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Abstract: Market Timing is the capacity of deciding when to buy or sell a given asset on a financial market. Market Tim-
ing strategies are usually composed of components that process market context and return a recommendation
whether to buy or sell. The main issues with composing market timing strategies are twofold: (i) selecting the
signal generating components; and (ii) tuning their parameters. In previous work, researchers usually attempt
to either tune the parameters of a set of components or select amongst a number of components with prede-
termined parameter values. In this paper, we approach market timing as one integrated problem and propose
to solve it with two variants of Particle Swarm Optimization (PSO). We compare the performance of PSO
against a Genetic Algorithm (GA), the most widely used metaheuristic in the domain of market timing. We
also propose the use of trend representative testing to circumvent the issue of overfitting commonly associated
with step-forward testing. Results show PSO to be competitive with GA, and that trend representative testing
is an effective method of exposing strategies to various market conditions during training and testing.

1 INTRODUCTION

Trading in financial markets traces its history as far
back as the early 13th century. From humble begin-
nings where traders met to exchange basic commodi-
ties, financial markets have since evolved where se-
curities, stocks, bonds, commodities, currencies and
other financial instruments are traded electronically
within fractions of a second. A number of devel-
opments after the market crash of 1987 in the USA
heralded the birth of electronic exchanges, and usher-
ing with it a new form of trading: algorithmic trading
(Patterson, 2013). One of the issues faced by design-
ers of algorithmic trading systems is that of market
timing. Market timing is defined as the identification
of opportunities to buy or sell a given tradable item
in the market so as to best serve the financial goals of
the trader (Kaufman, 2013). A common approach de-
signers use to build strategies for market timing is to
use components that would take market data as input
and generate recommendations to buy, sell or do noth-
ing. A collection of these components would form the
core of the strategy, and it would be the job of the de-
signer to select which components to use and to tune
their parameters.

Since the introduction of electronic exchanges,
designers of algorithmic trading systems have in-

creasingly employed computational intelligence tech-
niques, one of which is Particle Swarm Optimiza-
tion (PSO). Despite its popularity in other domains,
PSO has seen limited use in the financial domain
and in particular within the market timing space.
This is compared with other metaheuristics such as
genetic algorithms (GA) and genetic programming
(GP). Within a few years of the introduction of elec-
tronic exchanges and trading in the mid 1990s, GA
and GP have been used to guide trading decisions and
form the core of market timing strategies. The ear-
liest PSO approach to market timing, on the other
hand, was introduced in 2011 (Briza and Naval Jr.,
2011). Compared to GA, PSO has seen relatively
limited adoption in the literature, despite PSO hav-
ing a performance advantage over GA according to
some studies (Hu et al., 2015; Soler-Dominguez et al.,
2017).

Recently, PSO was used to build market timing
strategies using six technical indicators and tested on
four stocks in a step-forward fashion (Mohamed and
Otero, 2018). In this paper, we conduct an extensive
study of the performance of PSO versus a standard
GA implementation. We selected a set of sixty three
signal generating components to evaluate how PSO
handles component selection and optimization com-
pared to a GA, the current incumbent in the domain.
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We also introduce the concept of trend representative
testing and apply it to overcome limitations with step-
forward testing – the current standard testing method
when it comes to market timing.

The remainder of the paper is structured as fol-
lows. In Section 2 we review the approach to formal-
ize the problem of market timing in such a fashion
so as to consider both the selection of signal generat-
ing components and the tuning of their parameters. In
Section 3 we cover related work done in the applica-
tion of metaheuristics to the problem of market timing
and the associated limitations. In Section 4 we intro-
duce the concept of trend representative testing and
discuss how it can potentially overcome limitations
with current testing standards. In Section 5 we discuss
how PSO and GA were adapted to tackle market tim-
ing. We discuss our experimental setup, present the
results obtained and provide a critique of the perfor-
mance of the various metaheuristics involved in Sec-
tion 6. Finally, in Section 7 we present a conclusion
and suggestions for future research.

2 MARKET TIMING

As discussed previously, market timing is the capac-
ity of deciding when to buy or sell a given security.
Traders in financial markets have continuously looked
for ways to best decide when to take action with a
given stock, and here we discuss the various schools
of thought that have emerged over time. The schools
of thought can be roughly categorized into two major
styles: technical analysis and fundamental analysis.

Technical analysis can be defined as the analy-
sis of a security’s historical price and volume move-
ments, along with current buy and sell offers, for
the purposes of forecasting its future price (Kaufman,
2013). The philosophy behind technical analysis is
built upon three pillars: price discounts all the infor-
mation we need to know about the traded security,
prices move in trends and history has a likelihood
of repeating itself. The first pillar assumes that all
the forces that can affect the price of a security have
been accounted for and already exerted their influence
when the actual trade took place. This includes the
psychological state of the market participants, the ex-
pectations of the various entities trading in that partic-
ular security, the forces of supply and demand, and the
current state of the entity which the stock represents
amongst other factors. It is therefore sufficient to only
consider price movements and their history, as they
are a reflection of all these forces and their influence.
The second pillar assumes that prices move in trends
based on the actions of traders currently dealing in

that security and their expectations. The third pillar
assumes that markets, presented with an almost simi-
lar set of stimuli and circumstances, have a tendency
of reacting in the same fashion as it had in previous
exposures. This was proven empirically in the his-
tories of various securities across many markets over
time as traders react in the same consistent fashion to
shifts in price.

