
Influence of Emotions on Software Developer Productivity

Mohammed Anany, Heba Hussien, Sherif G. Aly and Nourhan Sakr
Department of Computer Science and Engineering, The American University in Cairo, Cairo, Egypt

Keywords: Software Productivity, Developer Productivity, Emotions, Affects, Evaluation, Measurement, Influence.

Abstract: The Software developer productivity is an important indicator that has attracted the attention of the industry

over the years. It has been established that improving software productivity enhances the performance of

organizations. Despite its importance, a full understanding of contextual factors and how they influence

productivity is not attained. One such important factor is the developer’s emotions. In this paper, we conduct

an experiment on 11 participants where they attempt to solve 10 ACM-style problems as we monitor their

emotions and behaviour in the background. The experiments performed achieve an accuracy of 55.4% on the

test set using a random forest classifier. There is room for multiple improvements such as increasing dataset

size, performing class balancing, and utilizing different aggregation methods for the data. This paper opens a

different track for experimentation relating to the relationship between emotions and software productivity.

Achieving a better understanding of this relationship can aid further research that would utilize it to build

context aware and pervasive systems that can automatically react to developers’ emotions when going through

a low productivity phase and orient them towards emotions that are correlated with positive productivity.

1 INTRODUCTION

Enhancing software developer productivity has

become a primary target for many corporate

organizations since it reflects on the performance and

success of the company. It is already established that

focusing on human resources can lead to improved

productivity (Boehm and Papaccio, 1988; Sampaio et

al., 2010), and this has made the industry become

more employee centric and try to enhance their work

environment. One important contextual factor is the

developer’s emotions, and this has been shown to

affect multiple work-related variables such as

decision making, motivation, meeting deadlines,

among others (Barsade and Gibson, 2007). Thus, it is

important to understand how emotions play a role in

software development. Building a better

understanding will aid further research to investigate

methods to enhance software developer productivity

through monitoring changes in emotions and trying to

orient them towards a mindset that is positively

correlated with productivity. Even better, pervasive

systems can be created that automatically suggest

content and actions to the developer based on sensors

that monitor the behavior and emotions of the

developers.

Looking at existing research in the field, few

studies have been conducted to address the impact of

emotions on developer productivity, and a consensus

has not been reached with regards to the findings

reported. Some studies correlate increased

productivity with positive emotions such as happiness

(Graziotin et al., 2013), while others reported that

some negative emotions such as anger and frustration

can lead to a boost in productivity (Wrobel, 2013).

Furthermore, assessing developers’ productivity is a

difficult task since there hasn’t been an agreement on

a unified metric by researchers (Oliveira et al., 2017).

Looking at the existing research, studies in this

area relied on different methods of capturing affective

data as well as productivity measures. Some studies

simply collected responses from developers on their

opinion concerning the relationship between

emotions and productivity through questionnaires

(Wrobel, 2013; Graziotin et al., 2017; Graziotin et al.,

2018). Other studies conducted actual experiments to

collect data and analyze them. A subset of them

utilized self-assessment as a primary method of

evaluating the software productivity of developers as

they are working on software development tasks

(Barsade and Gibson, 2007; Graziotin et al., 2014a;

Graziotin et al., 2014b; Graziotin et al., 2015).

Another group of studies tried to capture emotions

from text through sentiment analysis. The text is

usually in the form of commit logs and repository

comments (Mäntylä et al., 2016; Murgia et al., 2014;

Anany, M., Hussien, H., Aly, S. and Sakr, N.
Influence of Emotions on Software Developer Productivity.
DOI: 10.5220/0008068800750082
In Proceedings of the 9th International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS 2019), pages 75-82
ISBN: 978-989-758-385-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

75

Ortu et al., 2015; Sinha et al., 2016). Some

researchers have relied on more intrusive

technologies to monitor emotions such as biometric

sensors that participants wear during the experiments

(Fritz et al., 2014; Muller and Fritz, 2015; Müller and

Fritz, 2016; Züger et al., 2018). Few studies also tried

to induce emotions in developers before they

performed the experiment as a way of investigating

emotions’ impact on productivity (Khan et al., 2010).

