
Online Encoder-decoder Anomaly Detection using Encoder-decoder
Architecture with Novel Self-configuring Neural Networks & Pure

Linear Genetic Programming for Embedded Systems

Gabrielė Kasparavičiūtė1,2, Malin Thelin3, Peter Nordin1,3, Per Söderstam3, Christian Magnusson3

and Mattias Almljung3

1Chalmers University of Technology, Chalmersplatsen 4, Gothenburg, Sweden
2University of Gothenburg, Rännvägen 6B, Gothenburg, Sweden

3Semcon AB, Lindholmsallén 2, Gothenburg, Sweden

Mattias.Almljung}@semcon.com

Keywords: Encoder-decoder, Anomaly Detection, Linear Genetic Programming, Evolutionary Algorithm, Genetic
Algorithm, Embedded, Self-configuring, Neural Network.

Abstract: Recent anomaly detection techniques focus on the use of neural networks and an encoder-decoder architec-
ture. However, these techniques lead to trade offs if implemented in an embedded environment such as high
heat management, power consumption and hardware costs. This paper presents two related new methods for
anomaly detection within data sets gathered from an autonomous mini-vehicle with a CAN bus. The first
method which to the best of our knowledge is the first use of encoder-decoder architecture for anomaly de-
tection using linear genetic programming (LGP). Second method uses self-configuring neural network that
is created using evolutionary algorithm paradigm learning both architecture and weights suitable for embed-
ded systems. Both approaches have the following advantages: it is inexpensive regarding resource use, can
be run on almost any embedded board due to linear register machine advantages in computation. The pro-
posed methods are also faster by at least one order of magnitude, and it includes both inference and complete
training.

1 INTRODUCTION

The complexity of modern embedded systems such as
vehicle systems have increased over the past decade,
in part due to the increasing amount of sensors (Hegde
et al., 2011). As a consequence, computational effort
of the control network of vehicle systems has become
a problem, with implications on battery management,
weight, price etc. Furthermore it has become difficult
to be able to keep track of the total number of system
errors or anomalies, which tend to accumulate with
additional complexity. Thus, there is a risk that an
embedded system such as a vehicle deviates from its
expected values without alarms being raised. Further-
more, current methods of anomaly detection are both
time and power consuming processes and/or restricted
in the anomalies they can detect.

Unexpected behaviours are often interchange-
ably called errors, anomalies, outliers, or exceptions.
Anomaly detection is the act of detecting a deviation

from the anticipated value; many times referred to as
the data mean behaviour (Chandola et al., 2009). It
is used in different fields (and with slightly different
meanings) in, e.g., network intrusion detection (Tay-
lor et al., 2015), motor abnormalities in unmanned
vehicles (Lu et al., 2018), fraud detection (Ahmed
et al., 2016), medical anomaly detection (Pachauri
and Sharma, 2015), and the controller area network
bus interference (Hangal and Lam, 2002). It is im-
portant to clarify that none of these examples use an
encoder-decoder architecture.

There is a wide variety of techniques to discover
anomalies. Some of these techniques have been de-
veloped for certain domains. Lately a technique with
a wide applicability has become popular: deep neu-
ral networks (Sabokrou et al., 2017). More specif-
ically an encoder-decoder anomaly detection system
(EncDecAD) using deep neural networks. However,
there are some major issues with the use of this tech-
nique. For example, within the automotive industry,

Kasparavičiūtė, G., Thelin, M., Nordin, P., Söderstam, P., Magnusson, C. and Almljung, M.
Online Encoder-decoder Anomaly Detection using Encoder-decoder Architecture with Novel Self-configuring Neural Networks Pure Linear Genetic Programming for Embedded Systems.
DOI: 10.5220/0008064401630171
In Proceedings of the 11th International Joint Conference on Computational Intelligence (IJCCI 2019), pages 163-171
ISBN: 978-989-758-384-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

163



Figure 1: Crossover example in linear genetic program-
ming.

to be able to have a capable deep neural network ar-
chitecture in a vehicle requires high power consump-
tion and thus, creates a heating, price and efficiency
issue.

