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Abstract: In this paper, we describe a method for evaluating suitable records from heterogeneous datasets based on 

interval type-2 fuzzy sets (IT2FSs). Retrieving records from a dataset including numerical, categorical, binary 

and fuzzy data in accordance with diverse user’s preferences is still a challenging task. The main challenge is 

how to deal with heterogeneity present when data in attribute values and user’s preferences are different by 

nature, e.g. when users explain their interests in linguistic term(s), whereas the attribute value is stored as a 

number and vice versa. Furthermore, a user may have different interests among desired preferences expressed 

with different data types. Using fuzzy theory can effectively help in handling heterogeneity in building robust 

query engines. This efficacy is mitigated when two or more values belong to an ordinary (type-1) fuzzy set 

with the same membership degree. We propose a solution based on IT2FSs, which are capable to better 

represent uncertainty in data and preferences. It efficiently improves the ranking of suitable records retrieved 

from datasets. The connection with aggregation of interval-valued data is also discussed.

1 INTRODUCTION 

Nowadays, large datasets are characterized by a 

variety of data types. When retrieving suitable 

records from such datasets (cars, flats, hotels, etc.) we 

need a robust tool to match user’s needs with the most 

suitable items. Querying data in heterogeneous 

datasets is still a challenging task. Users expect a 

query process to provide them with results close to 

the desired ones, even when no record ideally 

matches the query conditions. In addition, user’s 

preferences may vary in their nature (e.g. equal 

preferences, weights, constraints and wishes, etc.), 

(Vučetić and Hudec, 2018a).         

In heterogeneous datasets, we distinguish the 

following scenarios related to data heterogeneity: (a) 

different attributes may be represented by different 

data types including numerical, categorical, binary or 

fuzzy data and (b) an attribute may be described using 

different data types at the same time (Bashon et al., 

2013). Furthermore, an attribute data type in the 

query conditions may not collide with attribute data 

types in a dataset. This raises an issue regarding the 

appropriateness of data querying mechanisms.  

A method presented in (Vučetic and Hudec, 

2018b), based on aggregation of fuzzy conformances, 

may be used to tackle these issues. In this approach, 

the transformation of the data context to a fuzzy 

environment is proposed in order to calculate the 

similarity between user’s preferences and the values 

stored in a dataset. The matching score of fuzzy 

conformances is then calculated by different 

aggregation operators in order to handle diverse 

preferences among attributes. Using type-1 fuzzy sets 

(T1FSs) (Zadeh, 1965) for calculating fuzzy 

conformance as a measure of closeness does not 

provide a means for distinguishing between values 

belonging to the same fuzzy set with the same 

membership degree (although the difference can be 

perceived intuitively). Fig. 1 shows a situation with 

Short distance between a hotel and the city centre, 

where x1=50m and x2=200m have the same 

membership value (i.e. µShort(50) = µShort(200)=1). 

User may require the expected walking distance from 

a hotel to the city centre to be less than 100m, but in 

a dataset real numbers stored as walking distance of 

120m and 200m are identically treated. As Klein 

states (Klein, 1980), the natural order of real numbers 

can be lost in fuzzy semantic. However, by using 

general type-2 fuzzy sets (Wagner and Hagras, 2010) 

we can interpret the difference between x1 and x2. This 

might be useful when retrieving the most suitable 

items from a dataset and sorting them in accordance 

with the users’ requirements. In order to improve data 
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ranking, we have extended our approach by using 

interval type-2 fuzzy sets (IT2FSs) (Liu and Mendel, 

2008). In the past, IT2FSs were proposed for their 

computational efficiency with respect to other general 

type-2 fuzzy sets (Mendel, 2001). 
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Figure 1: Issue with T1FS in fuzzy conformance 

calculation.  

The rest of this paper is organized as follows. 

Section 2 introduces the interval-valued conformance 

measure. Section 3 presents aggregation of interval-

valued conformances and provides an illustrative 

example. The discussion is presented in Section 4. 

Finally, Section 5 draws concluding remarks.  

2 INTERVAL-VALUED 

CONFORMANCE MEASURE 

The similarity among heterogeneous attributes’ 

values is a complicated task, because user perception 

is a relative concept. This work proposes a new 

understanding of matching user’s preferences with 

records (items) in a dataset. 