Techniques employing technical analysis will of-
ten take the form of functions known as indicators.
Indicators will take in price history, along with a set
of parameters that govern various aspects of an indi-
cators behavior, and return a signal: an indication of
whether it is favorable to buy or sell at the current
moment. As an exhaustive list of all indicators cur-
rently available to the modern trader would easily fill
multiple volumes, it is beyond the scope of this paper.
Instead, the reader is directed to the works of Pring
(Pring, 2002) and Kaufman (Kaufman, 2013) for a
more detailed look at the world of technical analysis.

Fundamental analysis is the process of deriving
the value of a security’s value by analysis of the fi-
nancial state of the company it represents (Penman,
2013). This will include analyzing current and previ-
ous financial documents and accounting records for
the company, considering current management per-
sonnel and their performance in the past, sales perfor-
mance history, earning history, current market senti-
ment towards the company and macroeconomic con-
ditions, amongst many other factors. After consider-
ing these factors, analysis can arrive at a fair value
for the security and a projection for it moving for-
ward. Fundamental analysis is built on the core as-
sumption that a discrepancy occurs between a secu-
rity’s fair price and market price as the market moves
to close that gap. Recommendations for buying or
selling the security are therefore based on identifying
this discrepancy and how best to utilize it to achieve
returns. As the rate of release of information could
become an issue with some of the traditional infor-
mation sources, fundamental analysis has grown to
include techniques such as sentiment analysis over so-
cial media streams.

Instead of following a purest approach, a large
number of traders would base their strategies on tech-
niques from both schools. It is quite common for
traders to use fundamental analysis for portfolio com-
position, then use technical analysis for market tim-
ing. It would actually be prudent to use methods from
both schools to hedge the trader’s risk in one or more
of the components being mistaken or fed false data1,
and thus produce signals that might result in losses. In
this paper, we have chosen to focus on using technical
analysis indicators for the purposes of market timing.
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As alluded to earlier, a market strategy could be
built using a collection of components, where every
component t consumes information regarding a secu-
rity and returns a signal indicating whether to buy or
sell. A component’s signal is limited to three values:
1 for a buy recommendation,−1 for a sell recommen-
dation and 0 for a hold recommendation. Every com-
ponent will also have a weight and a set of parameters.
The parameters will control the behavior of that com-
ponent and are unique to every component type. The
weight controls how much influence the component
has on the overall signal produced by the candidate
solution. The overall signal of the candidate solution
is taken as the aggregation of weighted components,
and interpreted as follows: buy when positive, sell
when negative or hold otherwise. Formally, we can
present this formulation as follows:

solution = {w1t1, ...,wntn},∀ti : {t1
i , ..., t

x
i } (1)

signal =
n

∑
i=1

witi (2)

where x denotes the number of parameters for the
component at hand, w represents the weight assigned
to the component at hand, t represents a single com-
ponent and n is total number of components within the
solution. The weights for the components are all nor-
malized to be between 0 and 1, and have a total sum
of 1. As we are seeking to select the least possible
subset that achieves our set objectives, varying com-
binations of components, along with varying values
for component weights and parameters, will produce
a rich landscape of candidates that return different sig-
nal values for the same market conditions.

3 RELATED WORK

In two recent and comprehensive studies, Hu et al.
(Hu et al., 2015) and Soler-Dominguez et al. (Soler-
Dominguez et al., 2017) investigate the use of compu-
tational intelligence techniques in finance. While the
study by Soler-Dominguez et al. was more holistic
in its coverage, the study done by Hu et al. was fo-
cused on the use of computational intelligence in the
discovery of trading strategies. Both studies consid-
ered a large number of metaheuristics that belong un-

1An example of this would be using a purely funda-
mental approach while trading Enron before its crash and
bankruptcy in late 2001. A post-mortem investigation
by the U.S. Securities and Exchange Commision (SEC)
showed that the information published in the firm’s finan-
cial documentation were false, leading to investments by
market participants that were built on mislead assumptions.

der the computational intelligence umbrella, and that
included evolutionary algorithms (GA, GP, differen-
tial evolution), swarm intelligence (PSO, ACO, artifi-
cial bee colony optimization), stochastic local search
(simulated annealing, ILS, tabu search, GRASP),
fuzzy systems and neural networks amongst others.
Both studies cover a combined time span starting with
the early 1990’s and ending with recent times.