As a result, this paper introduces the first encoder-
decoder anomaly detection system (EncDecAD) us-
ing linear genetic programming (LGP) where the
trained model is run on an embedded device. Ad-
ditionally, this paper showcases an embryo of evolu-
tionary technique in self-configuring neural networks
and simultaneous training as a variant of the first lin-
ear genetic programming method. Vehicle data for
both experiments was obtained from an autonomous
mini-vehicle that was run on different tracks; the first
time the mini-vehicle had no abnormalities, the sec-
ond time the suspension was loosened on the vehicle
to create an anomaly in the data; the third time the ve-
hicle had a resistor soldered in series with the battery
of the vehicle. The results show promising potential
for the presented techniques.

2 RELATED WORK

2.1 Linear Genetic Programming

Linear genetic programming (LGP) is an artificial in-
telligence technique that uses a sequence of simple
instructions to solve a problem (Banzhaf et al., 1998).
The problem with this solution is finding the best
function that represents the given data. The ability
to find the correct function to solve the problem de-
pends on the expressiveness of the instructions and
the evolutionary methods. LGP has a wide applica-
tion domain, e.g., it has been used in prediction of
hydrological processes (Mehr et al., 2013), software
optimization (Langdon and Harman, 2015), feature
learning for image classification (Shao et al., 2014),
and miniature robot behaviours(Nordin and Banzhaf,
1995).

LGP is built on Darwin’s principle of natural se-
lection and evolution (Banzhaf et al., 1998). A popu-
lation is created with random individuals that compete
against each other by applying a chosen fitness func-
tion. It has been an established practice to use a stan-
dard fitness function. This means that the closer the

fitness value is to zero, the better an individual scores
among the population. The evolutionary concepts in
LGP include selection, mutation, and crossover, and
are defined as follows:
Representation: LGP utilizes an imperative program-
ming concept which is composed of a set of registers
and basic instructions. Execution of the individual re-
spects the order of instructions. The basic example
of such an instruction is a = b+ c, where a, b, and c
are all variables. In this case, a is the register that is
being written to, b and c are operands that are sepa-
rated by an operator +. In genetic algorithm terms,
one instruction is called a gene. This example shows
a 3-register (a, b, c) instruction, where it operates on
two arbitrary variables (b and c). Operands can be
swapped with constants, e.g., a = 5+ c. These con-
stants belong to what is known as the terminal set.
The collection of operators that can be selected is
known as the function set. Chromosome or individual
is a number of instructions followed one after another,
e.g., (a = b+ c,b = a− c,a = 2∗a).
Initialization: The number of initialized individuals
is chosen by the population size. Each individual has
a set length. Individuals (usually) consist of ineffec-
tive instructions that have no impact on the end fitness
value, e.g., a = a+0. Such instructions are called in-
trons.
Selection Operators: One of the most popular se-
lection operator is called the steady-state tournament
selection. In this selection usually four tournament
members are chosen randomly from the population.
They compete among each other and the two best
individuals are retained and taken to the crossover
and mutation methods. The children received after
the previously discussed methods overwrite the losers
in the tournament and take their respective positions
in the population. The advantage of the steady-state
tournament selection is that it does not require indi-
vidual comparison among all individuals in a popula-
tion. The experiment ran for EncDecAD utilizes this
tournament selection.
Variation Operators: There are a few variation opera-
tors. In crossover, two individuals (sometimes called
parents) are chosen and portions of each individual
are exchanged. Figure 1 shows an example of a one
point crossover. The idea behind mutation is that
any component of the instruction (destination register,
operands, and operator) can be changed for another
alternative. If the operator is changed into one of the
possible alternatives, then these substitutes are called
function sets. The most basic function sets include
multiplication, summation, division, and subtraction.
For example, in the following instruction a = a+ b,
the operator can be randomly assigned to division,

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

164



Figure 2: An example of encoder-decoder architecture
based on (Cho et al., 2014).

thus the instruction becomes a = a/b. The probabil-
ities of both, crossover and mutation, are distinct pa-
rameters often called pCross and pMut respectively.

2.2 Encoder-decoder Anomaly
Detection

The proposed anomaly detection techniques are based
on an autoencoder (see fig. 2). It has two parts: en-
coder and decoder, which are used to learn and recon-
struct the behaviour of the chosen system and later use
the reconstructed error to expose an anomaly (Malho-
tra et al., 2016). In some literature this is also referred
to as a deviation based anomaly detection (An and
Cho, 2015). The input data of an autoencoder is also
the target data. Therefore, at first an autoencoder is
run on normal data sequences that have no anomalies.
Later on, when the model has learned the normal be-
haviour of the system, the same model is run on data
that has anomalous sequences. Thus, an autoencoder
is trained by unsupervised learning.

