvious for a com-
puter scientist.

Third, some details are forgotten at the very be-
ginning, or some queries are appended later without
to worry whether the underlying model contains the
necessary objects, properties, or relationships.

Using incomplete information in requirements
leads to incomplete or bad models. The resulting pro-
gram has to be laboriously enhanced. In (Femmer
et al., 2017), there is incompleteness together with

a https://orcid.org/0000-0002-7522-3722
b https://orcid.org/0000-0002-1658-3736

ambiguity and other nature language processing de-
fects called as requirements smells, similarly to the
concept of code smells.

In this paper, we investigate possibilities of how to
reduce incompleteness in textual requirements using
domain models and knowledge bases. However, the
semantic relations in real systems are often so com-
plex and hidden. Thus, they cannot be solved auto-
matically. We generate a warning message in the case
when we find a suspicious formulation.

In our paper, we focus on the following research
questions.

1. Is it possible to indicate that some information has
been omitted or forgotten in the text of require-
ments specification?

2. How to find sentences and their parts that are
probably not complete?

We discuss these research questions in detail in
Section 4 and answer them in Conclusion.

Our paper is structured as follows. In Section 2,
we discuss related works. We present the problems
of incompleteness in Section 3. Our approach is pre-
sented in Section 4, and we comment it on the illus-
trating example in Section 5. The implementation,
used data, experiment, and results are described in
Sections 6 and 7. Finally, in Section 8, we conclude.

Šenkýř, D. and Kroha, P.
Problem of Incompleteness in Textual Requirements Specification.
DOI: 10.5220/0007978003230330
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 323-330
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

323

2 RELATED WORKS

In this section, we discuss some key areas and ap-
proaches related to the research of software-assisted
detection of incompleteness in textual requirements.

2.1 Incompleteness Detection Tools

Tool called Cordula (Compensation of Requirements
Descriptions Using Linguistic Analysis), presented in
(Bäumer et al., 2019), follows the vision of On-the-
Fly (OTF) Computing. This vision assumes ad hoc
providing software services based on requirements
description written by a user in natural language. The
authors of the paper discuss the question “How users
might be involved in the compensation process?”.
Cordula represents a chat bot (Friesen et al., 2018).
The chat bot can highlight the inaccuracies, and a user
can confirm the proposed suggestion by the chat bot
or reject it. The proposed approach engages the users
in the following steps. First, they describe their re-
quirements in a short text. Based on that, they receive
a response by the chat bot. Second, they are asked to
react to the proposed suggestion. Based on that, the
chat bot can adapt to the situation.

In the prerequisite paper (Bäumer and Geierhos,
2018), there are presented methods of quality viola-
tions in a requirements specification. The authors call
them linguistic triggers. Besides the problem of in-
completeness, there is also presented an approach of
ambiguity detection. In the case of incompleteness
triggers, authors pursue already presented approach
divided into two steps (Bäumer and Geierhos, 2016).
First, the detection via predicate argument analysis
in which a semantic role labeler (SRL) assigns se-
mantic roles such as agent, theme, and beneficiary to
the recognized predicate. Presented illustrating exam-
ple is verb “send” that is a three-place predicate be-
cause it requires the agent (sender), the theme (sent)
and the beneficiary argument (sent-to). If the bene-
ficiary is not specified here, it is unknown whether
one or more recipients are possible. The second step
is compensation. The authors state that they gathered
software descriptions and their corresponding reviews
from site https://download.cnet.com. Using similarity
search component known from information retrieval
(IR) domain, they try to find the potentially missing
part sent-to.

The authors of (Eckhardt et al., 2016) focused
on performance requirements. The requirements that
describe system behaviour. They created an UML
model reflecting 3 categories of performance require-
ments – time behaviour requirements (e.g., “The
operation must have an average response time of

less than 5 seconds.”), throughput requirements (e.g.,
“The system must have a processing speed of 100
requests/second.”), and capacity requirements (e.g.,
“The system must support at least 50 concurrent
users.”). Following the UML model, they are able
to map a textual requirement to parts of the model.
Based on predefined mandatoriness of each single
part, they can indicate the possible missing parts. The
mapping of textual requirements is done via sentence
patterns derived from the model.

