Estimating Configuration Parameters of Pipelines for Accedrating
N-Body Simulations with an FPGA using High-level Synthesis

Tetsu Narumi and Akio Muramatsu

Department of Communication Engineering and Informafidg University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Keywords: FPGA, High-level Synthesis, SDSol;Body Simulation.

Abstract: In the era of the 10T (Internet of Things) and Edge computBgC (System on Chip) with an FPGA (Field
Programmable Gate Array) is a suitable solution for embedgystems because it supports running rich op-
erating systems on general-purpose CPUs, as well as the 'BRGaleration for specific computing. One
problem of designing an accelerator on an FPGA is that opétiun of the logic for the accelerator is not
automatic and much trial and error is needed before at@ip@ak performance from the SoC. In this paper
we propose a method to reduce the development time of théeaaime usingN-body simulation as a target
application. Based on the hardware resources needed feras@ipelines of the accelerator and their perfor-
mance estimation model, we can estimate how many pipeliaede implemented on an SoC. In addition,
the amount of memory each pipeline requires for attainingimam performance is suggested. Our model
agreed with the actual calculation speed for different trairing conditions.

1 INTRODUCTION from the client side is indispensable to prevent an ex-
plosion of network traffic. An SoC with an FPGA is

a suitable solution because it has a general-purpose
CPU that can run a rich operating system, as well as
an FPGA that can be used as an accelerator for spe-
cific computing (Gomes et al., 2015). The difference
between a pure accelerator with GPUs or FPGAs and
an SoC system is that an SoC system is a compact and
low power system that can be integrated as an Edge
component. We previously proposed an FPGA tablet
that runs Android on the CPU with a specific acceler-

Accelerator architecture, which uses GPUs or
specialized-hardware, is a promising approach to
overcome the increasing demand of huge data pro-
cessing from the Internet. GPUs were initially used
for accelerating scientific simulations, such s
body simulations and fluid dynamics (Luebke et al.,
2006). Then, they become a common tool for pro-
cessing Deep Learning operations, such as training
and inference, because highly optimized libraries are S X .
provided from the GPU ver?doyr (ghetlur etal., 2014). ator for_appllc:_:\tlons configured for_the FPGA while
Field Programmable Gate Array (FPGA) is another (€ OS isrunning (Sato and Narumi, 2015).
solution for data processing with low power consump- ~ One problem of developing an SoC system is de-
tion, because it can fully optimize specific operations signing and optimizing the FPGA. FPGAs are con-
by reducing the bit length of arithmetic operations. sidered hardware, and designing them with an HDL
Even though recent GPUs or CPUs support lower bit- (Hardware Description Language) takes far more time
length arithmetic operations, such as 16-bit floating- to develop compared with developing such software
point or 4-bit integer operations, they cannot be used for a normal CPU. Recently, High-Level Synthesis
for arbitrary bit length for each operation. (HLS) has become a useful tool for developing an
Another reason that there is a focus on FPGAs is FPGA system (Gajski etal., 2012). For example, Sys-
that they are shipped as an SoC (System on Chip).temc (Black et al., 2009) and Vivado HLS (X_|I|_nx,
In the era of the 10T (Internet of Things), Edge com- 2019b) are used for such purposes. The last difficulty
puting is a promising direction because the workloads IS in shortening the design time for establishing the
on the client side are becoming heavier and the com-c0mmunication between the CPU and FPGA, which
puting power on the server side is not sufficient (Shi IS N0t supported by such HLS tools.
and Dustdar, 2016). Moreover, a reduction of data SDSoC (Xilinx, 2019a; Kathail et al., 2016) is a

65

Narumi, T. and Muramatsu, A.

Estimating Configuration Parameters of Pipelines for Accelerating N-Body Simulations with an FPGA using High-level Synthesis.

DOI: 10.5220/0008066500650074

In Proceedings of the 9th International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS 2019), pages 65-74
ISBN: 978-989-758-385-8

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

1 #define EPS2 }0. 03f*0. 03f) 1 void cal cul ate_force(int N, double os;] [4],

2 #define MAXN (4096) _] 2 doubl e force[]F4]

3 void force_pipeline(int ioffset, int ni, 34))

4 int nj, float posfi]MAXN][4], 4~ float POSl[%Mﬂ' posj [MAXN] [4] ;

5 fl oat PosijM’-\Xl\”Ll, 5 flo orcef| 4];

6 float Torcef[MAXN|[4]) 6 nt i, k;.]

7 { 7 for(i=0; i<N i++) for(k=0; k<4; k++){

8 inti, j, k; 8 posg{g”k] :ﬁf oatg pos[!”k];

18 float dr[3], r_1, dtnmp, r2, fi[4]; 18 posj[i][k] = (float) pos[i][k];

11 for(i=ioffset; i<ioffset + ni; i++){ 11 orce_pipeline(0, N N posf, posf, forcef);

12 fOTE.k=0§ k<4; k++) fi[k]=0.0f; 12 for(i=0; i<N;, i++) for(k=0; k<4; k++){

13 for(j=0; j<nj; j++){ 13 force[i][k] = (double) forcef[i][k];

14 #pragma HLS pi pel i ne 14

15 r 2=EPS2; 15 }

16 for(k=0; k<3; k++){

17 drk] = POS“[! - ioffset][K] Figure 2: Non-parallelized parent routine.