There are different techniques to perform anomaly
detection, one being neural networks (Xu et al., 2015;
An and Cho, 2015; Tsai et al., 2009).

2.3 Neural Network Architecture
Evolution

Neural network architecture is defined by the design
of how many neurons (circles) are connected together
by synapses (lines) (see fig. 3). The function f is an
activation function. For example, ReLu is an activa-
tion function, where y = max(0,x). This means that
any value below zero will be zero after running activa-
tion function and any number above zero is returned.
Weights are described as a unit that determine the
strength of each connected synapse. Bias is an addi-
tional unit that modifies the output. Different type of
neural network usage brought strong results in various

Figure 3: An example of a traditional neural network, based
on (Hsu et al., 1995).

disciplines such as diagnosis of myocardial infarc-
tion (Baxt, 1991), speech recognition (Mikolov et al.,
2010), engine fault detection (Ahmed et al., 2015).
Other researchers have evolved the architecture of
neural networks with promising outcome (Rawal and
Miikkulainen, 2018; Assunção et al., 2018; Miikku-
lainen et al., 2019; Dabhi and Chaudhary, 2015). A
portion of these papers show recent work on train-
ing the weights and biases with evolutionary systems
(Tsai et al., 2006; Zhang and Suganthan, 2016). An-
other research shows examples of evolving neural net-
work architecture (Such et al., 2017). Finally, some
authors have achieved successful showcases of using
evolutionary approaches to find both architectures and
weights (Schaffer et al., 1992; Koza and Rice, 1991).

3 EXPERIMENTAL VALIDATION

This paper studies two EncDecAD methods that uti-
lize evolutionary techniques. The first method uses
LGP and was executed both offline and online while
the second method uses self-configuring neural net-
work that is created using evolutionary paradigms.
The offline training means that the training has been
conducted on a laptop while the validation has been
run on the embedded device. Online training means
that both the training and the validation have been per-
formed on the embedded device.

The suggested method for anomaly detection is
much faster than a conventional tuned neural network
alternative. The neural network with autoencoder ar-
chitecture was chosen to solve the same issue. It had
the following dimensionality of hidden layers: [19,
15, 11, 7, 3, 7, 11, 15, 19]. The neural network was
created using Tensorflow. Its parameters are as fol-
lows: ReLu activation function, loss function RMSE,
learning rate 0.01, with enabled dropout. This neural
network’s architecture requires 1187 calculations to
evaluate a new input, while our proposed method re-
quires maximum 50 (after the introns were removed).
Thus our proposed anomaly detection method is at

Online Encoder-decoder Anomaly Detection using Encoder-decoder Architecture with Novel Self-configuring Neural Networks Pure
Linear Genetic Programming for Embedded Systems

165



least 20 times faster.
Furthermore, one of the motivations to use the

combination of encoder-decoder architecture and lin-
ear genetic programming is that it does not require
a high power supply, costly computer, labeling of
the data, nor it produces heating problems due to it’s
speed.

Authors of this paper propose a method to evolve
weights and the architecture using a self-configuring
neural network. As the results later in this paper show,
the proposed technique is efficient to execute due to
the use of simple instructions compared to running
advanced structures like lists in computer systems that
take long time. The parameters for the experiments
have been chosen after a comparison within a few
runs.

The online (i.e., on-board) experiments were run
on a single board computer called STM32-F407.
This development board has the following features;
STM32F407ZGT6 Cortex-M4 210 DMIPS, 1MB
Flash, and 196KB RAM (Olimex, 2018).

3.1 Collection of Data

The data used for training and testing of the proposed
anomaly detection model was gathered from a self-
driving mini-vehicle. The used mini-vehicle was fully
equipped with sensors and a CAN bus (a vehicle bus
standard) just like its real-size counterpart (Di Natale,
2000). The vehicle completed a total of 12 runs, each
time with a randomized route where the vehicle ex-
hibited both different speeds and various sharp and
wide turns.

Twelve runs of approximately 3 min duration each
were done with an induced anomaly. The anomaly
data consists of two data sets: one where the designed
error was produced by loosened suspension on one of
the front wheels, and another with a resistor soldered
in series with the battery of the vehicle.