Tool called NLARE (A Natural Language Process-
ing Tool for Automatic Requirements) is presented in
the papers (Huertas and Juárez-Ramı́rez, 2013) and
(Huertas and Juárez-Ramı́rez, 2012). There is a func-
tional requirement defined as a finite set of words
where words can form one of 3 three elements: actor
(performs the action in the statement), function (in-
dicates what action needs to be performed), or detail
(indicates conditions under what action be expected).
Based on this categorization, the incompleteness ex-
ists if any of the mentioned element is not found.
Mapping of words and elements uses patterns repre-
sented by regular expressions that operate on part-of-
speech tags.

2.2 Incompleteness Confrontation

The research in the corresponding area of process-
ing of textual corpora also takes into the problem of
incompleteness. For example, in (Rodriguez et al.,
2018), authors propose methods of knowledge acqui-
sition from Wikipedia, and they argue that it should
be a source of minimization of incompleteness.

Paper (Femmer et al., 2017) classifies the problem
of incompleteness as one of the requirements smells.
Following ISO 29148 requirements engineering stan-
dard, they introduce a category of requirements smell
called incomplete references that should be processed
in their tool Smella. The detection mechanism is not
in the scope of their paper.

Also paper with a concise name “What Did You
Mean” (Geierhos et al., 2015) refers to the problem of
incompleteness. They follow (Fabbrini et al., 2001)
where the incompleteness is indicated by under-
specification. An under-specification indicator is
pointed out in a sentence when the subject of the sen-
tence contains a word identifying a class of objects
without a modifier specifying an instance of this class.
Concerning the example sentence – “The system shall
be able to run also in case of attack.” – we ask which
attack the writer means?

ICSOFT 2019 - 14th International Conference on Software Technologies

324

3.2.1.19 Functional Requirement 1.19

ID: FR19
TITLE: Mobile application – Sorting results
DESC: When viewing the results in a list, a user should be able to sort the results according to price,
distance, restaurant type, specific dish or restaurant name.

• When sorting by restaurant name, specific dish or restaurant type the results should be ordered
alphabetically.

• When sorting by price the results should be ordered from cheapest to most expensive.
• When sorting by distance the results should be ordered from closets to furthest distance

according to the user’s position.

A list of what?

A price of what?
I.e., price of drinks,

price of vegetarian meals,
price of non-vegetarian meals, etc.

A restaurant can have more attributes.

How is the distance measured?
I.e., in km of air-line distance,

in km of walk distance or in minutes of walk distance,
using subway is included or not, etc.

What does it mean exactly?
The type can describe:

geographical origin (chinese)
or type of dishes (vegetarian)
or type of service (take away)

or quality of service (fast food)
or some constraints (BYO – bring your own, no smoking).

Figure 1: Example of Incompleteness (Restaurant).

2.3 Related Works – Overview

The presented papers use, similarly to us, methods
of nature language processing in the sense of resolv-
ing part-of-speech tags and dependency structure of
a sentence. Our work differs in the usage of support
resources. In Section 4, we present the sources that
we use – prepared static collection of collocations and
on-line resources ConceptNet and BabelNet. Our im-
plemented tool analyzes the whole document at once
and generates warnings. This is the difference com-
pared with the mentioned chat bot in (Friesen et al.,
2018).

3 PROBLEM OF
INCOMPLETENESS

To illustrate the problem of incompleteness, we intro-
duce two typical examples.

(Example 1)
In description of functional requirement Nr. 1.19

in Fig. 1 taken from (Geagea et al., 2010), we can see
some incomplete formulations. The user should have
the possibility to sort the list of found restaurants ac-
cording to attributes that are not uniquely defined. We
extracted the following sources of incompleteness:

1. . . . viewing the results as a list −→ a list of what?

2. . . . a user should be able to sort the results ac-
cording to price −→ a price of what? A price of
drinks, a price of vegetarian meals, a price of non-
vegetarian meals or a price of something else?

3. . . . distance −→ how is the distance measured,
i.e., in km of air-line distance, in km of walk dis-
tance or in minutes of walk distance using subway
included?

4. . . . restaurant type−→ what does it mean exactly?
The type can describe, e.g., a geographical origin
(Chinese), a type of dishes (vegetarian), a type
of service (take away), a quality of service (fast
food), some other constraint (BYO = bring your
own, no-smoking, etc.).