18 - posfj[H k];

%8) r2+= dr[kiJ * dr[;

21 r 1= 1.0f / sqrtf(r2);

22 o= posf|[j1[3] ¢ 1.1, 2 RELATED WORK

23 f|[3l+: dtrrP;

24 dt ff_l L

%g fo{ |(‘[‘;]01 :kéf’;m]zi'*éﬁ [K]: FPGAs are used to_ accelerate many applications, such
% } as encoding for wireless communication (EI Adawy
29 %or(k:O; k<d; k++){ et al., 2017), error correction with a low density par-
30 forcef[i - ioffset][k]= i i ;

30 i [k] < post i1} I])ffset] (3l ity check (Roh et al., 2016), image processing for 4K
35 } video streams (Kowalczyk et al., 2018), convolutional
34}) and recurrent neural networks (Zeng et al., 2018),

the Finite Difference Time Domain (FDTD) method
(Waidyasooriya et al., 2017), amdbody simulations
]] (Peng et al., 2016; Del Sozzo et al., 2017; Ukawa and
tool to shorten the development time when using SoC Narumi, 2015; K&F, 2015).
with Xilinx FPGAs. It automatically generates com- N-body simulation is an applications that allows
munication hardware to bridge the CPU and FPGA, the FPGA to successfully compete with other archi-
as well as generating hardware logic on the FPGA, by ectures, such as GPU. Peng et al. developed a sys-
just writing with a C-code. By specifying a subrou- tem with a Zynq SoC to accelerate Bisbody Mod-
tine to be ported to the hardware, it generates all of ified Newtonian Dynamics (MOND) simulation, and
the files needed to operate, such as the OS files andhchieved 10 times better performance per watt com-
the bit file to configure the FPGA. rd pared with an Nvidia K80 GPU (Peng et al., 2016).
The last difficulty when an accelerator is imple- GRAPE-9 (K&F, 2015) achieved 16 Tflops of perfor-
mented with the SDSoC is that how to attain max- mance with only 300W in 2015, while a K20 GPU
imum performance among the various configuration cqy|d reach only 1/3 of that with similar power con-
patterns of the hardware. The effective performance symption at that time. In these implementations, the
of the accelerator depends on not only the pure calcu-pipeline is carefully optimized with much effort, such
lation speed of the hardware pipeline but also the datagg ysing a lower bit-length of arithmetic units. How-
transfer speed. Because the SDSoC hides a detaileyer, in this paper, we use only a simple C-code to
well as how the CPU and FPGA communicate, much srategy to parallelize the pipeline without much ef-
trial and error is needed when searching for the com- gt
bination of parameters that achieves the best perfor- e key technology is SDSoC (Xilinx, 2019a)
mance. The compilation time of the design of the fom Xilinx, which is a kind of High Level Synthe-
FPGA is often very long, and reducing the number gjs (HLS) tool. Unlike SystemC or Vivado HLS,
of trials will greatly shorten the developmenttime. spsoC automatically generates communication hard-
In this paper, we propose a strategy to optimize the yare as well as the accelerator itself. Rettkowski et
accelerator performance by estimating it beforehand 5] achieved 10 times the acceleration of the His-
usingN-body simulation as an example. In section 2, ogram of Oriented Gradients (HOG) algorithm com-
related works on designing accelerators with FPGAS pared with the ARM processor in the SoC with a
are described. In section 3, the system architecturezynq device (Rettkowski et al., 2017). A Convolu-
of this work is shown. The performance result and tjonal Neural Network (CNN) and a Recurrent Neu-
resource usage are summarized in section 4, and its.a| Network (RNN) were accelerated on Zyng MP-
estimation is explained in section 5. Finally, section 6 goC device, and achieved several times of acceler-
summarizes the paper. ation compared with previous implementation with

Figure 1: Hardware routine fad-body simulation.

66

Estimating Configuration Parameters of Pipelines for Accelerating N-Body Simulations with an FPGA using High-level Synthesis

1 void calculate force(int N ?g:"g'e[e] F?‘]S;] (41, Table 1. Specifications of an Ultra96 board.
3 —
2 U troat posi L2 [Mou 21 L), pos] [(4] [_Efement | Description |
g fl ?at (k)rcef 1[I MAXN 2] [4] ; SoC Xilinx Zynq UltraScale+
int i, ki . MPSoC ZU3EG
7 for(i=0; i<N i++) for(k=0; k<4; k++
8 pg)si 1 *2I N[%N][k](= (float) po)sfi][k] : RAM 2GB (512M.X3'2) LPDDR4
9 posj[i][k] = (float) pos[i][k]; Wireless 802.11b/g/n Wi-Fi, Bluetooth 4.2
%(1) #p% agma SDS async(1) use 1XUSB 3.0 (up)
12 force_pipeline(0 ,N2, N posfi[0], - 2xUSB 30 1x USB 2.0 (down)
13 posfj, forcef[0]); Display Mini DisplayPort
14 #pragma SDS async(2) Power Source 8V~18V@3A
15 force_pipeline2(N2, N2, N, Fosfi [1], OS Support Linux
16 ostj, forcef[1]); Size 85mm x 54mm