The collected data included the following vari-
ables: temperature, battery current, motor current,
battery voltage, speed, roll, pitch, yaw, three ac-
celerometer values, three gyroscope values, three
magnetometer values, tachometer, and commanded
steering angle.

3.2 Validation through Offline Training

This subsection describes the settings used in the ini-
tial experiment validation, where the training has been
applied offline. This step has been done as a proof of
concept.

The first step to designing an autoencoder with
LGP is to choose the common parameters for the

model. Table 1 lists the parameters for all the runs.
The fitness function chosen for the autoencoder can
be followed in equations 1, 2, and 3. The individ-
ual length size is divided into two parts: encoder and
decoder. Hereby the first half of the individual, i.e.,
1500 instructions, is used to find the proper encoder
values while the other half of the individual utilizes
the previously found encoder values with the goal to
reconstruct the original input-values.

ESx = α

p

∑
i=1

EncoderValuei (1)

REx =

√√√√1
k

k

∑
i=1

(Xi−X ′i )
2 +ESx (2)

Fitness =
1
n

n

∑
i=1

REi (3)

where:
- ES is the encoder-sum.
- p is the number of encoder registers.
- α is the chosen number which provides a weight

to the feature vector.
- EncoderValuei is the element in the feature vec-

tor (see fig.2).
- RE is the row error, where row is the input array.

k is the number of decoder registers.
- Xi is the decoder register i.
- X ′i is the groundtruth value of the register i.
- n is the number of input rows/arrays.
In other words, when an individual receives the

first row of the input array, it only executes half of
instructions of one individual. Since the chosen en-
coder register number in the presented example is 3,
the encoder-sum adds the first 3 values of the output
which is equal to the first equation. Then these first
three values are saved and the other register values
are set to zero (in the presented example this becomes
the decoder register’s array). This allows the second
half of the individual to fill the rest of the values itself.
When this is done, the second equation is used where
it calculates the root mean squared error of the cal-
culated decoder register’s value and the input value,
i.e., groundtruth value. The addition of the encoder-
sum in the second equation plays a role. By provid-
ing the encoder-sum to this equation, it indicates to
the fitness function that the encoder values need to
be significant. If this was not be added, the autoen-
coder would not work, since the feature vector would
be random numbers that do not provide anything to
the fitness function. Finally, when all row errors have
been calculated the total fitness for the individual is
the average of these errors, see equation 3. This im-
plies that the closer the output values are to the input

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

166



Table 1: LGP parameters used in two scenarios: the validation through offline training and validation through an online
(on-board) embedded training.

Parameter Offline training settings Online training settings
Fitness function Standardized, RMSE Standardized, RMSE

Terminal set [-5, 5] [-1, 1]
Function set +, -, *, / +, -, *

Safe division enabled? Yes No
Number of encoder registers 3 3
Number of decoder registers 19 19

Population size 50 50
Crossover probability 0.6 0.6
Mutation probability 0.05 0.05

Selection Steady-state tournament Steady-state tournament
Number of tournament members 4 4

Termination criteria None None
Individual length 3000 50

Undefined constant 1000000 None
Alpha 0.01 0.01

values the closer the autoencoder fitness value will be
to zero.

The function set included a safe division
(Brameier and Banzhaf, 2007). This means that if
an instruction includes a division by zero, it sets the
source register to an undefined constant. In this ex-
periment’s case that constant is 1000000.

Termination criteria is set to none as the algorithm
was allowed to run the set number of generations in-
stead of stopping it when it reached some value of
fitness function. This enabled the algorithm to reach
its best fitness function without making any assump-
tions.

The training part of the initial anomaly detection
system was executed on a computer with the fol-
lowing specifications: Intel(R) Core(TM) i7-6820HQ
CPU @ 2.70GHz, 16.0 GB installed memory (RAM),
64-bit Operating System, Windows 10 OS. The train-
ing model was written in Python 3.6. It was trained
on half of the gathered data. The other half of the
data was left for validation.

3.3 Validation through On-board
Embedded Training

After the initial experiment was demonstrated to up-
hold the concept behind EncDecAD using evolution-
ary programming, the next step was to enable not only
the testing part, but also the training part on the em-
bedded device.

The fitness function is the same as used in the val-
idation through the offline training experiment. How-
ever, there are some substantial differences in the cho-
sen LGP parameters for this experiment (see table 1).