By surveying the techniques covered in both stud-
ies, we can see that genetic algorithms (GA), and to a
slightly lesser extent genetic programming (GP), are
the most applied metaheuristics when it comes to the
issue of market timing. One of the earliest works us-
ing GA was by Allen and Karjalanien (Allen and Kar-
jalainen, 1999). In it, Allen and Karjalanien use a
GA to develop trading rules based on technical anal-
ysis indicators, and benchmarked their results against
a buy-and-hold strategy and out of sample data. An-
other approach is to use GA to directly optimize the
parameters of one or more financial analysis indica-
tors, be they fundamental or technical in nature. Ex-
amples of such an approach can be seen in the work
of de la Fuente et al. (de la Fuente et al., 2006) and
Subramanian et al. (Subramanian et al., 2006) – the
latter tackling market timing as a multi-objective opti-
mization problem. Both of these approaches directly
encode the indicator parameters into the GA chromo-
some, and use the metaheuristic to arrive at the val-
ues for these parameters that produce the best results.
Other approaches since then use GA to improve the
fitness of another primary metaheuristic in charge of
producing the trading signals by optimizing its param-
eters. These primary, signal-producing metaheuris-
tics included fuzzy systems, neural networks, self-
organizing maps (SOM) and a variety of classification
algorithms. A thorough breakdown of such synergis-
tic approaches can be seen in (Hu et al., 2015). More
recent approaches using GA to tackle market timing
can be seen in the work of Kampouridis and Otero
(Kampouridis and Otero, 2017) and Kim et al. (Kim
et al., 2017).

Particle swarm optimization (PSO) has not seen
the popularity of GA and GP in the space of market
timing. Though introduced much later than GA, PSO
has started seeing some adoption in the area. The
earliest PSO approach to tackle market timing was
proposed by Briza and Naval, Jr. (Briza and Naval
Jr., 2011). Inspired by Subramanian and colleagues
(Subramanian et al., 2006), the authors optimized
the weights of instances of five technical indicators
who had preset parameter values according to indus-
try wide standards. All the weighed instances of the
technical indicators would then produce a cumulative
signal whether to buy or sell. The authors approached
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the issue of market timing as a multi-objective opti-
mization problem, and optimized for percentage of
return and the Sharpe ratio. Chakravarty and Dash
(Chakravarty and Dash, 2012) also used PSO for mar-
ket timing by utilizing it to optimize a neural network
capable of predicting movements in an index price.
Similarly Liu et al. (Liu et al., 2012) used PSO to op-
timize a neural network that generated fuzzy rules for
market timing and reported positive results.

More recently, Chen and Kao (Chen and Kao,
2013), used PSO to optimize a system that relied on
fuzzy time series and support vector machines (SVM)
to forecast the prices of an index for the purposes of
market timing. Ladyzynski and Grzegorzewski (La-
dyzynski and Grzegorzewski, 2013) used a combina-
tion of fuzzy logic and classification trees to identify
price chart patterns, while PSO is used to optimize the
parameters of the aforementioned hybrid approach. In
their results, the authors have noted that use of PSO
vastly improved the predictive capacity of the fuzzy
logic and classification tree hybrid, and that the over-
all system proved to be promising. In the work by
Wang et al. (Wang et al., 2014), a combination of
a reward scheme and PSO was used to optimize the
weights of two technical indicators. The Sharpe ratio
was used to measure the performance of the hybrid,
and in their results, the authors note that their system
outperformed other methods such as GARCH. Bera
et al (Bera et al., 2014) used PSO to only optimize
the parameters of a single technical indicator. Al-
though trading on the foreign exchange instead of the
stock exchange, the authors note that their system has
shown to be profitable in testing. Sun and Gao (Sun
and Gao, 2015) used PSO to optimize the weights on
a neural network that predicted the prices of securi-
ties on an exchange. The authors note that their sys-
tem was able to predict the price with an error rate
of around 30% when compared to the actual prices.
Karathanasopoulos and colleagues (Karathanasopou-
los et al., 2016) used PSO to optimize the weights
on a radial basis function neural network (RBF-NN)
that is capable of predicting the price of the crude oil
commodity. Though not on the stock exchange, the
trading of commodities occurs on similar exchanges
and uses many of the same market timing techniques.
Compared to two classical neural network models, the
authors note that their PSO-augmented approach sig-
nificantly outperformed them in predictive capacity.

In the nine discussed publications on the use of
PSO in market timing, we can see a salient trend:
PSO is used in a secondary role to optimize a primary
metaheuristic or computational intelligence technique
that is responsible for signal generation. There are
only three exemptions: (Briza and Naval Jr., 2011),

(Wang et al., 2014) and (Bera et al., 2014). In these
three publications, the authors used PSO as the only
metaheuristic, and within them PSO was either used
to optimize the weights of a set of technical indicators
or their parameters, but not both in unison. The only
attempt we are aware of that considers both the se-
lection of technical indicators and optimize their pa-
rameters was by Mohamed and Otero in (Mohamed
and Otero, 2018). In it, the authors used PSO to both
optimize the parameters of six technical indicators, as
well as tune the weights of the generated signals and
prune ineffective ones. They tested their work against
four stocks and show that using PSO was a viable ap-
proach albeit with some caveats: only a limited num-
ber of indicators was used (6 in total); a small number
of datasets (4 in total); and no baseline algorithm is
used to assess the performance of PSO.

The work proposed in this paper addresses limita-
tions identified in the literature so far: (1) it considers
the optimization of both selection of technical indica-
tors and their parameter values; and (2) avoid the ten-
dency of strategies to overfit when using step-forward
testing by proposing the use of trend representative
testing.