17 #pragma SDS wait (1
18 #pragma SDS wai t (2

%8 fo;(izo;.id‘:l; 1++) for(k=0; k<4; k++){ d
21 } Orcfglo]ub e) forcef[i*2/N[i %N I[K; 3.1 Hardware Platform
23)

For the SoC platform with an FPGA, we used an Ul-
Figure 3: Parallelized parent routine. tra96 board (Avnet, 2019), which houses a Zynq MP-
SoC device. Table 1 shows the specifications. The
FPGAs (Zeng et al., 2018). Several filters for 4K SoC contains a quad-core ARM Coretex-A53 proces-
video streaming were also accelerated by SDSoC on asor operated at 1.5 GHz, a dual-core Cortex-R5 pro-
Zyngq MPSoC device (Kowalczyk et al., 2018). They cessor, a Mali-400 MP2 GPU as well as FPGA func-
discussed the merits and drawbacks of using SDSoCtions. However, the most attractive point is its small
compared with Vivado HLS or the xfOpenCYV library. size, comparable to a credit card. It is suitable for
There are other methods for writing an accelerator Edge 10T devices because it can run the latest OS and
code, including the data transfer portion from a high many IO ports are supported. The size of the logic
level language, such as OpenCL (Khronos, 2019). For that fits into the FPGA is not so large compared with
example, Neural network and FDTD calculations are other MPSoC devices, and devices that are 7 times
implemented with FPGAs (Luo et al., 2018; Waidya- larger are available on the market. However the op-
sooriya et al., 2017). Though OpenCL can support timization strategy proposed in this paper would be
many platforms including CPUs and GPUs, we need more useful for a larger device; larger devices need a
to modify the code using specific APIs. However, SD- longer compilation time and good estimation methods
SoC requires no modification of the software to use are more useful than small devices.
FPGAs.
Making a performance model is a reasonable 3.2 Software for Parallel Processing of
approach to optimizing the hardware accelerator. Pipelines
Mousouliotis et al. accelerated convolutional neural
networks using SDSoC on Zyng SoC (Mousouliotis . ,
and Petrou, 2019). They modeled such elements agrigure 1 shows the subrputlne_to c_alculate gravity be-
pipeline depth and function/loop overheads, and they tween particles. Only this routine is converted to f[he
were consistent in resourcing usage from the vendorhardware by SDSoC tool because other calculations
tool. However, their model did not combine hardware &ré not so compute intensive. Note that thereiare
resources and performance to attain a simple answer@ndj -loops (see lines 11 and 13 in Figure 1). Vari-
for optimized parameters. Zeng et al. also showed aPles posi, posj) to store particle positions and
the performance model for neural network accelera- calculated forcesf or cef) are allocated with a fixed
tor with SDS0C (Zeng et al., 2018), but they just de- SiZ€ _beqause SDSo.C requests it when a simple com-
scribed the calculation cost. However, our strategy Munication method is used.
directly describes which parameters should be used ~ Figure 2 shows a non-parallelized parent routine.

to achieve the maximum performance for a specified The calculation cost ofal cul ate_for ce is O(N?),
condition. whereN is the number of particles. Note that con-

version fromdoubl e to f| oat is performed to call

force_pi pel i ne, and the results are also converted
back (see lines 8, 9 and 13 in Figure 2). Such con-
version takes some time with a low power CPU in the

3 SYSTEM ARCHITECTURE

SoC.
In this section the hardware and software of the sys- To attain the highest performance with SDSoC
tem is described. '

three techniques are used.

67

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

Table 2: Resources for different number of pipelines
(Punron)-

Number of Compile
pipelines BRAM | DSP FF LUT time
(Punron) (min)
1 170 10 29,094 | 17,720 23
2 170 20 31,547 | 19,509 22
4 170 40 36,339 | 22,530 25
8 170 77 46,485 | 29,651 28
16 170 151 67,780 | 44,503 41
25 170 235 | 88,491 | 56,522 112
26 - - - - 348
(fail)

Max
‘ Resource H 432 ‘ 360 ‘ 141,120‘ 70,560‘ ‘

3.2.1 Create a Pipeline

Adding a ‘#pragma HLS pi pel i ne” line (see line 14

in Figure 1) will automatically make a pipeline. The

number of clocks required for getting one result (ini-
tiation interval) is not specified, and it is estimated as
5 in this system based on section 5.1.

3.2.2 Parallel Processing in a Pipeline

Manual loop-unrolling was performed to calculate a
differenti of thef or loop in line 11 of Figure 1. We

4 PERFORMANCE RESULT AND
RESOURCE USAGE

In this section, several results of calculation speed are
shown as well as how much logic and RAM are used
for the pipeline.

4.1 Parallelization in a Pipeline

Table 2 shows how many resources in the FPGA are
used for the system, which is described in section
3.2.2. The number of pipelines generated by un-
rolling the subroutine is callegynoy in this paper.
The size of the local memoryWAXN in Figure 1, is
fixed to 4096, which is the maximum when compiled
with SDSoC. BRAM means “Block RAM”, which is
used as local memory. DSP is a specialized arithmetic
logic for such functions as addition and multiplica-
tion. FF means Flip-Flops, and LUT means Look-
Up Table for logical operations. “(fail)” means that
the compilation failed to generate 26 pipelines in this
case. The last row shows the maximum number of
resources of the target device.