Despite the available studies, inconsistencies still

exist in the findings. This can be due to the difficulties

associated with measuring emotions and software

productivity accurately. It should also be noted that

monitoring the impact of emotions on productivity

requires the ability to assess changes in productivity

in short time spans, which might not necessarily make

the existing metrics suitable. It was also observed that

facial expression analysis was not explored as an

option for evaluating emotions in the existing studies.

These points inspired us to conduct this investigation

as an attempt to further understand the influence of

emotions on the productivity of software developers.

The rest of the paper is divided into the following

sections. Section 2 provides some background

information relating to emotions and productivity.

Section 3 discusses the existing work in the field.

Section 4 discusses the method we follow to conduct

our experiment as well as the details of the setup and

data collected. Section 5 discusses the results of our

analysis. Section 6 highlights future contributions

that can build on our current progress. Finally, section

7 concludes the paper.

2 BACKGROUND

Studying the influence of emotions on software

productivity requires measuring these 2 items in order

to quantitatively assess them. There are multiple ways

to perform measurements. Looking at emotions, these

could be captured from different channels such as

facial expressions, voice, text, keystrokes and mouse

movements, biometrics, and body gestures (Garcia-

Garcia et al., 2017; Poria et al., 2017). Multiple APIs

exist that support facial expression recognition, voice

analysis, and text analysis. Little support exists for

capturing emotions from keystrokes and mouse

movements and body gestures. Biometric sensors

typically come with API support but are expensive.

There are multiple emotion representations that

exist; however, the most common ones are the

discrete model and the dimensional model. The

discrete model is derived from Darwin’s work in

“The Expression of Emotions in Man and Animals”

(Borod, 2000). Paul Ekman identified 15 “families of

emotion” that either have unique facial or vocal

expressions (Ekman, 1993). These are: amusement,

anger, contempt, disgust, embarrassment, excitement,

fear, guilt, pride in achievement, relief,

sadness/distress, satisfaction, sensory pleasure, and

shame. Inspired by them, happiness, anger, disgust,

sadness, fear, and surprise were identified as being

universal facial expressions and have been widely

used by researchers in the field of Affective

Computing (Garcia-Garcia et al., 2017; Deshmukh

and Jagtap, 2017; McDuff et al., 2016). As for the

dimensional model, the most famous variation is the

valence, arousal, and dominance (VAD) one. Valence

describes the attractiveness to an experience (pleasant

or unpleasant), arousal indicates the activation level

of a person due to a stimulus (e.g. anger gives a high

arousal value and boredom gives a low arousal value),

and dominance describes the level of control the

person is feeling. Figure 1 illustrates an example of

the VA emotional space.

Figure 1: Valence-arousal emotion representation.

As for software productivity, various metrics have

been introduced over the years. The oldest and most

popular ones are the single-ratio metrics such as

Lines-of-Code (LOC) and Function Points (FP)

(Petersen, 2011). Data Envelopment Analysis (DEA)

was also another metric that was introduced that

gained some popularity in the industry (Petersen,

2011). Other metrics include number of tasks,

weighted factors methods, number of modification

requests, change points, and use case points

(Petersen, 2011; Oliveira et al., 2017). Despite the

various metrics that were introduced over the years, it

appears that classical methods such as LOC and FP

are the most adopted in the industry due to their

simplicity and ease of use.

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

76

3 RELATED WORK

This section discusses and analyses previous

contributions on the influence of emotions on the

productivity of software developers. The

contributions are grouped according to the methods

of capturing emotions and software productivity data.