4 TREND REPRESENTATIVE
TESTING

The prominent method of testing a market timing
strategy in the literature surveyed is a procedure
known as step-forward testing (Kaufman, 2013; Hu
et al., 2015; Soler-Dominguez et al., 2017). In step-
forward testing, a stream of security data is divided
chronologically into two sections: the earlier section
for training and the later for testing. Although rela-
tively easy to implement, this approach has a number
of shortcomings. During training with this method,
the training mechanism might only be exposed to the
upwards, downwards or sideways trends available in
the data. This raises the likelihood of the strategy pro-
duced to be overfit to one of those trends only and the
chances of the strategy performing poorly in opposite
trends. For example, if during training, all the data
available represented uptrends, then a strategy trained
with such data would produce poor results in a down-
trend, and vice versa. Standard strategies taken during
training, such as k-fold cross validation, are not easily
applicable due to the structure of the data.

In order to overcome the limitations associated
with step-forward testing, we propose the use of trend
representative testing, as suggested by domain experts
(Kaufman, 2013). The idea behind trend representa-
tive testing is to have a library of security data that
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represents all three trends at various intensities and
time lengths. Exposing strategies to these various
trends during training improve their chances of per-
forming better under numerous market conditions.

The process of building the trend representative
dataset is as follows. First, raw security data is down-
loaded from a publicly available data provider. Sec-
ond, this data is scanned for price shocks, and when
one is detected, the raw data is divided into two cords
– one before and one after the price shock respec-
tively. The reason we remove price shocks is that
they are outlier events, and including them in training
data would imply that these highly irregular and very
disruptive events can be readily predicted, which is
not the case. Besides being catastrophic events, price
shocks are rare and training a strategy to use them
would be highly impractical. Price shocks are defined
as price actions that are five times the Average True
Range (ATR) within a short period of time (Kaufman,
2013). The cords are then subsampled with moving
sliding windows of various sizes to produce strands
that can be used for training and testing. The final
step is to categorize these strands into upwards, down-
wards and sideways trends based on the Directional
Index technical indicator (Pring, 2002) to ascertain in-
tensity and direction.

In order to use this new dataset, we propose ran-
domly picking a representative upwards, downwards
and sideways strand from the pool of strands desig-
nated for testing. This triplet is then used by the al-
gorithm within an iteration to measure the fitness of
its candidate solutions. First a candidate solution is
tested against each individual strand, and the results
averaged to arrive at the final fitness for that candi-
date within that particular iteration. After all the can-
didates for the iteration have been assessed, a new
triplet is selected for the next iteration and the pro-
cess is repeated until the algorithm has completed its
run. The idea behind trend representative testing is
that we want discourage niching or specializing in one
particular trend type and instead promote discovering
market timing strategies that fair well against various
market conditions.

5 METAHEURISTICS AND
MARKET TIMING

In this section we will explore how to encode our mar-
ket timing formalization, explaining how the meta-
heuristics were adapted to use this encoding and
tackle the problem of market timing.

Figure 1: An example of an encoded candidate solution
with three components.

5.1 Individual Representation and
Fitness

Before discussing how the metaheuristics were
adapted to tackle market timing with the aforemen-
tioned formalization, let us first consider how we can
encode a candidate solution and assess the fitness of
these individuals. The first step to work with the pro-
posed formalization of market timing is to find an ap-
propriate encoding for candidate solutions. A candi-
date solution would be a collection of signal gener-
ating components, each with a weight and set of pa-
rameters. For example, if we had three signal generat-
ing components such as the technical indicators Mov-
ing Average Converge Diverge (MACD), the Relative
Strength Indicator (RSI) and the Chaikin Oscillator
(Chaikin), we could possibly have a candidate solu-
tion of:

0.3×MACD(Fast Period = 12,Slow Period = 27,
Smooth Period = 9)

+0.2×RSI(Overbought = 70,Oversold = 30,
Period = 14)

+0.5×Chaikin(Fast Period = 3,Slow Period = 10)

where the number preceding the indicator represents
its weight and the values in the brackets represent the
values of parameters per indicator. A visual example
can be seen in Figure 1.

As the metaheuristics used are all based on a pop-
ulation of individuals, where each individual repre-
sents a candidate solution, we choose to encode a
candidate solution as a multi-tier associative array.
The top level binding associates an indicator identifier
with a set of of its parameters. The bottom level bind-
ing associates a parameter identifier with its value.
These parameters are dependent on indicator type, but
all indicators have an instance of a weight parameter.

We choose to encode individuals in this manner
as this allows us the flexibility of using as many com-
ponents as we would like, without having to worry
about the type and amount of parameters per com-
ponent used or memorize a mapping of positions as
would have been the case of using an array. The se-
mantics of how to handle the components and tune the
weights and parameters is then left to be implemented
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in the metaheuristics, as will be discussed shortly. A
new candidate solution is generated by instantiating
components from the available catalog with random
values for the parameters and adding it to the dictio-
nary representing the individual.

As for assessing the fitness of an individual, we
chose to maximize the Annualized Rate of Return
(AROR) generated by backtesting the individual at
hand. Backtesting would simulate trading based on
the aggregate signal produced by a solution over a
preset time period for a given asset. As for AROR,
this can be defined as:

ARORsimple =
En

E0
× 252

n
(3)

where En is final equity or capital, E0 is initial equity
or capital, 252 represents the number of trading days
in a typical American calendar and n is the number of
days in the testing period.