As shown in the last column of Table 2, the com-
pilation time of SDSoC increases as the number of

used a manual one because automatic loop-unrollingpipelines increases. Especially, when it reaches its

with “#pragma HLS unrol | ” was not successful.

3.2.3 Parallelizing the Whole Pipeline

By duplicating the pipeline and executing both
pipelines simultaneously, further acceleration can be
done. Figure 3 shows a dual pipeline case. First,
the dimensions oposi andforcef are increased
without increasing the total size of the array. The
particle position osi) is divided into two groups,
and the result f(orcef) is divided into two ar-
rays. force_pipeline2 is the same program as
force_pi pel i ne. However, different name is needed
for conversions to different instances in the FPGA
by SDSoC. By usingpragnma SDS async andwai t ,

two pipelines are executed simultaneously.

3.2.4 Further Optimization

Further optimization might be possible, but we did not
try other ones because the main object was not opti-
mization of a pipeline itself. For example the follow-
ing methods would be possible: reduction of initiation
interval, loop-unrolling for thej-loop to reduce the
loop count, reduction of the bit-length of arithmetic
operation, or interpolation for calculating division or
square root (K&F, 2015).

68

limit, the compilation time increases dramatically.
This is the reason that estimating configuration pa-
rameters is important for FPGA development. Among
BRAM, DSP, FF and LUT, LUT is the most restrictive
resource in this case.

Figure 4 shows the calculation speed in Gflops
by changing the numbel, of particles for differ-
ent numbers of pipelineQunron. Here we assumed
38 floating point operations per pairwise interaction.
Parallel efficiency is 0.92 whepynron = 25 forN =
8192. This number means the speed of 25 pipelines
is 25x 0.92 times faster than that of a single pipeline,
which is sufficient.

4.2 Parallelization of the Whole Pipeline

Table 3 shows how many resources are used for the
system described in section 3.2.3. The number of
pipelines attained by parallelizing the whole pipeline
is calledpgmabecause a DMA engine is generated for
each pipeline. The SDSoC automatically generates a
data motion network, which communicates between
the CPU and FPGA. In this paper we do not specify
which data motion network should be used, and the
SDSoC automatically chooses the best one.

The required resources in this section is much
higher than that presented in the previous section.
Only seven pipelines can be implemented instead

Estimating Configuration Parameters of Pipelines for Accelerating N-Body Simulations with an FPGA using High-level Synthesis

Table 3: Resources for different numbers of pipelingg.g).

Number of Size of Compile
pipelines | local memory || BRAM | DSP FF LUT time
(Pdma) (Niocal) (min)
1 4,096 170 10 29,094 | 17,720 23
2 4,096 226 20 42,868 | 26,155 35
3 4,096 297 30 51,600 | 32,527 48
4 4,096 304 40 60,249 | 38,817 45
5 4,096 367 50 71,236 | 46,411 62
6 4,096 430 60 82,231 | 54,008 72
7 2,048 325 70 93,134 | 61,481 103
8 2,048 - - - 74,565 | 72 (fail)
| Max resource [432] 360 [141,120 70,560 | |
_ ‘ ‘ ‘ ‘ o= 5 1 Nlocal=2K ‘ ‘ j :
p=1 —— _ .o p=1, Nlocal=4k —+— o - O @
10 F P=2 --X-- C 3 p=2, Nlocal=4k ---x--- L o—- 4
7 p= 4 e m p=3, Nlocal=4k - e
g p= 8 —&-— ¥ g 4| p=4 Nlocal=4k — 8- *)
5 p=16 —m— 5 p=5, Nlocal=4k —=— oo "
= p=25 —0— @7 oK = p=6, Nlocal=4k — o — ~
B3 3 3 p=7, Nlocal=2k -~ e - ., 0
@ o
) 0 ¥
S 5 2} 1
K s
3 3
o 2
8 § 1
0.1r¢ E
. 0 === i
32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192
Number of Particles Number of Particles

Figure 4: Calculation speed with different numbers of Figure 5: Calculation speed with different numberpgf,a
Punroll-

' _ total number of pipelines:
of 25 pipelines. The bottleneck of the resources is

BRAM, as shown in Table 3. Because the number of P = PdmaPunroll- (1)
BRAMs exceeds the limit when seven pipelines are
used, theNoca Value is reduced from 4096 to 2048. better than using @qma parallelism. For example,

Here,Nigca is the same agAXN in Figure 1. The sum when p = 16, the lowest BRAM usage comes from
of the data-transfer size pbsi andf or cef is fixed the combinat’iodpunm”:lG Paan=1}. DSP, FF, LUT

to MAXNx4 _and_ that obos) is proportional tOpdma and compilation time are also the lowest for the same
as shown in Figure 3. Note that though the size of COTRE (e

EOSL Seems todbe ﬁé(.ifd in thg C%tf-cofde Ieve;:, the ?ctual Figure 6 compares the calculation speed. The
ardware needs a ditrerent butier for each pipeline to peak speed has no difference wheis the same, but

receiye data ipos; . i a largerpgma causes more overhead arouxid= 512.