3.1 Questionnaire-based

Methods that relied on collecting data explicitly from

developers usually utilized web-based questionnaires

(Wrobel, 2013), Scale of Positive and Negative

Experience (SPANE), and open-ended questions

(Graziotin et al, 2017; Graziotin et al., 2018). Reports

show that the top consequences of unhappiness

include low productivity, low code quality, lower

motivation, work withdrawal, delay, and low focus.

The top 10 for happiness include high productivity,

high motivation, high code quality, higher self-

accomplishment, and high work engagement and

perseverance (Graziotin et al., 2018).

While this method acquires direct information, the

problem with it is that experimental evaluation is not

performed, so developers report on their past

experiences which may be subject to bias and

inaccurate reporting.

3.2 Self-assessment

Self-assessment as an instrument for data collection

relies on the perception of the developer during

evaluation. Some studies solely relied on it, while

others included it for verification purposes. Self-

assessment techniques are various and include Self-

Assessment Manikin (SAM), SPANE, pre-task and

post-task interviews, observations, and email

exchanges. Experiments varied in sizes, varying from

2 participants (Graziotin et al., 2015) to 42

participants (Graziotin et al., 2014b). In most

experiments surveyed, most authors interrupted the

participants at 5 to 10-minute intervals to solve the

self-assessment questions while they are performing

the instructed tasks. Some results show that there is a

correlation between the 2 affective states (valence and

dominance) and the self-assessed productivity, but no

correlation was built for arousal (Graziotin et al.,

2013; Graziotin et al., 2014a). Other reports showed

that positive affects correlate with high productivity

while negative affects result in low productivity

(Graziotin et al., 2015).

Self-assessment is one step better than simply

querying developers since it involves actual

experiments, however it suffers from the inability to

capture a continuous stream of emotions because it is

usually performed at fixed time intervals. There is

also latency between sensing an emotion and

reporting it, which can result in confusions. Self-

assessment relies on the subjective evaluation of the

participant, which can form inconsistencies across

different individuals.

3.3 Text Analysis

Text analysis is yet another method for correlating

emotions with productivity. These are typically used

with platforms that support developer projects such as

Jira and GitHub. Most evaluation was conducted

using text sentiment analysis tools. These studies

have access to huge amount of data such as 560

thousand Jira comments (Ortu et al., 2015), 28,466

GitHub projects (Sinha et al., 2016), and 700,000 Jira

issue reports with over 2,000,000 comments (Mäntylä

et al., 2016) which is good for generalization

attempts. Some reports state that the issue fixing time

(measure of productivity utilised) was shorter for

happier developers, while negative emotions resulted

in longer issue fixing time (Ortu et al., 2015). Others

showed that negative sentiments were 10% more than

positive sentiments, with most of the sentiments

being neutral (Sinha et al., 2016).

The problem is that text analysis is an indirect way

of capturing emotions as compared to methods that

rely on physical traits, such as facial expressions.

Studying commit logs and comments is a limitation

because this category of text tends to be formal and

short and is often restricted by companies in terms of

writing style. This makes it more difficult to extract

emotions from the text, which was reflected in the

results, showing that most of the sentiments were, in

fact, neutral (Sinha et al., 2016).

3.4 Biometric Sensors

Biometric sensors have been used by researchers to

evaluate emotions in several fields, such as

psychology (Muller and Fritz, 2015). The studies

usually involved participants performing a predefined

task that usually lasted between 1 and 1.5 hours long.

The number of participants varied between 10 and 17,

and they were usually fitted with sensors such as eye

trackers, EDA and EEG sensors, wristbands, and

chest straps (Fritz et al., 2014; Müller and Fritz,

2016). Most studies reported on task difficulty and

very few addressed the issue in relation to emotions.

Studies that utilised biometric sensors suffered

from requiring an expensive setup. The technique is

also invasive since it requires the participants to wear

Influence of Emotions on Software Developer Productivity

77

wristbands and headbands. The process is also

tedious because the sensor data needs to be filtered

and cleaned. Measurement failures are also expected

because of inappropriate equipment setup or shifting

of equipment during work.