In Example 1, the source of incompleteness is that
some attributes of the class Restaurant are not clearly
and uniquely defined.

(Example 2)
Suppose, we want to write requirements specifica-

tions for university information systems. Modelling
attributes of classes Student and Teacher, we need to
include attributes like First Name, Last Name, Ad-
dress, etc.

However, we do not include the attribute Shoe-
Size in the case of University of Technology, but we
have to include it in the case of Military University be-
cause of a uniform. This means that the completeness
of the set of attributes of class Student can be decided
only with respect to the set of queries or operations
that concern the data stored.

In Example 2, the set of queries used by the infor-
mation system of a Military University contains the
attribute Shoe-Size, but the set of queries used by Uni-
versity of Technology does not.

Problem of Incompleteness in Textual Requirements Specification

325

4 OUR APPROACH TO
PROBLEMS OF
INCOMPLETENESS

The goal of our project is to identify sources of in-
completeness in textual requirements. We compare
their content with:

• the usual usage of words – group A,
• the semantic knowledge stored in our model –

group B,
• the information contained in the set of proposed

queries as sources of actions to be performed –
group C,

• the draft of the pre-generated model – group D.

When we find some discrepancy, we generate a warn-
ing message that signalises the necessity of human in-
tervention.

4.1 Group A (Usual Usage of Words)

Nouns in sentences are investigated using a specific,
predefined set of words. If the kind of usage in the
textual requirements (e.g., a list) does not correspond
to the kind of usage in the vocabulary (e.g., a list of)
then a warning message is generated.

The set of words we used for this purpose is
available on our web-page1, hereinafter referred to
as a common noun and preposition collocation set.
We build this collection based on various collocation
web-pages. Each entry is provided with a resource
reference. We would like to mention Free Online
Collocations Dictionary2 from ProWritingAid. The
advantage of this dictionary is that you can find col-
location also via preposition (e.g., of). Based on the
query, the result contains collections of common used
collocated words grouped by the part-of-speech cat-
egory. Our second significant resource is Corpus of
Contemporary American English3 (COCA). You can
search the corpus via expression containing part-of-
speech tags. In our situation, we were looking for
common collocation, e.g., of preposition of. There-
fore, we inserted “[nn*] of” query expression. The
result list contains founded words sorted by the fre-
quency of usage.

4.2 Group B (Semantic Knowledge)

The semantic knowledge stored in our model of the
reality contains some specific information, e.g., the

1https://temos.ccmi.fit.cvut.cz/sources
2https://prowritingaid.com/en/Collocation/Dictionary
3https://www.english-corpora.org/coca

information that not every restaurant has to have a
beer in a drink menu. This kind of information cor-
responds with possible (but avoided) existence of ad-
jectives before nouns. Our source of information is
ConceptNet4 (Speer and Havasi, 2012), in which we
can find that there exists the relation Is-A of name
Types of Restaurants. Coming from this information,
we generate a question concerning the possibility of
the missed adjective before the word restaurant.

Our second source is BabelNet5 (Navigli and
Ponzetto, 2012) that provides Has Kind relation. If
some examples are found for a specific noun, we gen-
erate a question concerning the possibility of missed
specialisation of the entity.

4.3 Group C (Actions)

Verbs in sentences of queries are investigated in the
sense whether the action, that they describe, can be
performed in the existing model (e.g., sorting without
a key, sorting without a unique key, the number of
shoes of size 42 for students of military university).

As a prerequisite, we are able to check relation
in the way of correct usage of the verb. The En-
glish verbs can take 0, 1, or 2 objects, depending on
the verb. Verbs without objects are called intransi-
tive, and the other ones are called transitive. Using
the dependencies recognition, we check if the verb
has any objects. If no object is found, we check
the verb against the list of intransitive verbs (e.g.,
Wiktionary collection of such verbs6). For exam-
ple, the standalone sentence ”A warning appeared.”
does not bring new information, but it is grammati-
cally correct. On the contrary, the standalone sentence
”Administrator needs to maintain.” contains transi-
tive verb need, and we are missing the information
about what is need to be maintained. Therefore this
sentence is suspicious and TEMOS generates warn-
ing for the user.