5.2 Genetic Algorithms

In order to apply genetic algorithms (GA) to tackle
market timing using our proposed formalization, we
started with a typical implementation of GA and mod-
ified its operators in order to accommodate how we
encode candidate solutions. First, individuals selected
for crossover are chosen using a typical tournament
procedure, with the tournament size being a user-
defined parameter. In preparation for crossover, the
components in the genotype of individuals selected
are ordered by key. A crossover point is then se-
lected at random such that it lands between the def-
inition of two components but not within them. Us-
ing the example mentioned earlier, we can gener-
ate a crossover point either between the definition of
MACD and RSI, or between RSI and Chaikin. An
example of a crossover operation can be seen in Fig-
ure 2. When a mutation event is triggered, a random
component in an individual’s genotype is replaced
by a newly instantiated copy of the same component
type. This newly instantiated copy would use random
values for the constituent parameters, but still within
valid range.

Crossover and mutation are used to generate a new
population for the next generation, and this procedure
continues until the allocated budget of generations are
exhausted. An archive is used to keep track of the elite
individuals per generation, with the most fit individual
in the archive reported at the end of the GA run as the
proposed solution.

Figure 2: An example of a crossover operation.

5.3 Particle Swarm Optimization

We now turn our attention to adapting Particle Swarm
Optimization (PSO) to tackle market timing. PSO
will use the same encoding of the solution to represent
a particle within its swarm, but the standard dynamics
of PSO operators will have to be changed in order to
adapt it to the problem at hand and use the solution
encoding proposed.

The basic PSO model can be seen in Algorithm
1. This model supports both l-best and g-best neigh-
borhood structures, based on the neighborhood size.
When the neighborhood size is less than the total size
of the population, we have an l-best neighborhood
structure, otherwise we have a g-best neighborhood
structure. A number of modifications are introduced
in order to adapt PSO to tackle market timing. The
first modification was that we pushed down the imple-
mentation of the addition, subtraction and multiplica-
tion operators required by the velocity update mech-
anism (lines 8–15) to be at the component level and
not the metaheuristic level, in order to be agnostic to
the types of signal generating components and their
parameters. This would no longer limit the parameter
types to either be in the binary or real-valued domains.
A designer is now free to include a signal generat-
ing component of an arbitrary number of parameters
and parameter types as long as the implementation of
that component provides overrides to the necessary
operators. Secondly, we also adopted a number of
measures to promote convergence within the swarm
and prevent velocity explosion (Clerc, 2002).2 The

2Early experiments indicated the tendency of particles to
adopt ever increasing values for velocity if left unchecked,
leading to the particles quickly seeking the edges of the
search space and moving beyond it.
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Algorithm 1: Basic PSO high-level pseudocode.

1: initialize swarm S
2: repeat
3: for every particle xi in S do
4: if f (xi)> personal best(xi) then
5: personal best(xi)← f (xi)
6: end if
7: for every component j in particle i do
8: bias← αvi j(t)
9: cognitive← c1r1(yi j(t)− xi j(t))

10: social← c2r2(ŷi j(t)− xi j(t))
11: vi j(t +1)← bias+ cognitive+ social
12: if j ∈R then
13: xi j(t +1)← xi j + vi j(t +1)
14: else if j ∈ [0,1] then
15: Pr(xi j(t +1)→ 1) : sigmoid(vi j(t +1))
16: end if
17: end for
18: end for
19: until stopping criteria met
20: return fittest particle

first of the measures is that we used a decreasing in-
ertia schedule. This means that for every step of the
algorithm, inertia for every particle decreases by an
amount defined by a function based on the number
of iterations left. The second measure we adopted
was that we scaled down vi j(t + 1) before updating
a particle’s state by a user-defined factor. As an alter-
native to velocity scaling, we also considered Clerc’s
Constriction as defined in (Clerc, 1999). The PSO
would now be able to optimize both the parameters
and weights of these components in relation to a fi-
nancial fitness metric.

A common problem faced by search metaheuris-
tics, PSO included, is getting stuck in local optima.
Multiple measures have been devised since the intro-
duction of the basic model to remedy that problem
with varying degrees of success (Engelbrecht, 2005).
Inspired by the work done by Abdelbar with Ant
Colony Optimization (ACO) in (Abdelbar, 2008), we
introduced a variation of PSO that stochastically up-
dates the velocity of its particles only when it is favor-
able in terms of fitness. We will refer to this variation
of PSO in the remainder of this paper as PSOS. The
modifications required for PSOS are reviewed next.

Every particle x in the swarm S represents a candi-
date solution. From our earlier discussion, this means
that a particle’s state is a collection of weighted com-
ponents, where each component has its own set of pa-
rameters. A particle starts out with an instance of all
the available signal generating components, each in-
stantiated with random weights and parameter values.
In contrast with the basic PSO model, the cognitive
and social components of the velocity update equa-
tion are modified to be calculated as:

cognitive =

{
yi(t)− xi(t) if rand() < | f (yi(t))

f (xi(t))+ f (yi(t))
|

0 otherwise
(4)

social =

{
ŷi(t)− xi(t) if rand() < | f (ŷi(t))

f (xi(t))+ f (ŷi(t))
|

0 otherwise
(5)

• x: particle

• i: current particle index

• y: personal best

• ŷ: neighborhood best

• f (x): the fitness of x

• rand(): random number between 0 and 1
According to equations 4 and 5, the cognitive and so-
cial components will only stochastically influence ve-
locity update if there is an improvement in fitness, fol-
lowing a hill climbing fashion.