To start with, the individual was trained on a
smaller set of data, i.e., 2000 input rows of data, since
the on-board flash memory has a total storage space
of 1MB, and the space that was allocated for train-
ing data was 384KB. Secondly, the function set does
not include division. The reason for this approach is
that division requires 2-12 cycles on a Cortex-M pro-
cessor, while the other mathematical operations only
require 1 cycle. Lastly, the individual length has been
reduced to hold between 10 to 50 instructions.

The algorithm was developed in the C++ program-
ming language. The algorithm was trained on the
70% of non-faulty data and validated on the other
30% of unseen non-faulty data. The data arrays were
chosen randomly from a large pool of non-faulty data.

3.4 Validation through On-board
Embedded Training using
Evolutionary Approach to Neural
Networks

This paper proposes a novel solution to anomaly de-
tection. The idea behind it is to use an evolution-
ary approach to neural networks on the embedded
device. The concept follows the familiar encoder-
decoder anomaly detection architecture but this last
experiment employs virtual neural network compo-
nents in it. The evolutionary neural network is con-
structed as a restrained register machine and shares
the advantages with the unconstrained LGP method
but in addition generates a pure deep neural network
which may be more easily integrated in some data
science environments. What we do is that we re-
strain the functions set and grammar of the LGP in

Online Encoder-decoder Anomaly Detection using Encoder-decoder Architecture with Novel Self-configuring Neural Networks Pure
Linear Genetic Programming for Embedded Systems

167



such a way that everything that is produced is isomor-
phic to a standard neural network. Similarly any neu-
ral network can be expressed using this ”register ma-
chine syntax”. The motivation is twofold; first, many
data-scientists are more comfortable using what can
be shown to be equivalent to a neural network, and
second, there may be advantages in the learning time
of this constrained model as compared to the general
linear genetic programming approach (Brameier and
Banzhaf, 2001). The advantage of the neural model is
pure speculation based on information-theoretic rea-
soning and some early runs but are by no means
proven in this paper. The neural network approach
is more of a teaser in need of further investigation.

The differences of this neural network approach
as compared to the previous LGP approaches in this
paper are as follows: to start with, instead of using
the linear genetic programming instructions that are
generic on the form a = b− c, the proposed method
employs a different set of more constrained instruc-
tions. The instances are shown in the example instruc-
tions below.

Sx = Sy +Sz (4)

Sy = ReLu(Sx)∗wz +bq (5)

wz = wx +wy (6)

wz = wx ∗wy (7)

bq = bx +by (8)

bz = bx ∗by (9)

where:
- S is a weighted sum.
- w is a weight.
- b is a bias.
- ReLu is an activation function, where y =

max(0,x).
The weighted sum simply takes a register and adds

it to another, see instruction 4. The instruction in 5
employs the activation function called rectifier, mul-
tiplies it by a randomly chosen weight and adds a
bias. The last two instruction examples (see 8 and 9)

show the manipulation of weights, where the function
set consists of only multiplication and summation and
one of the weights has the possibility to change into
a terminal set (a constant that belongs to the chosen
range, e.g., see ”Terminal set” in table 1).

Second difference compared to the online train-
ing settings experiment is that the individual size is
increased from 50 to 200 where the first half manipu-
lates the encoder-related data and the other half han-
dles the decoder data.

Thirdly, self-configuring neural network approach
initializes another vector with weights and biases.
The usual number for weights is 3 and the values are
chosen between [−1,1]. Biases are initialized in the
same way. Lastly, the new approach was tested while
running for 100 000 generations.

The neural network starts with the required vec-
tors (weight and bias) initialization. The next step is
to run an activation function on all of the starting reg-
isters in order to progress from the input layer to the
hidden layer. After that any instruction takes place as
described before. If an instruction employs the acti-
vation function, this is a very similar step to creating
a new hidden layer in the neural networks (see fig. 3).
When 100 instructions have been run, only the first
three registers are kept and others are set to zero. This
way the neural network keeps the same EncDecAD
architecture. The last step in the decoder part is to run
an activation function again just as it is done on a tra-
ditional neural network. An example of this approach
is provided in the figure 4.

Given the provided weights and biases in the fig-
ure 4, the proposed evolutionary neural network fol-
lows the instructions on the right side of the figure.
The numbers next to the instructions show their ex-
ecution order in the figure. Let’s assume the input
layer consists of variables 3, 20, and -5. Due to sim-
plification all weights are set to value 1 and bias is
set to a value 0.1 (see the top blue box on the right of
figure 4). The first three instructions ((1) -(3)) in the
example are for running the activation function which
resembles adding another neural network layer in the

Figure 4: An example of a proposed evolutionary approach to neural network.