4.4 Group D (Model Validation)

We process each sentence one by one and incre-
mentally build the corresponding UML class model
(Šenkýř and Kroha, 2018).

When the draft of our model is ready, we have a
chance to check following simple indicators of miss-
ing or unrecognized information:
• “empty” class without attributes,
• class with no relation to any other class.

4http://conceptnet.io
5http://live.babelnet.org
6https://en.wiktionary.org/wiki/Category:

English intransitive verbs

ICSOFT 2019 - 14th International Conference on Software Technologies

326

5 ILLUSTRATING EXAMPLE

We use the textual requirements specification to build
the corresponding UML model in the first step, as we
described in (Šenkýř and Kroha, 2018).

To introduce the problem of incompleteness,
we continue in the analysis of Example 1 from the
previous section. Our tool TEMOS delivers the
first version of classes, attributes, and relationships
including the class representing restaurant: class
RESTAURANT(Name, Address, Capacity, Open
Hours, Menu, Drink menu, Parking, etc.)

The procedure of analysing the text of DESC in
FR19 will run as follows:

1. Oxford Advanced Learner’s Dictionary7 defines
“list” noun as a series OF names, items, figures,
etc. According to the definition, this means that
the “. . . OF WHAT” part may have been omitted
(Group A, Section 4.1).

• Our tool TEMOS generates the first warning
message: “FR 19 – DESC: A list OF WHAT
should be generated?”
• After a discussion with stakeholders, the ana-

lyst writes a new formulation:
“DESC: When viewing the results in a list OF
RESTAURANTS, a user should be able to sort
the RESTAURANTS according to price, . . . ”

2. As the first sentence analysis continues – “. . . to
sort the restaurants according to price” (assump-
tion: existence of a unique sort key among at-
tributes of objects to be sorted, i.e., of the corre-
sponding class), our tool TEMOS checks whether
the class Restaurant has an attribute Price that can
be used for sorting – information of the Group B
(4.2). The attribute Price is among attributes of
the class Menu and among attributes of the class
Drink menu, but it is not among attributes of the
class Restaurant.

• As it is not the case, TEMOS generates the
following warning message: “Restaurants as
results of the search cannot be sorted accord-
ing to the attribute Price, because Price is not
an attribute of the class Restaurant. The class
Restaurant has the following attributes: Name,
Address, Capacity, Open Hours, Menu, Drink
menu, Parking . . . ”
• Instead of that, the class Restaurant has an at-

tribute Menu containing names of dishes and
beverages, including their prices in some form.

7https://www.oxfordlearnersdictionaries.com/
definition/english/list 1

So, we can generate a warning message and, af-
ter a discussion with stakeholders, we can use,
e.g., the price of the cheapest beer from the
restaurant drink menu as a sorting key. After a
discussion with stakeholders, the analyst writes
a new formulation:
”DESC: When viewing the results in a list of
restaurants, a user should be able to sort the
restaurants according to the price of the cheap-
est beer in the drink menu of each restaurant.”
This formulation assumes that there is a unique
cheapest beer in a drink menu of every restau-
rant. However, it may be a wrong assumption.

3. Our tool TEMOS generates the following warning
message: “There is neither a constraint assigned
to the class Restaurant that each restaurant has
to serve beer, nor a constraint that the drink menu
contains a unique cheapest beer. So, the formula-
tion is incomplete because the sorting key has to
exist and it has to be unique.”
After a discussion with stakeholders, the analyst
writes a new formulation:
”DESC: When viewing the results in a list of
restaurants, a user should be able to sort the
restaurants according to the price of the cheapest
drink in the drink menu of each restaurant.”

The situation is even more complicated if we should
sort restaurants according to their distance from the
user’s position. Without sorting, it would be enough
to show a map to the user with his/her position and
with the position of the restaurant. Unfortunately, this
cannot be used for sorting.