_ Figure 5 shows the calculation speed. Compared Therefore, using lowepgma is also better from the
with Figure 4, the highest speed is much lower. In point of view of performance.
addition, the line ofpama= 7 becomes horizontal in For obtaining maximum performance from this

a larger number of particles. _This is becaNﬁﬁm_iS_ SoC, we have no reason to use fia parallelism.
smaller than other cases, which causes low efficiency yowever to use theunron parallelism, one needs

because of communication overhead. The parallel ef- i, anya) unrolling, as described in section 3.2.2, which
ficiency is 0.90 wherpgma = 7 for N = 8192, which i creases the development cost for the software side,
is already lower than the 0.92 of ténrol = 25 case. ggpecially when we have to try with different numbers

of parallelism. In addition, the communication perfor-
4.3 Combining Both Parallelizations mance might be better in different platforms because

using independent DMA engines might increase the
Table 4 shows the hardware resources needed for théjata transfer. Thgrefore, in the rest of this paper, we
same number of parallelisms but different combina- concentrate on using _tmg,maparallellsm because the
tions of parallelization methods. Here we call the OPlimization strategy is not straight forward.

As seen in Table 4, usingunro first is always

69

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

Table 4: Resources according to parallelism.

Number of Number of Number of Compile
pipelines | DMA instances | unrolling BRAM | DSP FF LUT time
(p) (Pdma) (Punrolt) (min)
4 1 4 170 40 36,339 | 22,530 25
4 2 2 226 40 47,766 | 29,726 31
4 4 1 304 40 60,249 | 38,817 45
8 1 8 170 77 46,485 | 29,651 28
8 2 4 226 80 57,328 | 35,786 32
8 4 2 304 80 70,029 | 46,007 30
16 1 16 170 151 | 67,780 | 44,503 41
16 2 8 226 154 | 77,594 | 50,030 44
16 4 4 304 160 | 89,133 | 58,024 65
| Max resource [[432] 360 [141,120] 70,560 | |
12 : : : : : : ‘ 5 : ‘ : :
p= 4(d1, u4) —— i p=1, Nlocal=4k —+—
p= 4(d2, u2) ---x--- T p=2, Nlocal=4k ---x---
Z@ 10 p= 4(d4, ul) —*-- A 7 g p=3, Nlocal=4k - & O = d
2 p= 8(d1, ug) —&— S 4| p=4,Nlocal=2k —&— PP A A ¢
b} p= 8(d2, u4) —m— s 5 p=5, Nlocal=2k —=— ‘o "
= 8r p= 8(d4, u2) —o— 7. = p=6, Nlocal=2k —o — /.
B p=16(d1,ul6) - @ - B 3r p=7, Nlocal=1k -- @ - h
2 p=16(d2, u8) --=& g -
a 6 p=16(d4, ud) -- « %) A4
c) c 2| i
2 ‘]
8 4 8
3 3
S 2t 8 1
0 = : : : : : 0 : : : : : :
32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192
Number of Particles Number of Particles
Figure 6: Calculation speed for the same number of Figure 7: Calculation speed when a lower number of
pipelines. BRAMSs is used.
4.4 Lower Resources of BRAM nally, we show graphs to choose the best parameter

among many possibilities.

Table 5 and Figure 7 show the case when the maxi-

mum resources of BRAM are limited to 300 instead 5.1 Performance Model

of 432. This situation is when BRAM is used for an-

other purpose in the design and we can use only 300The time needed for one step for BlRbody simula-

of the 432 BRAM s for the pipeline. Only thpyma tion cab be expressed as:

parallelism is used, as in Table 3 and Figure 5. T =Tt T, @)
The difference caused by the new limitation is that — 'fpga™ lcomm

Niocal N€€dS to be decreased to reduce the consumpwhere Tyyga is the calculation time in the hardware

tion of the BRAM. The number of pipelines is the pipeline in the FPGA, andcomm is the communica-

same because LUT becomes the bottleneck subsetion time between the CPU and the pipeline.

quent to BRAM. The large difference in calculation Tipga iS €xpressed as:

speed between Figures 5 and 7 is becapgg = ¢

7 causes a lower speed compared with the smaller Tipga = E‘NZ, (3)
Pdma= 6. This did not happen in Figure 5. This is p

because a loweNiocal causes more overhead in the whereN is the number of particleg is the number
communication between the CPU and FPGA. In the of pipe“nes’ andfpga is the time for a pairwise force

following sections we analyze this further. calculation between particles with a single pipeline.
Tcomm€an be expressed as:

N

2
Niocal] '
(4)

In this section, we first show the performance model. where tyang is the communication time needed to
Then, we make a model for resource estimation. Fi- transfer data for a particle, which is 16 bytes because

5 PERFORMANCE ESTIMATION Teomm= {tbandNlocal(Pama+ 2) + tiatPama} [

70

Estimating Configuration Parameters of Pipelines for Accelerating N-Body Simulations with an FPGA using High-level Synthesis

Table 5: Resources used when the maximum number of BRAM igeet]