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

168



Table 2: Confidence intervals.

Experiment Data set
Sample
mean

Standard
deviation

Sample
size

Population mean
with 95% confidence

Online training
Validation data 2031 713 1000 [1987, 2076]

Resistance testing data 2406 715 1000 [2362, 2450]
Suspension testing data 2469 575 1000 [2433, 2504]

Online training with
self-configuring
neural network

Validation data 1153.72 486.84 1000 [120, 1180]
Resistance testing data 1513.12 397.81 1000 [1490, 1540]
Suspension testing data 1638.24 1180.20 1000 [1570, 1710]

Figure 5: Fitness scores for loosen suspension data in of-
fline training.

traditional scenario. Thus the input layer shown in
blue color progresses to the first hidden layer 1 in the
green color. For example, if the input variable is 3,
then after executing the first instruction (1), the result
is 3.1 (ReLu(3) retrieves value 3, which multiplied by
1 and added to 0.1, gives the result 3.1). Instruction
(5) executes a multiplication using a neuron Sx from
the hidden layer 1. The only way to create another
neural network layer is by running the activation func-
tion which is achieved by the last instruction (6).

4 RESULTS AND DISCUSSION

The data was processed as follows: when the best in-
dividual for the anomaly detection has been found, it
has been stripped off the introns. This resulted in the
individual that has been reduced in its size by over
120 times (from 3000 to 50). The next step was to
do a validation test and run the individual on unseen
non-faulty data. In the following step, the best indi-
vidual is tested on the faulty unseen data (right side of
the figures 5, 6, 7). This allows us to determine if the
algorithm managed to find the anomaly. This step is
executed on the embedded system (see section 3).

The initial step to check the validity of the re-
sults in offline training included displaying boxplots
of both results: normal (validation) data and the faulty
data (testing) of the loosened suspension data set.
The non-overlapping notches indicate that the sam-
ples come from populations with different medians

Figure 6: Fitness scores in online training.

(µValidation = 23382, µTesting = 85367). With a
95% confidence the validation population mean is be-
tween 23000 and 23800 while with the same 95%
confidence the testing population mean is between
84600 and 86100 (see table 2).

The anomaly detection method presented in the
online training made an assumption that the two data
sets (faulty and normal) were adequately different
from each other to be able to detect the anomaly.
Furthermore, the distributions of all acquired data in
this step followed a normal distribution. Therefore,
Welch’s t-test for independent samples following the
normal distribution data was applied.

The hypothesis is that fitness scores obtained in
the validation and testing differ significantly. The
mean of suspension fault (testing) differed signifi-
cantly to the mean of the normal validation data ac-
cording to a Welch’s t-test, t(1911.20) = -15.069, p
< .001, n = 1000. The mean between validation
(µ = 2031.7) and suspension fault data (µ = 2468.77)
is significant (see table 2).

The identical hypothesis was tested on the valida-
tion and resistance faulty data. The mean resistance
fault differed significantly to the mean of normal val-
idation data according to a Welch’s t-test, t(1997.99)
= -11.72, p < .001, n = 1000. The mean between nor-
mal validation (µ = 2031.7) and suspension fault data
(µ = 2406.44) is significant.

Confidence intervals are also shown in figure 6.
Since notches in all boxplots do not overlap, this con-
cludes that the data in all three sets belong to different
distributions.

Online Encoder-decoder Anomaly Detection using Encoder-decoder Architecture with Novel Self-configuring Neural Networks Pure
Linear Genetic Programming for Embedded Systems

169



Figure 7: Fitness scores in online training using self-
configuring neural network.

The proposed evolving neural network architec-
ture uses the same assumptions as above. The indi-
vidual was trained for 100 000 generations. The re-
sults are as follows: the Welch’s t-test between vali-
dation and suspension showed that t(1329) = 12.0014,
p < .001, n = 1000. The mean between normal
validation (µ = 1153.72) and suspension fault data
(µ = 1638.24) is significant. The results between val-
idation and resistance show similar outcome: t(1921)
= 18.0772, p < .001, n = 1000. The mean of resis-
tance data is µ = 1513.12 (see table 2). By conven-
tional criteria, this difference is considered to be ex-
tremely statistically significant.