If we were interested in air-line distance, we
would need the GPS-coordinates of the restaurants
would belong to attributes of the class Restaurant, and
we need to obtain the GPS-coordinates of the user’s
position. However, the air-line distance is not very
useful in many towns. Often, it is much more impor-
tant to know how much time we need to achieve the
goal place. So, we speak about a distance, but we
mean the time interval. Other metrics, e.g., Manhat-
tan metric, using a subway, or a taxi route, are compli-
cated too. As we can see, a simple formulation of re-
quirements can cause implementation problems. The
description in details is out of the scope of this paper.

6 IMPLEMENTATION

In (Bäumer et al., 2019), tools are distinguished in
two categories:

• tools focused on specific linguistic inaccuracy,

Problem of Incompleteness in Textual Requirements Specification

327

Table 1: Frequency of Generated Warnings.

Software Requirements Specification WC WA FP FNLP PRE
E-Voting Systems (Daimi et al., 2006) 1243 26 8 3 69.23
Restaurant Menu & Ordering System (Henning et al., 2008) 1266 25 10 2 60.00
Amazing Lunch Indicator (Geagea et al., 2010) 3606 64 18 5 71.88
Online National Election Voting (Joldoshev et al., 2010) 3726 55 10 5 81.81

Legend: WC – word count, WA – number of warnings, FP – number of false positive warnings from WA column, FNLP –
number of false positive warnings from FP column due to bad NLP categorization, PRE – precision (%)

• tools capable of identifying multiple linguistic in-
accuracies.

Based on this categorization, our TEMOS (Tex-
tual Modelling System) tool belong to the second cat-
egory. So far, we are able to generate the UML class
diagram (with a simple model validation) (Šenkýř and
Kroha, 2018) and indicates ambiguity issues (Šenkýř
and Kroha, 2019) and incompleteness issues (pre-
sented in this paper). In this case of incompleteness
detection, the input is a plain text. As an output, our
TEMOS tool generates warning messages.

The current version of our tool is written in Python
and it is powered by spaCy8 NLP framework. Fol-
lowing text document analysis pipeline presented in
(Šenkýř and Kroha, 2018), for incompleteness re-
solving, we need preprocessing in the form of tok-
enization, sentence segmentation, part-of-speech tag-
ging, lemmatization, and dependencies recognition.
We reuse the already presented idea of a grammatical
inspection and sentence patterns following (Rolland
and Proix, 1992). We select the first group to present
a details of patterns usage.

6.1 Patterns of Group A

The search for nouns belonging to group A (Sec-
tion 4.1) can be done using a simple sentence pattern
presented in Fig. 2 that uses corresponding part-of-
speech tags and preposition dependency relation.

NOUN ADPOSITION
NN ADP

prep

Figure 2: Noun with Preposition Pattern.

If this pattern is matched, then no further action
is needed. Otherwise, we will look at the mentioned
preconfigured common noun and preposition colloca-
tion set to check if the tested noun is to be found to-
gether with a preposition or not.

To precise this method, in the case when the sim-
ple pattern is not matched, we use the white-list of
supporting patterns. The purpose of these patterns is

8https://spacy.io

that, during the testing phase, we indicate some repet-
itive parts of sentences that should be not indicated as
a warning. For example, we can show the white-list
pattern of common sentence start illustrated in Fig. 3.
When some of the white-list patterns is matched, no
warning is generated, and the analysis continues with
the next word.

In order to …
ADP NN PART VB

auxpobj
acl

Figure 3: “In Order to Action” Pattern.

7 DATA, EXPERIMENT, RESULTS

We tested our TEMOS tool on the selection of
four freely available specifications from the Internet
(Daimi et al., 2006), (Henning et al., 2008), (Geagea
et al., 2010), (Joldoshev et al., 2010). From every
document, we take only the text parts representing re-
quirements. In this experiment, we did not distinguish
between functional and non-functional requirements.

For each generated warning, we tried to decide
whether it could contribute to refining the require-
ments or not (and it is therefore false positive).
Above, in Table 1, we present the results of Group A
analysis in the form of the number of generated warn-
ings by our tool together with the information about
the number of false positive warnings. In some cases,
the warning was generated because of bad NLP cat-
egorization of part-of-speech tag or dependency tag.
We also stated this information in Table 1. The docu-
ments are ordered by the number of words devoted to
requirements.