6 EXPERIMENTAL SETUP AND
RESULTS

In order to evaluate the effectiveness of the pro-
posed formulation in composing effective market tim-
ing strategies, we tested our PSO, PSOS and GA. As
all three algorithms have parameters, testing was pre-
ceded with hyper-parameter optimization performed
using the iterated racing procedure (IRace) (López-
Ibáñez et al., 2016). The IRace procedure was run
with a budget of 300 iterations and a survivor limit
of one, in order to arrive at a single configuration for
each metaheuristic. The results of the IRace proce-
dure can be seen in Table 1. In regards to PSO, IRace
arrived at swarm sizes that are similar for both vari-
ants. The configuration discovered for PSO uses a
much lower number of iterations when compared with
the configuration for PSOS. We can also see that the
PSO configuration is slightly more reliant on the cog-
nitive component with an l-best neighborhood span-
ning half the swarm, while the PSOS configuration
is slightly more reliant on the cognitive component
with a g-best neighborhood structure. Both PSO con-
figurations favored velocity scaling over Clerc’s con-
striction, with PSO using relatively larger steps while
PSOS uses relatively smaller steps based on the scal-
ing factors. After hyper-parameter optimization, we
ended up with two PSO configurations: a fast acting
l-best PSO and a slower g-best PSO with stochas-
tic state update. As for GA, the findings of IRace
show that the configuration had a relatively high mu-
tation rate and a relatively low crossover rate when
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Table 1: IRace discovered configurations for each of the
algorithms tested.

PSO PSOS GA

Population 45 Population 59 Population 53
Iterations 28 Iterations 261 Generations 266
Neighbors 26 Neighbors 59 Mutation Probability 0.6306
c1 2.4291 c1 3.2761 Crossover Probability 0.455
c2 3.4185 c2 2.363 Tournament Size 22
Clamp Scaling Clamp Scaling
Scaling Factor 0.8974 Scaling Factor 0.551

compared to typical values used for those parame-
ters. This suggests that the solution landscape is on
the rugged side, with sharp peaks and deep valleys
that require radical moves to traverse. The discov-
ered population size and the number of generations
are similar in size to those of PSOS.

All algorithms are trained and tested using trend
representative testing. The data used contains 30
strands, representing 10 upwards, 10 downwards and
10 sideways trends at various intensities. The de-
tails of the trend dataset can be seen in Table 2. The
columns in Table 2 describe the symbol of the source
stock data, the beginning date, the ending date and the
trend of every strand in the dataset. The data has then
been split into 10 datasets, where each dataset would
contain one of each trend for testing and the remain-
ing 27 are then used for training. Each step in the
training and testing procedure is repeated 10 times to
cater for the effects of stochasticity.

In total, 63 signal generating components were
used in both training and testing. These 63 compo-
nents are of the technical variety, and contain a selec-
tion of momentum indicators, oscillators, accumula-
tion/distribution indicators, candlestick continuation
pattern detectors and candlestick reversal pattern in-
dicators. Where the components took parameters that
affected periods of data to look at, an upper limit of
45 days was set, so that we could get at least 5 trad-
ing signals within a single trading year (which is on
average compromised of 252 days in the US market).
Any other parameter was initialized to random values
and the best performing setting discovered by the al-
gorithms as they traverse the solution landscape.

Table 3 shows the minimum, median, mean
and maximum fitnesses achieved by each algorithm,
dataset and trend. GA showed a slight edge over
the PSO variants with all three trends in dataset 1,
while PSOS showed a clear advantage with the down-
trend in dataset 7. The basic PSO variant takes most
of the wins based on means, when compared to GA
and PSOS. By looking at overall averages in Table 4,
we can see that all three algorithms showed a higher
overall fitness during a downtrend when compared
with the other two trends, leaving us with an unbal-

Table 2: Data strands used for training and testing.