3.5 Inducing Emotions

Inducing emotions is a less popular approach towards

the investigation. A study was conducted by Khan et

al. in 2010 which tried to see the impact of mood on

debugging performance (Khan et al., 2010). The

study involved making the participants watch mood-

inducing movie clips prior to performing the tasks.

The results show that moods, particularly arousal,

affected the programmers’ performance. An increase

in arousal and/or valence resulted in an increase in the

performance of algorithm-tracing tasks.

The main problem with inducing emotions,

however, is that emotion measurements are not

actually performed. Assuming the inducing process

was successful, nothing guarantees their persistence

as the participants are working on the tasks.

4 METHODOLOGY

This section discusses the design of our experiment

with the objective of understanding the influence of

emotions on software productivity. We discuss the

experiment setup, the data that is collected, how it is

collected, and how it is prepared for analysis.

4.1 Experiment Details

The experiment involves participants attempting to

solve 10 ACM-style problems in an hour. The

problems are selected from CodeForces (Problemset,

n.d.) from the 2nd division sets with rated difficulties

of A and B only. These problems are relatively easy

and don’t require in-depth algorithmic knowledge to

be able to solve them. The complexity of the

problems was chosen to be low because the focus is

on having participants mainly spend their time on

implementation rather than critical thinking. This is

because it is easier to evaluate aspects of productivity

that are related to actual implementation rather than

thinking which isn’t easily measurable.

A unified language is chosen to control the

experiment for the sake of analysis, so participants are

instructed to develop their implementations in C++.

They are also instructed to develop on Visual Studio

Code on Windows. As they are working, a camera is

used to record the participants’ faces in order to

analyse their facial expressions. Emotion data is

captured by analysing the facial expressions, which is

performed using Affectiva’s APIs (Affectiva

Windows APIs, n.d.). Productivity and activity data

are collected by logging data in the background as the

participant is working on the computer. While the

participants are working, a self-assessment window

pops up at 5-minute intervals to collect explicit

information from the participants on their

productivity and emotions. Figure 2 illustrates the

self-assessment window used.

4.2 Setup and Procedure

The participants first sign a consent form agreeing to

participate in the experiment before starting. Then

they fill out a form to collect some background

information about the participant. This information is:

name, gender, date of birth, nationality, university,

major, class standing, programming experience in

years, whether the person participated in ACM

contests previously or not, and familiarity with ACM-

style problems on a scale from 1 to 5.

Then, the participant is handed a hard copy of the

problem set and a sheet containing hints for some of

the problems. The participants are free to make use of

the hints or otherwise disregard them. Before starting,

the experiment coordinator goes through the

problems with the participants and explains the

problems to them. This is done because we want to

maximize the amount of time that participants spend

on implementation as opposed to reading or thinking.

The coordinator then explains the development

environment to the participants. This includes

familiarizing them with Visual Studio Code, how to

run the local test cases, and how to make submissions

through CodeForces to get a verdict for their

solutions. Participants are given CodeForces handles

that were prepared beforehand to be used for the

experiment. When ready, the participants are seated

at the workstations and the 1-hour experiment starts.

Figure 2: Self-assessment pop-up window. Productivity is

evaluated on a scale between 0 and 10. Valence and arousal

are evaluated on a scale between -10 and 10.

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

78

Table 1: Raw data collected.

Database Table Data Stored

Keyboard keystroke and timestamp

Mouse mouse movement, click, click state, and timestamp

Active Window window name and timestamp

Affectiva
9 emotions: [joy, fear, disgust, sadness, anger, surprise, contempt, valence, and engagement],

21 facial expressions, and timestamp

Self-assessment productivity, valence, and arousal scores (refer to figure 2)

Lines of code changes filename, number of lines added, number of lines removed, and total number of lines

CodeForces verdict, number of test cases passed, time consumed, and memory consumed

4.3 Data Collected

Seven different kinds of data are collected during the

experiment. These are keystrokes, mouse activity,

active window, changes in lines of code, emotions

data from Affectiva’s API, self-assessment data, and

CodeForces verdicts on the solution submissions.