The result of this experiment shows that for the
selected documents, the benefit of the grammatical
inspection analysis ranges between 60–82 % of rea-
sonable warnings. To be fair, it is needed to state that
documents also contain a glossary of used terms and
some of them also diagrams that can help clarify some
of the generated warnings. On the other hand, not all
stakeholders have to understand the diagram notation.

ICSOFT 2019 - 14th International Conference on Software Technologies

328

8 CONCLUSIONS

Because of the phenomena of inaccuracies in the tex-
tual requirements specifications, we follow our previ-
ous work and, in this contribution, we focus on the
problem of incompleteness. In Section 3, we pre-
sented illustrating examples of incomplete require-
ments and in Section 4, we discussed techniques how
to warn users about a potential problem.

Based on that, we extended our TEMOS tool with
the methods of grammatical inspection dedicated to
checking the usage of nouns (representing future in-
formation system entities) and verbs (representing fu-
ture relations and actions) together with the simple
methods dedicated to checking the incompleteness of
background generated UML class model in the form
of entities without attributes and entities with no rela-
tion. Therefore, we are able to check incompleteness
on the level of single requirement and on the level
of incomplete requirements specification as a whole.
Some of the proposed methods use ConceptNet se-
mantic network, BabelNet semantic network, and pre-
configured data from on-line dictionaries. Following
the presented experiment, we can conclude that also
methods of grammatical inspection can generate rea-
sonable warnings for the users.

Concerning our research questions, we mentioned
in Introduction in Section 1; there are the following
answers.

1. We argue that some incompleteness symptoms
can be indicated.

2. We developed new suitable methods, see Section
4, that generate warnings to the analyst. He or she
has to decide, in cooperation with stakeholders,
how to complete the text of requirements specifi-
cation.

In our further research, we extend the possibilities
of the textual requirements specification checking by
investigating formulations that concern the dynamic
UML model. The next problem, we have to solve is
traceability. We would like to have a clear overview,
which parts of the model will change after a specific
part of the textual requirements specification will be
modified.

So far, we have been dealing with UML class
model generation and ambiguity and incompleteness
indication. Another typical issue of textual require-
ments is also the problem of inconsistency. This topic
is the subject of our further research, too.

ACKNOWLEDGEMENTS

This research was supported by the grant
of Czech Technical University in Prague
No. SGS17/211/OHK3/3T/18.

REFERENCES

Bäumer, F. S. and Geierhos, M. (2016). Running Out of
Words: How Similar User Stories Can Help to Elab-
orate Individual Natural Language Requirement De-
scriptions. In Dregvaite, G. and Damasevicius, R., ed-
itors, Information and Software Technologies, volume
639, pages 549–558. Springer International Publish-
ing, Cham.

Bäumer, F. S. and Geierhos, M. (2018). Flexible Ambiguity
Resolution and Incompleteness Detection in Require-
ments Descriptions via an Indicator-Based Configura-
tion of Text Analysis Pipelines. In Proceedings of the
51st Hawaii International Conference on System Sci-
ences, pages 5746–5755.

Bäumer, F. S., Kersting, J., and Geierhos, M. (2019). Nat-
ural Language Processing in OTF Computing: Chal-
lenges and the Need for Interactive Approaches. Com-
puters, 8(1):14.

Daimi, K., Snyder, K., James, R., and Park, A. (2006). Re-
quirements Engineering for E-Voting Systems. Avail-
able from: https://pdfs.semanticscholar.org/318f/
989bc774c9c3e907c470ebb3b1016672f679.pdf.

Eckhardt, J., Vogelsang, A., Femmer, H., and Mager, P.
(2016). Challenging Incompleteness of Performance
Requirements by Sentence Patterns. In 2016 IEEE
24th International Requirements Engineering Confer-
ence (RE), pages 46–55, Beijing, China. IEEE.

Fabbrini, F., Fusani, M., Gnesi, S., and Lami, G. (2001). An
Automatic Quality Evaluation for Natural Language
Requirements. In Proceedings of the Seventh Interna-
tional Workshop on Requirements Engineering: Foun-
dation for Software Quality (REFSQ), volume 1.

Femmer, H., Méndez Fernández, D., Wagner, S., and Eder,
S. (2017). Rapid Quality Assurance with Require-
ments Smells. Journal of Systems and Software,
123:190–213.