2.1 Basics of Fuzzy Sets 

Fuzzy theory introduced by (Zadeh, 1965) has been 

successfully applied to many data mining tasks 

(Marsala and Bouchon-Meunier, 2015). A T1FS 

shown in Fig. 2 can be represented as 

{
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} where the numerators are the 

membership degrees to the fuzzy set A of the numbers 

in the denominators. The membership degree of each 

element belongs to the [0, 1] interval. The degree that 

fuzzy number B is in the fuzzy concept (or family of 

fuzzy concepts) is calculated by the possibility 

measure (Galindo, 2008; Zadeh, 1978): 

𝑃𝑜𝑠𝑠(𝐵, 𝐴) = 𝑠𝑢𝑝𝑥∈𝑋[𝑡(𝐴(𝑥), 𝐵(𝑥))] (1) 

where X is a universe of discourse and t is a t-norm. 

In practice, the minimum t-norm is used. Eq. (1) is 

applicable when we want to match two fuzzy sets, 

where the one appears in the user’s requirements and 

the other in the attribute values.   

1

0

µA(x)

5020 40

A

60  

Figure 2: Type-1 fuzzy set. 

Although introduced to model uncertainty, 

research has shown some limitations of T1FSs 

(Mendel, 2001).  The membership grades of T1FSs 

are crisp values. In the previous section we illustrated 

a potential problem with retrieving suitable records 

when two values belong to the same fuzzy set with 

the same membership degrees. In this work, we show 

how IT2FSs can be applied for matching the user’s 

preferences with records (items) in a dataset. Unlike 

a T1FS, whose membership degree for x from 

universe of discourse X is a number, the membership 

degree of IT2FS is an interval (e.g. number 30 has a 

membership degree [0.20, 1] and number 50 [0.75, 

1]). Say an IT2FS 𝐴 ̃is bounded by two fuzzy sets AU 

and AL, characterised by upper and lower membership 

functions, µA
U(x) and µA

L(x), respectively (Mendel et 

al., 2006). The area between the upper and lower 

fuzzy sets is called the footprint of uncertainty (FOU) 

as shown in Fig. 3.       
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Figure 3: An interval type-2 fuzzy set. 

2.2 Fuzzy Conformance based on 
Interval Type-2 Fuzzy Sets 

Retrieving records from a dataset can be complicated 

when matching complex user’s requirements to 

records in a dataset with heterogeneous (mixed) data 

types. Furthermore, a record (item) may be a 

candidate if it is close to the desired values per 

observed attributes (conditions). A method based on 

fuzzy conformance and aggregation functions 

(Vučetić and Hudec, 2018b) is proposed to that effect. 

Our results suggest that fuzzy conformance can be 

applied in calculating similarity among the attribute 

and the expected values for an item in a dataset. The 
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matching score is a crisp value from the unit interval 

indicating how items (records) are conformant with 

the desired ones on observed attributes Ai (i = 1,...,n). 

Fuzzy conformance, based on type-1 fuzzy sets and 

proximity relations, enables straightforward handling 

of heterogeneous data types and is calculated as 

(Vučetić, 2013):   

𝐶(𝐴𝑖[𝑡𝑢, 𝑡𝑗])

= min (𝜇𝑡𝑢
(𝐴𝑖), 𝜇𝑡𝑗

(𝐴𝑖), 𝑠 (𝑡𝑢(𝐴𝑖), 𝑡𝑗(𝐴𝑖))) 
(2) 

where C is the fuzzy conformance of an attribute Ai 

defined on domain Di between the user requirement tu 

and a record tj in a dataset, s is a proximity relation 

and tu(Ai) and tj(Ai) are the membership degrees of 

the user preferred value and of the jth value in a dataset 

mapped to T1FSs on fuzzified domain, respectively. 