This data is stored in an SQLite database. Table 1

outlines the database tables and data collected.

5 ANALYSIS AND RESULTS

This section discusses how the raw data was

processed and the dataset was compiled. It then

discusses the experiments that were conducted, their

results, and provides analysis for the obtained results.

Of the 11 participants, 2 were females and 9 were

males. On a Likert scale of 1 to 5, the average

familiarity with ACM-style problems was 2.82. The

average number of submissions made by participants

was 9. The average number of correct submissions

was 2.82. Figure 3 shows the relationship between

familiarity with ACM problems and the number of

correct submissions made. It basically shows a direct

correlation between them.

Figure 3: ACM Familiarity (solid) and Correct Submissions

(dashed).

5.1 Dataset Preparation

Data was collected from 11 participants, each

providing 1 hour of continuous stream of data that

was mentioned in section 3.3. In its raw form, the data

is not ready for analysis and must therefore be

preprocessed. The first step is to identify a reasonable

time interval at which the data is going to aggregated.

This was chosen to be a 1-minute interval. Going

lower than 1-minute will make it difficult to obtain

meaningful data points because, intuitively, it is very

difficult to quantize developer productivity at

intervals lower than a minute.

The next step is to select the most relevant

variables to include in the analysis. These were the 9

emotions that are obtained through Affectiva,

keystrokes, lines of code changes, and submissions on

CodeForces. Mouse related activity was discarded

because it was observed that it introduces noise when

considering it with the other variables. Nonetheless,

this data was recorded because gathering it was not

difficult. Active window data was also not used;

however, it can be useful in future experiments as it

provides information relating to what the user is

working on at a certain point in time.

Given the variables, the input features are the

emotions vector, while the keystrokes, changes in

lines of code, and CodeForces submissions are used

to compute a single value that represents productivity.

The problem now becomes a matter of aggregating

the continuous stream of emotions during a minute

into a single data point and associating each data point

with a value of productivity. Figure 4 is an illustration

of a single data point.

It basically shows a direct correlation between

them.

Figure 4: A single data point. The input features are the

emotions, and the target is the productivity value.

Influence of Emotions on Software Developer Productivity

79

Focusing on the emotions vector, the aggregation

is performed by taking the mean over the whole

minute and using this value to represent the emotion

over the previous minute. This means that each data

point will have a vector of 9 means for the 9 emotions.

As for productivity, it is important to identify a

proper way of utilizing the information at hand to

come up with an appropriate metric to evaluate it.

While most existing metrics in the literature are

useful for evaluating productivity over months,

weeks, or days, they are not practical for evaluating

changes in productivity over a very short time span

such as a minute. The metric should also be suitable

to the domain of problem solving, since this was the

nature of the experiment.

The devised metric consists of 2 components:

effort and reward points. Effort represents work that

the developer performs to achieve his target, which is

solving the problem. Effort is evaluated using

keystrokes and changes in the number of semicolons

in the files. Semicolon changes were chosen as

opposed to simply changes in physical lines because

it is more indicative of productive code. Since number

of semicolon changes is more significant than the

number of keystrokes, it is given more weight in the

effort calculation. The weights assigned were 2/3 and

1/3 for the semicolon changes and keystrokes

respectively. These values were chosen through trial

and error. Equation 1 shows the calculation for effort,

where K is keystrokes and S is semicolons.

Effort = (1/3) * K + (2/3) * ΔS (1)

Note that aggregation for keystrokes is done by

adding up the keystrokes that happen during the

minute. Similarly, semicolon changes are aggregated

by adding these changes during the minute. This

equation, however, cannot be applied directly

because the keystrokes and Δsemicolons are of

different scales. To account for this problem, the data

is normalized first.