Id Symbol Begin Date End Date Length Trend

BSX1 BSX 2012-10-10 2013-07-09 185 ↑
LUV1 LUV 2008-08-22 2010-05-07 430 ↔
KFY1 KFY 2007-05-16 2007-10-12 105 ↓
EXC1 EXC 2003-04-14 2003-08-20 90 ↑
LUV2 LUV 2004-12-03 2005-05-04 105 ↔
KFY2 KFY 2007-03-20 2007-09-21 130 ↓
AVNW1 AVNW 2005-07-18 2006-01-12 125 ↑
PUK1 PUK 2010-08-12 2012-04-03 415 ↔
LUV3 LUV 2008-09-02 2009-01-30 105 ↓
KFY3 KFY 2003-03-13 2003-08-04 100 ↑
EXC2 EXC 2002-10-03 2003-08-04 210 ↔
LUV4 LUV 2003-11-21 2004-04-01 90 ↓
EXC3 EXC 2003-05-12 2003-10-15 110 ↑
PUK2 PUK 2005-05-12 2006-03-13 210 ↔
MGA1 MGA 1996-02-29 1996-07-08 90 ↓
ED1 ED 1997-07-02 1997-11-20 100 ↑
EXC4 EXC 1999-08-20 2000-03-30 155 ↔
PUK3 PUK 2002-03-19 2002-07-25 90 ↓
BSX2 BSX 2009-04-22 2009-09-18 105 ↑
ED2 ED 2011-12-15 2012-05-16 105 ↔
JBLU1 JBLU 2003-05-15 2003-11-10 125 ↓
MGA2 MGA 2012-12-28 2013-10-14 200 ↑
MGA3 MGA 1995-09-19 1996-12-13 315 ↑
ATRO1 ATRO 1997-06-04 1997-11-28 125 ↓
AVNW2 AVNW 2003-03-07 2003-08-05 105 ↑
EXC5 EXC 2015-03-12 2016-09-02 375 ↔
AVNW3 AVNW 2013-06-11 2013-11-20 115 ↓
IAG1 IAG 2015-11-09 2016-08-24 200 ↑
MGA4 MGA 1995-10-17 1996-04-22 130 ↔
IAG2 IAG 2012-01-19 2012-06-04 95 ↓

anced performance. Nevertheless, performing better
in downtrends is positive when compared with buy-
and-hold strategies which would fail under such con-
ditions. This issue of unbalanced performance with
various trend types can perhaps be overcome if the
problem of market timing is approached as a multi-
objective one, where we try to discover a Pareto front
with solutions that maximize fitness across all three
trends. By having the performance of the three algo-
rithms explicitly compared across a variety of trends,
we have a better approximation of the performance of
the strategies produced by these algorithms under live
market conditions, and therein lies the advantage of
using trend representative testing. With step-forward
testing, we are limited to the price movements in the
training section of the data. This can easily lead to
strategies that are overfit to one particular type of
trend, because that was all they were exposed to dur-
ing training. With trend representative testing, we ex-
plicitly avoid this issue by exposing our algorithms to
a variety of trends during both training and testing.

Table 5 shows the rankings of the algorithms af-
ter performing the non-parametric Friedman test with
the Holm’s post-hoc test by trend type on the mean
results (Garcı́a et al., 2010). The first column shows
the trend type; the second column shows the algo-
rithm name; the third column shows the average rank,
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Table 3: Computational results for each algorithm over the 10 datasets. The min, median, mean and max values are determined
by running each algorithm 10 times on each dataset. The best result for each dataset and trend combination is shown in bold.

PSOS GA PSO
Dataset Trend Test Strand Min Median Mean Max Min Median Mean Max Min Median Mean Max

0 ↑ IAG1 -9.71 -5.79 -6.19 -3.42 -10.35 -5.99 -6.25 -1.39 -4.41 -4.26 -4.01 -3.04
↔ MGA4 0.93 1.19 1.25 1.70 0.39 0.88 0.91 1.60 0.66 1.78 1.60 2.09
↓ IAG2 0.69 0.93 1.22 2.17 0.80 1.95 1.71 2.16 2.17 2.17 2.17 2.17

1 ↑ BSX1 -0.85 -0.34 -0.39 -0.11 -0.67 -0.35 -0.36 -0.13 -5.91 -0.31 -0.85 -0.02
↔ LUV1 -1.10 -0.34 -0.42 -0.08 -1.33 -0.10 -0.28 -0.01 -1.71 -0.11 -0.45 -0.04
↓ KFY1 2.00 2.07 2.07 2.17 2.01 2.08 2.22 2.67 1.86 2.09 2.14 2.66

2 ↑ EXC1 2.80 2.83 2.85 2.92 2.80 2.82 2.83 2.90 2.80 2.80 2.80 2.80
↔ LUV2 2.17 2.31 2.30 2.46 2.09 2.27 2.31 2.64 2.21 2.43 2.44 2.62
↓ KFY2 1.65 2.00 2.04 2.85 1.61 1.75 1.77 2.05 1.56 1.98 2.15 3.61

3 ↑ AVNW1 -3.58 -1.84 -1.21 1.22 -3.83 -2.01 -1.59 1.29 -1.97 0.70 0.10 1.26
↔ PUK1 -2.45 -1.25 -1.00 0.38 -2.84 -1.44 -1.32 0.00 -2.37 -0.05 -0.39 0.00
↓ LUV3 1.58 2.67 3.02 6.12 -0.85 2.91 2.03 4.63 1.08 3.06 3.17 4.70

4 ↑ KFY3 1.39 2.42 2.40 2.94 2.08 2.49 2.45 2.67 2.67 2.72 2.74 2.80
↔ EXC2 0.08 1.13 0.99 1.62 0.16 0.91 0.84 1.55 -0.53 1.31 1.03 1.60
↓ LUV4 2.77 2.85 2.85 2.95 2.80 2.83 2.84 2.96 2.80 2.80 2.80 2.80

5 ↑ EXC3 1.52 2.02 2.00 2.39 1.39 1.64 1.71 2.14 1.96 2.03 2.12 2.38
↔ PUK2 -1.51 -0.23 -0.28 0.76 -4.10 -0.10 -0.88 0.51 0.06 0.59 0.58 1.07
↓ MGA1 2.80 3.14 3.15 3.80 2.80 2.99 2.98 3.15 2.80 2.80 2.80 2.80