Thus, by using T1FSs in the fuzzy conformance 

measure of observed attributes (Eq. (2)), semantic 

relations in the user’s perception can be lost (e.g. a 

user sets the preferred distance from a hotel to the city 

centre to be around 200m; hence the distances of 

180m and 220m have the same membership degrees 

µShort(180) = µShort(220) = 1 to the trapezoidal fuzzy 

set Short distance, although the user would prefer a 

shorter distance). One of the ways of approaching this 

problem is to use IT2FSs (Bustince, 2000; Wu et al., 

2012) as illustrated on Fig. 4: 

Distance [m] 

Short

1

0

µ

300250200

Around 200

500  

Figure 4: Fuzzy conformance of the attribute Distance with 

IT2FS. 

As previously, the IT2FS representation can be 

defined as µ(x) = [µA
L(x), µA

U(x)]. Following this, we 

calculate the membership degrees of 180m and 200m 

as µ(180) = [0.9, 1] and  µ(220) = [0.6, 1]. Intuitively, 

we can perceive the difference between the two 

values although the interval-valued membership 

degree handles higher level of uncertainty than the 

crisp membership degree. In addition, an IT2FS has a 

crisp output as follows: 

𝑦 =  
𝜇𝐴

𝐿 (𝑥) + 𝜇𝐴
𝑈(𝑥)

2
 (3) 

 

Eq. (3) also confirms the user’s preferences of the 

distance value of 180m (y = 0.95) over 220m (y = 

0.80). 

This allows for developing a robust query engine 

for manipulating heterogeneous data and ranking 

items (records) in accordance with the user’s 

preferences. We can now formulate the fuzzy 

conformance measure based on IT2FS as: 

𝐶̃(𝐴𝑖[𝑡𝑢 , 𝑡𝑗]) = min (𝜇𝑡𝑢̃
(𝐴𝑖), 𝜇𝑡𝑗̃

(𝐴𝑖), 𝑠̃ (𝑡𝑢(𝐴𝑖), 𝑡𝑗(𝐴𝑖))) 

=  min ([𝜇𝑡𝑢

𝐿 (𝑥), 𝜇𝑡𝑢

𝑈 (𝑥)], [𝜇𝑡𝑗

𝐿 (𝑥), 𝜇𝑡𝑗

𝑈 (𝑥)], 𝑠̃ (𝑡𝑢(𝐴𝑖), 𝑡𝑗(𝐴𝑖)))  
(4) 

where 𝐶̃ is an interval-valued fuzzy conformance of 

attribute Ai,  𝜇𝑡𝑢̃
(𝐴𝑖) and 𝜇𝑡𝑗̃

(𝐴𝑖) are the interval-

valued membership degrees of the user’s desired 

feature and of a value in a dataset at the observed 

attribute Ai,, respectively, and 𝑠̃ is a proximity relation 

which also may be an interval. Note that the min 

function is straightforwardly applied on intervals, 

simply by putting min ([x1, y1], …,[xn, yn]) = [min(x1, 

…, xn), min(y1, …, yn)] (Mesiar et al., 2018).  

In order to model the user’s requirements and to 

match them with items in a dataset with 

heterogeneous data types, we need to transform all 

data to a fuzzy domain. Domains of numeric 

attributes are fuzzified into appropriate fuzzy sets, 

while categorical and binary data types are treated as 

fuzzy singletons. For example, the domain of the 

attribute Distance related to the hotel distance from 

the city centre is fuzzified into three fuzzy sets: short, 

medium and long, as shown in Fig. 5. From the user’s 

perspective, T1FSs are useful for modelling different 

opinions from different individuals regarding their 

preferences. Regardless of the data type in which the 

user expresses their preferences (e.g. the user prefers 

the distance from the city centre to the hotel to be 

200m as depicted in Fig. 6), a T1FS-based model is 

used (the triangular fuzzy set (0, 200, 250) in the 

example depicted by Fig. 6) because an item from 

datasets may be a possible solution even if it is similar 

to the desired one. An IT2FS is defined by combining 

the fuzzified attribute domain with fuzzy sets 

representing users’ preferences, as shown in Fig. 6. 

This IT2FS is dynamically changing due to different 

requirements of different users. Hence, IT2FS is 

accompanied by atomic conditions in a query when 

retrieving records from a dataset.       