Number of Size of Compile
pipelines | local memory || BRAM | DSP FF LUT time
(Pdma) (Niocar) (min)
1 4,096 170 10 29,094 | 17,720 23
2 4,096 226 20 42,868 | 26,155 35
3 4,096 297 30 51,600 | 32,527 48
4 2,048 208 40 60,197 | 38,716 59
5 2,048 247 50 71,171 | 46,305 66
6 2,048 286 60 82,153 | 53,866 58
7 1,024 241 70 93,029 | 61,345 129
| Max resource [300] 360 [141,120 70,560 | |
5 : : ‘ ‘ 5 : :
p=1 + .0 .9 p=1 +
m pfg ; 4 S ™ pfg ; o— - 4
é_ 4r g:g o o 0. i é_ 4+ g:é o ,7;.7779777 .
Z.'_) p= [] . 25 p= | | B N
= =6 o = =6 O
g 37 p—lge:s7t * i E T p—lgezs7t * 7
Q. ~ Q. .
n =2 est -------) =2 est -------
o mE o AL g2 P
ER e ER e
8 1 p=rtest ——- S L[p=Test —-
. =

32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192

Number of Particles Number of Particles
Figure 8: Estimated calculation speed. Figure 9: Estimated calculation speed when BRAM is re-
duced.

four f| oat variables are usediy; is the setup time
needed to initiate the communicatiofx] represents
an integer larger or equal o WhenN > Nical,

Figures 8 and 9 show the estimated performance
in lines, while measured results are still shown as
. points. As can be seen, the estimation is roughly con-
we.need o jepjacgsine goqigats of part'd? MEMOTY, sistent to the measurement except for middle range
which causes the overhead of communication. of the number of particles (128 N < 512). Even

Table 6 summarizes the parameters for perfor- i ,gh the quantitative value for the middle range of
mance estimation. To determifigya, the difference o number of particles is different from the actual
of T between{ p=1, N=4096 Nioca=4096} and{ p=1, data, the order of estimated times are consistent with

N=2048,Nioca=4096} is used because only tigga the data, i.e., a largemma causes lower performance.
part is different. Fony, the difference ofT be-

tween {pdama=1, Punroi=1, N=256, Noca=4096} and 5 5 Resource Estimation

{Pdma=4, Punroli=1, N=512,Nipca=2048} is used be-

cause only the latency part is different. Fgig T of In this section, resource parameters for BRAM and

{Pama=7, Punroli=1, N=1024,Niocai=1024} is used. LUT are considered because DSP and FF do not be-
tipga = 5.0 x 10~° means the calculation of the come the bottleneck in our case. In this estimate,

force on a particle is executed every 50 ns, which cor- gy the parallelization of the whole pipeline (Section

respond to 20 MHz. Because the clock frequency of 4 2) is assumed because parallelization in the pipeline

the pipeline is fixed to 100 MHz in SDSoC configu- (Section 4.1) is too simple for estimation.

ration in this paper, the initiation interval is 5 instead The total number of BRAMSBioa1, Can be esti-
of 1. Further optimization of the interval is out of the ated as:

f thi r ri in ion 3.2.4.
wope s g entnd oS30 " B e
data transfer speed, which is far lower than the peak WheréBdmais the number of BRAM blocks for data
band width, 4 Gbyte/s, of the DDR4 DRAM on the tran_sfer. Bm_em is the number of BRA_MS for storing
Ultra96 board. This is becausgngincludes opera- Particle positions and forces, aBgneris the number
tions other than pure data transfer, such as conversiorPf BRAMSs required for other than the pipeline itself.
fromdoubl e tof | oat and copy to a temporary buffer Total number of LUT unitslota), is estimated as:
for communication with the FPGA. Liotal = LpipePdma+ Lother (6)

71

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

Table 6: Configuration parameters for performance estima- 500 i
tion. T Niocal=2k O 432
[Parameter[Value | @ 400 | Nlocaik e 1
3 2 2k est ------- -
ttpga 5.0x 10~ 8 300 1K oSt e oo 300
thand 14x10°7 = =y B
tlat 22x10°7 z B .
@ 200 m
5 S
Table 7: Configuration parameters for resource estimation. § ;4|
£
[Parameter] Value | 2
B 1271,024 0
B’;‘em 15 0 1 2 3 4 5 6 7 8
ma
Bother 52 Pama
Lpipe 7,600 Figure 10: Estimated number of BRAMB{a))-
Lother 8,300
. _ o 70000 | Niocal=ak * > -] 70860
wherelpjpe is the number of LUT units for a pipeline Nlocalzak & 1 63504

60000

as well as the DMA controller, anldyiheris LUT for Est

other type of logic.

Table 7 summarizes the parameters for hardware
resources. To determinBnem the difference of
BRAM between{ pama=4, Punroi=1, Nioca=4096} and
{Pdma=4, Punroli=1, Nioca=2048; are used in Tables
3 and 5. Similarly, to determinByms the differ-
ence betweerq pgma=4, Punroli=1, Nioca=4096} and 0
{Pdma=5, Punroi=1, Nioca=4096} are used in Table 3.
Then Byiner is calculated from the data dfpgms=4,
Punroli=1, Nioca=4096} .