Therefore the proposed EncDecAD using linear
genetic programming verifies these anomalies.

5 CONCLUSION AND FUTURE
WORK

This paper presents two approaches to detect anoma-
lies using encoder-decoder architecture while utiliz-
ing linear genetic programming. This is an improve-
ment compared to the conventional neural network
approach: firstly, the proposed method is faster by
at least one order of magnitude, and secondly, it can
be easily run on an embedded device. The first ap-
proach includes encoder-decoder anomaly detection
using linear genetic programming on an embedded
device. The second ”teaser” approach presented sug-
gests an approach using a self-evolving neural net-
work employing genetic algorithm to simultaneously
evolve the architecture, weights and bias.

The suggested approaches have been evaluated by
applying data from an autonomous multisensor mini-
vehicle with 19 features and a CAN-bus. The vehicle
has been run repeatedly on different paths to gather
data with induced anomalies, such as loosened sus-
pension and soldered resistor in series with the bat-
tery.

The experiments were carried out on an embedded
device, STM32-F407. The results included compar-
ing the distributions of the acquired fitness scores be-
tween the validation (normal) data and testing (faulty)
data. The proposed encoder-decoder anomaly de-
tection using linear genetic programming verifies
anomalies by applying Welch’s t-test on the two data
sets.

To our knowledge there is no previous research
where an encoder-decoder anomaly detection has
been performed using linear genetic programming.
The framework presented for detecting anomalies can
be applied to a broader class of problems including
sequence problems. This can open new opportunities
of having an anomaly detection system in any vehicle,
e.g., placing such a device in an electric vehicle and
allowing it to develop a model for the precise car or
driver.

Further experimental investigations include grad-
uating from encoder-decoder anomaly detection to
adversarial neural networks which may improve the
ability to identify which anomaly has been triggered.

REFERENCES

Ahmed, M., Mahmood, A. N., and Islam, M. R. (2016).
A survey of anomaly detection techniques in finan-
cial domain. Future Generation Computer Systems,
55:278–288.

Ahmed, R., El Sayed, M., Gadsden, S. A., Tjong, J., and
Habibi, S. (2015). Automotive internal-combustion-
engine fault detection and classification using artifi-
cial neural network techniques. IEEE Transactions on
vehicular technology, 64(1):21–33.

An, J. and Cho, S. (2015). Variational autoencoder based
anomaly detection using reconstruction probability.
Special Lecture on IE, 2:1–18.

Assunção, F., Lourenço, N., Machado, P., and Ribeiro, B.
(2018). Evolving the topology of large scale deep
neural networks. In European Conference on Genetic
Programming, pages 19–34. Springer.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D.
(1998). Genetic programming: an introduction, vol-
ume 1. Morgan Kaufmann San Francisco.

Baxt, W. G. (1991). Use of an artificial neural network for
the diagnosis of myocardial infarction. Annals of in-
ternal medicine, 115(11):843–848.

Brameier, M. and Banzhaf, W. (2001). A comparison of lin-
ear genetic programming and neural networks in med-
ical data mining. IEEE Transactions on Evolutionary
Computation, 5(1):17–26.

Brameier, M. F. and Banzhaf, W. (2007). Basic concepts
of linear genetic programming. Linear Genetic Pro-
gramming, pages 13–34.

Chandola, V., Banerjee, A., and Kumar, V. (2009).

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

170



Anomaly detection: A survey. ACM computing sur-
veys (CSUR), 41(3):15.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio,
Y. (2014). On the properties of neural machine trans-
lation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.

Dabhi, V. K. and Chaudhary, S. (2015). Empirical modeling
using genetic programming: a survey of issues and
approaches. Natural Computing, 14(2):303–330.

Di Natale, M. (2000). Scheduling the can bus with earliest
deadline techniques. In Proceedings 21st IEEE Real-
Time Systems Symposium, pages 259–268. IEEE.

Hangal, S. and Lam, M. S. (2002). Tracking down soft-
ware bugs using automatic anomaly detection. In Soft-
ware Engineering, 2002. ICSE 2002. Proceedings of
the 24rd International Conference on, pages 291–301.
IEEE.