Friesen, E., Bäumer, F. S., and Geierhos, M. (2018). COR-
DULA: Software Requirements Extraction Utilizing
Chatbot as Communication Interface. In Schmid, K.,
Spoletini, P., Ben Charrada, E., Chisik, Y., Dalpiaz,
F., Ferrari, A., Forbrig, P., Franch, X., Kirikova, M.,
Madhavji, N., and et al.Editors, editors, Joint Pro-
ceedings of REFSQ-2018 Workshops, Doctoral Sym-
posium, Live Studies Track, and Poster Track co-
located with the 23rd International Conference on
Requirements Engineering: Foundation for Software
Quality (REFSQ 2018). CEUR-WS.org.

Geagea, S., Zhang, S., Sahlin, N., Hasibi, F.,
Hameed, F., Rafiyan, E., and Ekberg, M.
(2010). Software requirements specification:
Amazing lunch indicator. Available from:

Problem of Incompleteness in Textual Requirements Specification

329

http://www.cse.chalmers.se/∼feldt/courses/reqeng/
examples/srs example 2010 group2.pdf.

Geierhos, M., Schulze, S., and Simon Bäumer, F. (2015).
What Did You Mean? Facing the Challenges of User-
generated Software Requirements. In Proceedings
of the International Conference on Agents and Arti-
ficial Intelligence, pages 277–283, Lisbon, Portugal.
SCITEPRESS – Science and and Technology Publi-
cations.

Henning, T., Keehn, D., Thompson, J., and Wilder-
moth, M. (2008). Software Requirements Specifica-
tion: Restaurant Menu & Ordering System. Avail-
able from: https://kungfumas.files.wordpress.com/
2017/09/099.pdf.

Huertas, C. and Juárez-Ramı́rez, R. (2012). NLARE, A
Natural Language Processing Tool for Automatic Re-
quirements Evaluation. In Proceedings of the CUBE
International Information Technology Conference on
- CUBE ’12, pages 371–378, Pune, India. ACM Press.

Huertas, C. and Juárez-Ramı́rez, R. (2013). Towards Ass-
esing the Quality of Functional Requirements Using
English/Spanish Controlled Languages and Context
Free Grammar. In The Third International Conference
on Digital Information and Communication Technol-
ogy and its Applications (DICTAP2013), pages 234–
241.

Joldoshev, E., Matar, H. S., Özkan, M. B., and Lutin,
H. (2010). Software Requirements Specification
for Online National Election Voting. Available
from: https://senior.ceng.metu.edu.tr/2011/iteam4/
documents/srs-iTeam4.pdf.

Navigli, R. and Ponzetto, S. P. (2012). BabelNet: The au-
tomatic construction, evaluation and application of a
wide-coverage multilingual semantic network. Artifi-
cial Intelligence, 193:217–250.

Rodriguez, D. V., Carver, D. L., and Mahmoud, A. (2018).
An Efficient Wikipedia-Based Approach for Better
Understanding of Natural Language Text Related to
User Requirements. In 2018 IEEE Aerospace Confer-
ence, pages 1–16, Big Sky, MT. IEEE.

Rolland, C. and Proix, C. (1992). A Natural Language
Approach for Requirements Engineering. In Ad-
vanced Information Systems Engineering, pages 257–
277, Berlin, Heidelberg. Springer.

Šenkýř, D. and Kroha, P. (2018). Patterns in Textual Re-
quirements Specification. In Proceedings of the 13th
International Conference on Software Technologies,
pages 197–204, Porto, Portugal. SCITEPRESS – Sci-
ence and Technology Publications.

Šenkýř, D. and Kroha, P. (2019). Patterns of Ambiguity
in Textual Requirements Specification. In Rocha, Á.,
Adeli, H., Reis, L. P., and Costanzo, S., editors, New
Knowledge in Information Systems and Technologies,
volume 1, pages 886–895, Cham. Springer Interna-
tional Publishing.

Speer, R. and Havasi, C. (2012). Representing General
Relational Knowledge in ConceptNet 5. In Proceed-
ings of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC-2012), pages

3679–3686, Istanbul, Turkey. European Language Re-
sources Association (ELRA).

ICSOFT 2019 - 14th International Conference on Software Technologies

330