To determinelipe, the difference of LUTs be-
tween{ pgma=4, Punroli=1, Nioca=2048} and{ pgmz=5,

50000
40000
30000
20000

Number of LUTSs (Lyg,)

10000 ¢

Pdma

Figure 11: Estimated number of LUTsta))-

5.3 Estimation of the Best

Punroli=1, Nioca=2048 are used in Table 5. Then Configuration Parameters
Lother is calculated from the case ofpyms4,
Punroli=1, Nioca=2048}. In this section, we finally estimate the configuration

Figures 10 and 11 show the estimated values in parameters, i.e.pgma and Nigcal in our case. We
lines against actual values in points. As for BRAM, assume three cases: AF8192 andBmac—432, B)
two limits are shown as horizontal lines. Estimated N=256 anBmna=432, and CN=8192 and4,=300.
lines fit perfectly for largepgms While the lines es- Here Bmay is the maximum number of BRAMs al-
timate much lower values than the actual usage for lowed for the accelerator.
small pgma- The reason is that the optimization of re- Figure 12 shows the estimated parameters for case
source usage is not performed when resources are nofA). The two dotted lines at the base indicate the
so severely restricted (sparse layout could be done). boundary of limitations calculated by Egs. (5) and (6).

As for LUT, the two horizontal lines indicate the The filled-circle indicates that the values are within
maximum and 90% of the maximum LUTs. Using the range of the limitations, while the open circle in-
100% of the LUT is difficult with FPGA because the dicates values that are out of rangegms=8 is al-
layout of the logic becomes too difficult. In this esti- ways out of range, and onlf/pgma=7, Nioca=4096}
mate, we choose 90% as the practical limit. The dif- is also out of range fopgms=7. The highest per-
ference, depending dWqca), is very small and we did formance is estimated to be achieved wK@gms=7,
not include such a parameter for LUT, unlike what Niocq=2048}, which is consistent with Figure 5.
we did for BRAM. For smallpgms the actual number Figure 13 is for case B), in which the number of
of LUTs is larger than the estimated number, which particles are small. Smal needs a smalNocg for
arises from the same reason that optimization of log- high efficiency, as well as a small number of pipelines.
ics is not needed so much at the compile and layout The smallNo¢4 is required for reducing the data size
stage. for transfer, and the smalbgma is for low latency

to start the DMAs. The highest performance is es-
timated to be achieved whefpyma4, Nioca=256}
({ Pama=3, Nioca=256} is very similar).

72

Estimating Configuration Parameters of Pipelines for Accelerating N-Body Simulations with an FPGA using High-level Synthesis

Calculation Speed (GTops)
O R N WMUIO
Calculation Speed (Gtlops)
OFR,r NWMUUIO

Figure 14: Possible parameters for case C).

ber of pipelines pgma) and the size of the local mem-

ory (Nigcar) are estimated. The estimation reasonably

agreed with the measurements.

With our strategy, we can reduce the development
time for optimizing the accelerator great deal because
the effective calculation speed is well estimated even
for unknown combinations of parameters. As shown

° in Tables 3 and 5, the compilation time for a mid-

Figure 13: Possible parameters for case B). dle range of the number of pipelines is roughly half

the compilation time needed for a full number of

Figure 14 is for case C), where the maximum pipelines. Moreover, when the compilation fails be-
number of BRAMs is reduced. Open circles are in- cause of a bad estimate, we need much more time to
creased compared with the other cases. These aresearch the best one. A good estimate can avoid such
consistent with the actual possible parameters in Ta-a waste of time. Improvements should be made to
ble 5. The highest performance is suggested whenreduce the disagreement for the middle range of the
{Pdma=6, Nioca=2048}, which is also consistent with number of particles.

Figure 7. The most important part of our strategy is the per-
formance model. Even with a simph-body sim-
ulation, there are several methods to parallelize the

6 CONCLUSION palculatiop. The ove(head greatly depends on hoyv it

is parallelized, especially when the resources are lim-

ited. Therefore, a good performance model should

In this paper, we proposed an optimization strategy t0 e carefully investigated for Edge devices. When the
determine the configuration parameters of pipelines to strategy is used for Deep Neural Network (DNN) ap-

accelerateN-body simulations. The method is sum- plications, it would be more challenging to make per-

marized into following three steps. _ formance models because they have more parameters,

First, we measure the consumed resources for im-g,ch as the depth of layers, the size of each layer, and
plementing a middle range of a number of pipelines. e size of a convolution kernels. However, a similar
A low number of pipelines is not good for estima- gyrategy to that proposed in this paper would work for
tion because the logics are not sufficiently optimized. 5 quick estimation of the configuration parameters.
However, a full number of pipelines is not suitable €i- "rytyre research should include applying this strat-
ther because of the long compilation time. egy for larger devices as well as different architec-

Second, both performance and resource modelsyres. Several kinds of accelerators need to be inves-
are generated based on the measurement. By changigated for further application of our method. Also,
ing only one parameter among several, we can know fy|ly optimizing the pipeline foN-body simulation

the coefficient depending on the parameter. For bettertq compare previous research is another direction of
fitting, data from the middle range of the number of tne next study.

pipelines should be used, as pointed out above.
Third, make a graph for searching the best com-
bination of parameters by integrating all the models
and constraints into a single view. Once the model is ACKNOWLEDGMENTS
generated, we can easily change the constraints: the_ . i
maximum number of BRAM unitsmay), maximum This work was partially supported by JSPS KAK-
number of LUT units, and the number of particla(~ ENH! (Grant Number 17K00267).
in our case. Then, the best combination of the num-

Calculation Speed (GTops)

73

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

REFERENCES

Avnet (2019). Ultra96 - 96boards. https://www.96boards.
org/product/ultra96/. (Accessed on 04/29/2019).
Black, D. C., Donovan, J., Bunton, B., and Keist, A. (2009).
SystemC: From the ground ppolume 71. Springer

Science & Business Media.