Hegde, R., Mishra, G., and Gurumurthy, K. (2011). An
insight into the hardware and software complexity
of ecus in vehicles. In International Conference on
Advances in Computing and Information Technology,
pages 99–106. Springer.

Hsu, K.-l., Gupta, H. V., and Sorooshian, S. (1995). Arti-
ficial neural network modeling of the rainfall-runoff
process. Water resources research, 31(10):2517–
2530.

Koza, J. R. and Rice, J. P. (1991). Genetic generation of
both the weights and architecture for a neural network.
In Neural Networks, 1991., IJCNN-91-Seattle Inter-
national Joint Conference on, volume 2, pages 397–
404. IEEE.

Langdon, W. B. and Harman, M. (2015). Optimizing exist-
ing software with genetic programming. IEEE Trans-
actions on Evolutionary Computation, 19(1):118–
135.

Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., and Serikawa, S.
(2018). Motor anomaly detection for unmanned aerial
vehicles using reinforcement learning. IEEE internet
of things journal, 5(4):2315–2322.

Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agar-
wal, P., and Shroff, G. (2016). Lstm-based encoder-
decoder for multi-sensor anomaly detection. arXiv
preprint arXiv:1607.00148.

Mehr, A. D., Kahya, E., and Olyaie, E. (2013). Streamflow
prediction using linear genetic programming in com-
parison with a neuro-wavelet technique. Journal of
Hydrology, 505:240–249.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink,
D., Francon, O., Raju, B., Shahrzad, H., Navruzyan,
A., Duffy, N., et al. (2019). Evolving deep neural net-
works. In Artificial Intelligence in the Age of Neural
Networks and Brain Computing, pages 293–312. El-
sevier.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and
Khudanpur, S. (2010). Recurrent neural network
based language model. In Eleventh Annual Confer-
ence of the International Speech Communication As-
sociation.

Nordin, P. and Banzhaf, W. (1995). A genetic programming
system learning obstacle avoiding behavior and con-

trolling a miniature robot in real time. Univ., Systems
Analysis Research Group.

Olimex, L. (September, 2018). STM32-E407 development
board USER’S MANUAL. Olimex LTD.

Pachauri, G. and Sharma, S. (2015). Anomaly detec-
tion in medical wireless sensor networks using ma-
chine learning algorithms. Procedia Computer Sci-
ence, 70:325–333.

Rawal, A. and Miikkulainen, R. (2018). From nodes to
networks: Evolving recurrent neural networks. arXiv
preprint arXiv:1803.04439.

Sabokrou, M., Fayyaz, M., Fathy, M., and Klette, R. (2017).
Deep-cascade: Cascading 3d deep neural networks for
fast anomaly detection and localization in crowded
scenes. IEEE Transactions on Image Processing,
26(4):1992–2004.

Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992).
Combinations of genetic algorithms and neural net-
works: A survey of the state of the art. In Com-
binations of Genetic Algorithms and Neural Net-
works, 1992., COGANN-92. International Workshop
on, pages 1–37. IEEE.

Shao, L., Liu, L., and Li, X. (2014). Feature learning for im-
age classification via multiobjective genetic program-
ming. IEEE Transactions on Neural Networks and
Learning Systems, 25(7):1359–1371.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley,
K. O., and Clune, J. (2017). Deep neuroevolution: ge-
netic algorithms are a competitive alternative for train-
ing deep neural networks for reinforcement learning.
arXiv preprint arXiv:1712.06567.

Taylor, A., Japkowicz, N., and Leblanc, S. (2015).
Frequency-based anomaly detection for the automo-
tive can bus. In WCICSS, pages 45–49.

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009). In-
trusion detection by machine learning: A review. Ex-
pert Systems with Applications, 36(10):11994–12000.

Tsai, J.-T., Chou, J.-H., and Liu, T.-K. (2006). Tuning the
structure and parameters of a neural network by using
hybrid taguchi-genetic algorithm. IEEE Transactions
on Neural Networks, 17(1):69–80.

Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N. (2015).
Learning deep representations of appearance and mo-
tion for anomalous event detection. arXiv preprint
arXiv:1510.01553.

Zhang, L. and Suganthan, P. N. (2016). A survey of ran-
domized algorithms for training neural networks. In-
formation Sciences, 364:146–155.

Online Encoder-decoder Anomaly Detection using Encoder-decoder Architecture with Novel Self-configuring Neural Networks Pure
Linear Genetic Programming for Embedded Systems

171