6 ↑ ED1 -0.03 1.26 1.21 2.32 0.38 1.14 1.10 1.98 1.75 1.75 1.88 2.44
↔ EXC4 1.20 1.97 2.35 3.96 1.53 2.27 2.33 3.72 0.95 2.07 2.33 3.47
↓ PUK3 2.25 2.43 2.60 3.66 2.38 2.45 2.57 3.66 2.80 2.80 2.80 2.80

7 ↑ BSX2 3.25 3.42 3.48 3.76 3.13 3.42 3.51 4.03 2.28 3.22 3.13 3.32
↔ ED2 2.35 2.52 2.51 2.67 2.46 2.57 2.58 2.70 2.36 2.44 2.45 2.63
↓ JBLU1 6.59 10.68 10.28 13.09 -0.07 9.41 7.99 12.06 0.62 8.08 7.56 11.95

8 ↑ MGA2 -4.87 -4.63 -3.29 0.00 -6.38 -4.34 -4.50 -3.39 -4.69 -4.33 -3.28 -0.04
↔ MGA3 -1.96 -0.10 -0.08 1.34 -1.09 -0.08 -0.13 0.51 -0.17 0.27 0.23 0.48
↓ ATRO1 4.76 9.51 9.17 11.51 -8.86 9.75 8.49 16.08 5.29 9.10 8.68 11.31

9 ↑ AVNW2 3.94 4.77 4.63 5.67 2.09 4.14 4.20 5.65 2.68 3.67 3.48 3.99
↔ EXC5 -0.59 -0.35 -0.19 0.56 -1.18 -0.40 -0.27 0.96 -0.61 0.44 0.27 0.87
↓ AVNW3 1.86 2.01 2.02 2.20 1.75 1.96 1.97 2.14 1.75 1.92 1.94 2.10

Table 4: Overall average fitness by trend for each algorithm.

Algorithm
Trend PSOS GA PSO

Downtrend 3.84 3.46 3.62
Sideways 0.74 0.61 1.01
Uptrend 0.55 0.31 0.81

Table 5: Average rankings of each algorithm according to
the Friedman non-parametric test with the Holm post-hoc
test over the mean performance. No statistical differences
at the significance level 5% were observed.

Trend Algorithm Ranking p-value Holm

Downtrend PSOS (control) 1.7 – –
PSO 2.0 0.6708 0.05
GA 2.3 0.1797 0.025

Sideways PSO (control) 1.7 – –
GA 2.0 0.5023 0.05
PSOS 2.3 0.1797 0.025

Uptrend PSOS (control) 1.9 – –
GA 1.9 0.9999 0.05
PSO 2.2 0.5023 0.025

where the lower the rank the better the algorithm’s
performance; the fourth column shows the p-value of
the statistical test when the average rank is compared
to the average rank of the algorithm with the best rank

(control algorithm); the fifth shows the Holm’s criti-
cal value. Statistically significant differences at the
5% level between the average ranks of an algorithm
and the control algorithm are determined by the fact
that the p-value is lower than the critical value, indi-
cating that the control algorithm is significantly better
than the algorithm in that row. The non-parametric
Friedman test was chosen as it does not make assump-
tions that the data is normally distributed, a require-
ment for equivalent parametric tests. We can see from
this table that PSO and PSOS were ranked higher than
GA in both downtrends and sideways, with a close
tie for uptrends, although not at a statistically signif-
icant level. This suggests that PSO, both in its basic
and modified flavors, is competitive with GA when it
comes to the domain of market timing. PSO, in par-
ticular, has an advantage over GA in that it achieves
these highly competitive results with an order of mag-
nitude fewer number of iterations using a similar pop-
ulation size. The stochastic state update modification
has given PSOS a small improvement in ranking when
tested in downtrends and uptrends over the PSO, al-
though this is achieved with a greater number of iter-
ations.
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7 CONCLUSION

In this paper, we reviewed a formulation for the mar-
ket timing problem and introduced three new contri-
butions: (i) using trend representative testing to ex-
pose potential solutions to various market conditions
while training and testing; (ii) designed GA and PSO
algorithms to tackle market timing and finally (iii)
compared our proposed GA and PSO algorithms us-
ing 30 strands (stocks undergoing a particular trend)
and 63 signal generating components. Our results
showed that the PSO variants are competitive to GA –
which is the most widely used metaheuristic in mar-
ket timing – and ranked better when it came to perfor-
mance, with one variant doing so at a fraction of the
number of iterations used by GA.

We suggest the following avenues of future re-
search. First, use a more sophisticated measure of
financial fitness. This would allow us to simulate
hidden costs of trading such as slippage. Second,
approach the problem of market timing as a multi-
objective one by trying to maximize performance
across the three types of trends and against multiple fi-
nancial objectives. Finally, adapt more metaheuristics
to tackle market timing and compare its performance
against the currently proposed ones in significantly
larger datasets. We could then use meta-learning to
understand if and when metaheuristics perform sig-
nificantly better than others under particular condi-
tions and use that information to build hybrid ap-
proaches that use more than one metaheuristic to build
strategies for market timing.
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