Mousouliotis, P. G. and Petrou, L. P. (2019). Software-
defined FPGA accelerator design for mobile deep
learning applicationsCoRR abs/1902.03192.

Peng, B., Wang, T., Jin, X., and Wang, C. (2016). An Accel-
erating Solution for N-Body MOND Simulation with
FPGA-SoC.International Journal of Reconfigurable
Computing

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran Rettkowski, J., Boutros, A., and Gohringer, D. (2017).

J., Catanzaro, B., and Shelhamer, E. (2014). cudnn:

Efficient primitives for deep learningarXiv preprint
arXiv:1410.0759

Del Sozzo, E., Di Tucci, L., and Santambrogio, M. D.
(2017). A highly scalable and efficient parallel design
of n-body simulation on fpga. 12017 IEEE Interna-
tional Parallel and Distributed Processing Symposium
Workshops (IPDPSWjpages 241-246. IEEE.

El Adawy, M., Kamaleldin, A., Mostafa, H., and Said, S.
(2017). Performance evaluation of turbo encoder im-

plementation on a heterogeneous fpga-cpu platform

using sdsoc. 112017 Intl Conf on Advanced Control

Circuits Systems (ACCS) Systems & 2017 Intl Conf on

New Paradigms in Electronics & Information Technol-
ogy (PEIT) pages 286—-290. IEEE.

Gajski, D. D., Dutt, N. D., Wu, A. C., and Lin, S. Y. (2012).
High—Level Synthesis: Introduction to Chip and Sys-
tem Design Springer Science & Business Media.

Gomes, T., Pinto, S., Tavares, A., and Cabral, J. (2015).
Towards an fpga-based edge device for the internet of

things. In2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETEAgges 1—
4. IEEE.

Kathail, V., Hwang, J., Sun, W., Chobe, Y., Shui, T., and
Carrillo, J. (2016). Sdsoc: A higher-level program-
ming environment for zyng soc and ultrascale+ mp-
soc. InProceedings of the 2016 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Ar-
rays, pages 4—4. ACM.

K&F (2015). K & f computing research. http://www.kfcr.jp/
grape9.html. (Accessed on 04/29/2019).

Khronos (2019). Opencl overview - the khronos group
inc. https://www.khronos.org/opencl/. (Accessed on
04/29/2019).

Kowalczyk, M., Przewlocka, D., and Krvjak, T. (2018).
Real-time implementation of contextual image pro-
cessing operations for 4k video stream in zynq ultra-
scale+ mpsoc. 12018 Conference on Design and Ar-
chitectures for Signal and Image Processing (DASIP)
pages 37-42. |IEEE.

Luebke, D., Harris, M., Govindaraju, N., Lefohn, A., Hous-
ton, M., Owens, J., Segal, M., Papakipos, M., and
Buck, I. (2006). Gpgpu: general-purpose computa-
tion on graphics hardware. Proceedings of the 2006
ACM/IEEE Conference on Supercomputipgge 208.
ACM.

Luo, L., Wu, Y., Qiao, F., Yang, Y., Wei, Q., Zhou, X,
Fan, Y., Xu, S., Liu, X., and Yang, H. (2018). Design
of FPGA-Based Accelerator for Convolutional Neu-
ral Network under Heterogeneous Computing Frame-
work with OpenCL. International Journal of Recon-
figurable Computing

74

Hw/sw co-design of the hog algorithm on a xilinx
zyng soc. Journal of Parallel and Distributed Com-
puting 109:50-62.

Roh, S.-D., Cho, K., and Chung, K.-S. (2016). Implemen-
tation of an Idpc decoder on a heterogeneous fpga-cpu
platform using sdsoc. 12016 IEEE Region 10 Con-
ference (TENCON)ages 2555-2558. |IEEE.

Sato, T. and Narumi, T. (2015). Acceleration of othello
computer game using an fpga tablet. 2015 Third
International Symposium on Computing and Network-
ing (CANDAR) pages 581-584. IEEE.

Shi, W. and Dustdar, S. (2016). The promise of edge com-
puting. Computer 49(5):78-81.

Ukawa, H. and Narumi, T. (2015). Acceleration of the Fast
Multipole Method on FPGA Device$EICE Transac-
tions on Information and Systents98D(2):309-312.

Waidyasooriya, H. M., Endo, T., Hariyama, M., and Ohtera,
Y. (2017). Opencl-based fpga accelerator for 3d
fdtd with periodic and absorbing boundary conditions.
International Journal of Reconfigurable Computing
2017.

Xilinx (2019a). Sdsoc development environment. https://
www.Xxilinx.com/products/design-tools/software-
zone/sdsoc.html. (Accessed on 04/10/2019).

Xilinx (2019b). Vivado high-level synthesis.
https://lwww.xilinx.com/products/design-tools/
vivado/integration/esl-design.html. (Accessed on
04/29/2019).

Zeng, S., Guo, K., Fang, S., Kang, J., Xie, D., Shan, Y.,
Wang, Y., and Yang, H. (2018). An efficient reconfig-
urable framework for general purpose cnn-rnn models
on fpgas. pages 1-5.