A proximity relation is used for calculating fuzzy 

conformances at the observed attributes. This relation 

is reflexive and symmetric without limitation caused 

by the transitivity property of similarity relation 

(Shenoi and Melton, 1999). The proximity relation 

introduces a closeness measure over the scalar 

attribute domains such as those illustrated in Table 1  

A Novel Method for Evaluating Records from a Dataset using Interval Type-2 Fuzzy Sets

311



 

Distance [m] 

Short
1

0

µ(x)

500300 1000 1200

Medium Long

200
 

Figure 5: Fuzzified domain over the attribute Distance. 
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Figure 6: The IT2FS of the attribute Distance for matching 

user’s preferences with records in a dataset. 

for the attribute Distance. This work offers a way to 

define the proximity relation between the fuzzy 

domain partitions as an interval that generalizes the 

ones valued on [0, 1] (Gonzales del Campo et al., 

2009). Sometimes it is easier for an expert to provide 

a proximity interval rather than a value from a unit 

interval. The benefit of the interval-valued proximity 

relations in selecting the best option from a set of 

solutions is addressed in (Bentkowska et al., 2015).    

Table 1: The proximity relation over the fuzzified domain 

of the attribute Distance. 

𝑠̃Distance short medium long 

short 1 0.75 0 

medium  1 0.60 

long   1 

The interval-valued proximity relation maps into 

an interval [x, y]. In many applications we set x = y, 

i.e. the proximity relation becomes a crisp number as 

shown in Table 1. In this work we assume that a fuzzy 

number belonging to two fuzzy sets is defined on the 

domain of an attribute whose proximity is represented 

by an interval. For example, if a user prefers the 

distance from a hotel to the city centre between 350m 

and 450m, then in accordance with Fig. 6, the 

proximity is an interval [0.75, 1] (see Table 1.).   

By way of illustration, let us consider the selection 

of a hotel in a city. Every customer has requirements 

related to the price, the distance from the centre, the 

category, the quality of service or the availability of a 

swimming pool. We illustrate the calculation of fuzzy 

conformances on the attribute Distance from the city 

centre. The user’s expectation about the distance is 

tu(Distance) =  200m. Dataset details, given in Table 

2, contain information about the distance of hotels 

from the city centre.     

Table 2: Distance of a hotel from the city centre. 

Record Distance (A1) 

t1 190m 

t2 less than 400m  

t3 between 350m and 450m 

t4 1340m 

t5 around 600m  

Using Eq. (4), the fuzzy sets for the user’s 

preference and the domain of the attribute A1 shown 

in Fig. 6 as well as the proximity relation defined in 

Table 1, the interval-valued fuzzy conformances are 

obtained as follows: 

𝐶̃(𝐴1[𝑡𝑢, 𝑡1])

= min (𝜇𝑡𝑢̃
(𝐴1), 𝜇𝑡1̃

(𝐴1), 𝑠̃(𝑡𝑢(𝐴1), 𝑡1(𝐴1)))

= min([1, 1], [0.95, 1], [1,1]) = [0.95, 1] 
𝐶̃(𝐴1[𝑡𝑢, 𝑡2])

= min (𝜇𝑡𝑢̃
(𝐴1), 𝜇𝑡2̃

(𝐴1), 𝑠̃(𝑡𝑢(𝐴1), 𝑡2(𝐴1)))

= min([1, 1], [1, 1], [0.75,1]) = [0.75, 1] 
𝐶̃(𝐴1[𝑡𝑢, 𝑡3])

= min (𝜇𝑡𝑢̃
(𝐴1), 𝜇𝑡3̃

(𝐴1), 𝑠̃(𝑡𝑢(𝐴1), 𝑡3(𝐴1)))

= min([1, 1], [0, 0.8], [0.75,1]) = [0, 0.8] 
 (see Fig. 7) 

𝐶̃(𝐴1[𝑡𝑢, 𝑡4])

= min (𝜇𝑡𝑢̃
(𝐴1), 𝜇𝑡4̃

(𝐴1), 𝑠̃(𝑡𝑢(𝐴1), 𝑡4(𝐴1)))

= min([1, 1], [0, 1], [0,0]) = [0, 0] 
𝐶̃(𝐴1[𝑡𝑢, 𝑡5])

= min (𝜇𝑡𝑢̃
(𝐴1), 𝜇𝑡5̃

(𝐴1), 𝑠̃(𝑡𝑢(𝐴1), 𝑡5(𝐴1)))

= min([1, 1], [0, 1], [0.75, 0.75]) = [0, 0.75] 

For the interval-valued fuzzy conformances we 

compute crisp outputs: 0.975, 0.875, 0.4, 0, and 

0.375, respectively. Consequently, the ranking of the 

records related to the attribute A1 (t1 – t2 – t3 – t5 – t4) 

is in accordance with the user expectation. This is a 

beneficial contribution regarding ranking (sorting by 

relevance) items from datasets in order to provide 

better selection of suitable records.  

Distance [m] 
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1

0 500300 1000 1200

Medium Long

200

tu=200m

0.8

b/w 250m-350m

 

Figure 7: Interval-valued fuzzy conformance of the 

attribute Distance between tu and t3. 
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Similarly, we compute fuzzy conformances for 

other attributes. Say the attribute A2 is categorical, 

describing the quality of service. The user expresses 

their preference as {good, excellent}, while 

t4(Quality_of_Service) = {good} and 𝑠̃QoS(good, 

excellent) = 0.80. Fuzzy conformance is computed as 

follows:  
 

𝐶̃(𝐴2[𝑡𝑢, 𝑡4])

= min (𝜇𝑡𝑢̃
(𝐴2), 𝜇𝑡4̃

(𝐴2), 𝑠̃(𝑡𝑢(𝐴2), 𝑡4(𝐴2)))

= min([0.80, 1], [1, 1], [0.8, 1]) = [0.80, 1] 
 

The presence of swimming pool in a hotel can be 

expressed by a binary attribute, say A4. In such a case, 

the interval-valued conformance usually takes values 

[0, 0] or [1, 1]. In theory, however, the proximity 

between two binary values can be greater than 0 

unlike in the presented example.  

The computed interval-valued fuzzy 

conformances for attributes A1 – A4 between the user 

preferences expressed by the vector of ideal values tu 

and records t1 to t5 are shown in Table 4.  

3 AGGREGATING  

INTERVAL-VALUED FUZZY 

CONFORMANCES 

This section examines the most expected cases of 

aggregation of interval-valued conformances among 

attributes which might be raised by users. These 

aggregations are able to cover a variety of needs for 

aggregating conformances (Hudec and Vučetić, 

2019). The proposed aggregations for the main 

classes of problems based on the observations 

(Dujmovic, 2018) are summarized in Table 3. 

The aggregation of intervals is covered by (Mesiar 

et al., 2018). Theoretically, we can consider an 

interval as a pair of numbers (the lower and upper 

bounds). Thus, we can straightforwardly apply the 

usual aggregation functions by putting A([x1, y1], 

…,[xn, yn]) = [A(x1, …,xn), A(y1, …,yn)]. 

When all conditions are equally important and 

should be at least partially met, we should apply 

conjunction, usually expressed through t-norms. The 

minimum t-norm, adjusted for the interval-valued 

fuzzy conformance (4), for a record tj is computed as:  

 𝑡̃𝑚𝑖𝑛_𝑡𝑗 = min𝑖=1,…,𝑛𝐶̃(𝐴𝑖[𝑡𝑢, 𝑡𝑗]) (5) 

(where n is the number of atomic conditions). The 

solution is shown in Table 5 where the lower bound  

 

 

Table 3: Type of aggregation and suggested operators. 

Type of aggregation Suggested operators 

Conjunction of equally 

important atomic 

conditions 

For smaller number of 

atomic conditions, a non- 

idempotent t-norm 

Weak conjunction of 

equally important atomic 

conditions 

Averaging functions of the 

ANDNESS measure 

greater than 0.5, e.g. the 

geometric or harmonic 

mean. 

Weak disjunction of 

atomic conditions 

(conditions considered as 

alternatives) 

Averaging functions of the 

ORNESS measure greater 

than 0.5, e.g., the 

quadratic mean. 

At least majority of 

conditions should be 

satisfied 

Quantified query 

condition 

At least majority of 

conditions should be 

satisfied, but some of 

them should be 

imperatively met 

Aggregation of a 

quantified query condition 

with a non-idempotent t-

norm. 

Coalitions of atomic 

conditions  

Choquet integral 

is minimum of the lower bounds of all atomic 

interval-valued fuzzy conformances, whereas the 

upper bound is the minimum of their upper bounds.     

Other t-norms have not been considered due to the 

downward reinforcement (Beliakov et al., 2007) 

which becomes more pronounced with a higher 

number of either common or interval-valued atomic 

conformances. Just for illustrative purposes, the 

product t-norm is given by: 

𝑡̃𝑝𝑟𝑜𝑑_𝑡𝑗 = ∏ 𝐶̃(𝐴𝑖[𝑡𝑢, 𝑡𝑗])

𝑛

𝑖=1

 (6) 

The t-norm functions map their inputs into the unit 

interval, i.e. [0, 1]n → [0, 1], where 1 is the ideal case, 

i.e. the perfect match. Non-idempotent t-norms may 

result in poor record match scores and mislead the user 

to conclude that the records poorly match their 

preferences. On the other hand, due to ignoring values 

greater than the minimal one, Eq. (5) makes no 

distinction between a tuple having interval-valued 

fuzzy conformances of e.g. say [0, 0.2] and [0.1, 0.3] 

and another with conformances of say [0, 0.2] and [0.8, 

0.9]. 

The weak or full disjunctions are not solutions for 

this class of tasks because one significant conformance 

substitutes (all) other weak conformances.  

Thus, an alternative could be uni-norm. This class 

of functions meets the property of full reinforcement 

(Beliakov et al., 2007). The 3-∏ function (Yager and  
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Table 4: Interval-valued fuzzy conformances of attributes A1 to A4 between user preferences and records t1 to t5. 

Record C(A1[tu, tj]) C(A2[tu, tj]) C(A3[tu, tj]) C(A4[tu, tj]) 

t1 [0.95, 1] [0.85, 0.95] [0.85, 0.85] [1, 1] 

t2 [0.75, 1] [0.25, 0.35] [0.26, 0.37] [1, 1] 

t3 [0, 0.8] [0.65, 0.75] [0.46, 0.56] [0, 0] 

t4 [0, 0] [0.8, 1] [0.88, 0.92] [1, 1] 

t5 [0, 0.75] [1, 1] [1, 1] [1, 1] 

Table 5: Aggregation of interval-valued fuzzy conformances by different suggested operators. 

Record min t-norm (5) product t-norm (6) uni-norm (7) geom. mean (8) quantified (9) 

t1 [0.85, 0,85] [0.687, 0.807] [1, 1] [0.910, 0.948] [1, 1] 

t2 [0.25, 0.35] [0.049, 0.129] [1, 1] [0.470, 0.600] [0.162, 0.45] 

t3 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0.069] 

t4 [0, 0] [0, 0] [0, 0] [0, 0] [0.425,0.575] 

t5 [0, 0.75] [0, 0.75] [0, 1] [0, 0.931] [0.625, 1] 

 

Rybalov, 1996) is adjusted to calculate the interval-

valued fuzzy conformance (4) of a record tj as: 

𝑢3𝑃_𝑡𝑗̃ =
∏ 𝐶̃(𝐴𝑖[𝑡𝑢 , 𝑡𝑗])𝑛

𝑖=1

∏ 𝐶̃(𝐴𝑖[𝑡𝑢 , 𝑡𝑗])𝑛
𝑖=1 + ∏ (1 − 𝐶̃(𝐴𝑖[𝑡𝑢 , 𝑡𝑗]))𝑛

𝑖=1

 

 

(7) 

The product in the numerator (7) ensures that only 

the records (items) at least partially satisfying all the 

specified conditions are considered, i.e. the value 0 is 

annihilator. Due the disjunction used in the 

denominator in the mixed aggregation function (7), 

the value 1 is the neutral element. Consequently, the 

uni-norm has the desired behaviour when 

conformances are in the open interval (0, 1). 

Applying (7) on the data shown in Table 4 results in 

records either fully meeting or fully rejecting the user 

preferences, except for record t5. The main problem is 

annihilator 0 for the conjunctive part and neutral 

element 1 for the disjunctive part. Therefore, we 

should be careful when considering the uni-norm. 

Another option is to use averaging aggregation 

functions, which are suitable since small values are 

compensated by high values. In (Vučetic and Hudec, 

2018b), it was shown that the geometric mean is a 

suitable option. The same holds for the aggregation of 

interval-valued fuzzy conformances: 

𝑎𝑣𝑔𝑒𝑜𝑚_𝑡𝑗̃ = √∏ 𝐶̃(𝐴𝑖[𝑡𝑢, 𝑡𝑗])

𝑛

𝑖=1

1/𝑛

 (8) 

Furthermore, there are cases when it suffices that 

the majority of interval-valued fuzzy conformances is 

greater than 0. The corresponding aggregation is 

calculated as: 

𝑣̃ =  𝜇𝑞(
1

𝑛
∑ 𝐶̃(𝐴𝑖[𝑡𝑢, 𝑡𝑗]))𝑛

𝑖=1   (9) 

where 𝑣̃ is the interval-valued validity or the 

matching degree for item tj to a quantified condition, 

n is the number of conformances and µQ is the 

function of relative quantifier most of in the sense of 

Zadeh (1983), expressed as the increasing linear 

function with parameters (interval bounds) 0.5 and 

0.9. However, this approach is suitable when all 

atomic conditions are weak, i.e. when there is no 

particular conformance which should be imperatively 

greater than zero.  

The results of the aggregation operators 

considered above are intervals of numbers. However, 

for ranking purposes, one needs to provide a single 

value. The conversion to a single number can be 

realized by selecting the mid-point of the interval (Eq. 

(3)). This selection is also compatible with 

defuzzification of interval when the interval is 

considered as a symmetric triangular fuzzy set whose 

most expected value is in its middle and whose 

support is its length. Therefore, defuzzification can be 

simplified as (Bojadziev and Bojadziev, 2007): 

𝑑𝑓𝑧(𝑎, 𝑚, 𝑏) =
𝑎 + 𝑠𝑚 + 𝑏

𝑠 + 2
 (10) 

where a is the lower bound of an interval, m is its mid-

point or its most expected value, b is its upper bound 

and s is a coefficient from the set of natural numbers 

regulating the prominence of the modal point. In a 

case of a symmetric fuzzy set, any value of s provides 

the same result. For instance, the solution for tuples 

in Table 5 evaluated by uni-norm (7) is 1, 1, 0, 0 and 

0.5 for tuples t1, t2, t3, t4 and t5, respectively. The 

defuzzified results are shown in Table 6. 

Expectedly, the ranking of records depends on the 

aggregated function. The quantified aggregation for 

the tuple t4 gives a significantly higher score. The 

main reason is that 0 and 1 are neither annihilators nor 

neutral elements, therefore these values contribute in  
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Table 6: Defuzzified scores from (10) for data in Table 5. 

Rec. (5) (6) (7) (8) (9) 

t1 0.85 0.747 1 0.929 1 

t2 0.30 0.089 1 0.535 0.306 

t3 0 0 0 0 0.034 

t4 0 0 0 0 0.50 

t5 0.375 0.375 0.5 0.465 0.812 

satisfying the majority of fuzzy conformances. Users 

should be careful when selecting a particular 

aggregation. Guidance can be inferred from Table 3. 

The aggregation of coalitions can be realized by the 

Choquet integral-based aggregation (Choquet, 1954). 

While an attribute can be less important per se, its 

importance increases when combined with other 

attributes (e.g. attributes A1 and A3 have equal weights 

of 0.4, but their combined weight is 0.7 as shown in 

Fig. 8). A modified expression for the Choquet integral 

(Beliakov et al., 2007) in which crisp numbers are 

replaced by the interval-valued fuzzy conformance is: 

𝐶̃𝑣(𝒕𝒋) = ∑[𝑉(𝑖)̃(𝑡𝑗) − 𝑉(𝑖−1)̃(𝑡𝑗)]𝑣(𝐻𝑖)

𝑛

𝑖=1

 

 

(11) 

where conformances are expressed as  

𝐶̃(Ai[tu,tj])= 𝑉̃i(tj) as in (4), 𝑉̃0(tj) = 0 by convention, 

𝑉̃(𝑖)(𝑡𝑗) is a non-decreasing permutation of 

conformances for tuple tj and v is a fuzzy measure of 

Hi = {(i), …, (n)}. The fuzzy measure v is a set function 

(Wang and Klir. 1992): 𝑣: 2𝒩 → [0,1] which is 

monotonic and satisfies 𝑣(∅) = 0 and 𝑣(𝒩) = 1, 

𝒩 = {1,2, … , 𝑛}. For the sake of illustration, let the 

weights of coalitions among attributes A1 to A4 be those 

shown in Fig. 8. The Choquet discrete integral is an 

averaging function, resulting in an interval defuzzified 

to a crisp number inside the interval bounds, as shown 

in Table 7.   

v(N)

1

v({A1, A2, A3})

0.80

v({A1, A2, A4})

0.70

v({A1, A3, A4})

0.50

v({A2, A3, A4})

0.70

v({A1, A2})

0.60

v({A1, A3})

0.70

v({A1, A4})

0.30

v({A2, A3})

0.45

v({A2, A4})

0.30

v({A3, A4})

0.30

v({A1})

0.40

v({A2})

0.45

v({A3})

0.40

v({A4})

0.25

v(0)

0  

Figure 8: The set function v for attributes A1, A2, A3 and A4. 

Table 7: Solution of the Choquet integral equation (11) for 

data from Table 5. 

Record solution defuzzified value  

t1 [0.892, 0.935] 0.913 

t2 [0.464, 0.549] 0.506 

t3 [0.292, 0.582] 0.437 

t4 [0.614, 0.668] 0.641 

t5 [0.7, 0.925] 0.812 

4 DISCUSSION 

This work was inspired by difficulties in resolving 

uncertainties in ordinal fuzzy sets (Gaussian, 

trapezoidal or triangular). The collected data may be 

of mixed data types, i.e. numerical, categorical or 

fuzzy for the same attribute. In addition, in many 

tasks, the user may define a wide range of 

preferences, modalities and interdependencies among 

attributes. In this paper we propose a novel method 

for improved ranking of the most suitable records 

(items) from datasets when uncertainty cannot be 

ignored. Let us consider the following tuples in the 

hotel selection problem (the selection criteria are: the 

distance from the city center, the quality of service, 

the price and the availability of swimming poll): the 

vector of user preferences tu =(200m, {good, 

excellent}, about 45 EUR, Yes) and records from a 

dataset t1 =(180m, {good, excellent}, about 45 EUR, 

Yes) and t2 =(220m, {good, excellent}, about 45 

EUR, Yes). When retrieving the most suitable records 

using the conformance measure, t1 and t2 have the 

same matching scores when obtained by ordinary 

fuzzy sets, due to µShort(200) = µShort(180)= µShort(220) 

= 1 (Fig. 5). The proposed method uses IT2FSs to 

better handle the uncertainty caused by the data 

heterogeneity and improves selection and sorting of 

the most suitable item increasing the discriminating 

power of matching scores (µ(180) = [0.9, 1] (dfz = 

0.95), and µ(220) = [0.6, 1] (dfz = 0.80) as shown in 

Fig. 4). When aggregating these conformances, the 

record t1 will be better ranked, in accordance with the 

user’s expectation due to the shorter distance.           

In addition, we examined conjunctive (including 

non t-norms), averaging and hybrid aggregation 

functions in order to cover diverse preferences among 

atomic conditions demanded by users. These 

aggregations are made to act on intervals. We 

considered the most frequent cases. From practical 

point of view, selecting a suitable aggregation 

function is not a trivial task. Hence, more research is 

needed in this direction.     

5 CONCLUDING REMARKS 

Data heterogeneity cannot be ignored in real-world 

problems. Ranking of the most suitable records is a 

challenging issue in such datasets. Our work 

highlights the impact of IT2FSs in improving the 

matching of complex user requirements with records 

(items) in a dataset when heterogeneous data are 

considered. The goal is to improve the ranking of 
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records in data retrieval tasks. We have discussed 

several aggregation operators applied to [0, 1] 

interval in order to cope with diversity of attributes in 

users’ preferences. We believe that this study may 

help software engineers and practitioners in building 

robust frameworks for data retrieval tasks and 

recommendation problems when dealing with 

uncertain data. Also, this task is interesting from a 

machine learning perspective. Namely, machine 

learning might help in selecting appropriate 

aggregation functions and fitting their parameters.    
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