As for the reward points, the way to gain them is

by correctly solving problems. Each problem solved

grants 100 points. As for submissions that were not

successful, the points earned are awarded according

to equation 2. PC stands for passed test cases while

TC stands for total test cases. For example, if a person

solves 3 problems successfully, and partially solves

another problem such that 10 out of 20 test cases pass,

he/she will be rewarded a total of 350 points.

Points = (PC / TC) * 100 (2)

The problem now becomes a matter of

distributing the earned points during the 1-hour

experiment time across the 1-minute interval points.

This is where effort and reward points are combined.

The process involves multiple steps. First, the

submissions are filtered by removing any

intermediate submissions that achieve an equal or

lower score than a previous submission for the same

problem. For example, given a certain problem, if the

first submission achieves 50% success, the second

achieves 30%, and the third achieves 100%, the

second submission is dropped as it doesn’t achieve

any improvements. Note that points are not double

counted in multiple submissions that belong to the

same problem, so only the percentage increase is

accounted for.

Next is the distribution process. The points earned

at each submission are distributed on the timeframe

that precedes it until the previous submission. Each

minute in this frame receives a portion of the points

earned that is directly proportional to the effort

exerted in this minute. This value basically represents

productivity for this minute. This is made clear in

figure 5.

Figure 5: S1, S2, and S3 are the submissions. T1, T2, and

T3 are the timeframes. Points earned in S1, S2, and S3 are

distributed on timeframes T1, T2, and T3 respectively.

After the previous processes, the data for each

person is sampled at 1-minute intervals and each data

point is represented by a vector of emotions as the

input features and a target value for productivity. For

each person, 10% of the points are taken into the test

set and 90% is used for the training set.

5.2 Experiments and Discussion

Two experiments were conducted and reported in this

paper. This section discusses the experiments and

their results and provides an analysis of the findings.

For both experiments, training is performed by

utilizing a random forest classifier. Class balancing

was also used to make sure that any variations in

frequency would be accounted for.

5.2.1 Experiment 1

For this experiment, the training set has 636 data

points, and the test set has 67 data points. Before

training, the productivity values were clustered into

20 classes (considering the maximum value is 100).

Upon training using the random forest classifier, the

results show an accuracy of 98.3% on the training set

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

80

and 70.2% on the test set. However, after taking a

closer look at the data, a problem was noticed. Most

of the data points had a productivity value of 0, and

this is since most participants were able to solve

around 2 problems only. The confusion matrix shows

that around 50% of the points in the test set belong to

the 0-productivity class, which were correctly

classified, hence the relatively high accuracy.

However, observing the other classes, they were few

in numbers and were wrongly classified as zeros. This

motivated the need to devise another experiment that

tackles the problems of the first one.

5.2.2 Experiment 2

For this experiment, one target was to lower the

number of data points that were oriented towards

zeros. To do this, data after the last submission that

was made for each participant was trimmed. This is

because any data points that come afterwards will

receive a productivity of zero according to the metric

used since the reward points will be zero. Doing so,

the size of the training set was 555 data points and the

test set had a size of 56 data points.

Since the dataset is small, 20 classes were too

much. To resolve this issue, 3 classes were used for

this part of the experiment. The cut off thresholds

were chosen to balance the number of data points

belonging to each class. Basically, the classes

represent low, medium, and high productivities. Upon

training, the results show an accuracy of 98.0% on the

training set and 55.4% on the test set. Despite it

achieving less than the previous experiment, the

confusion matrix in this scenario was more balanced,

and hence is less biased.

The accuracy is still considered low, given that a

random model would achieve a 33.3% accuracy. This

can be attributed to the fact that the dataset was small,

given that only 11 participants were available.

Another issue is also the low number of problems

solved, which was a primary factor that indicated

productivity according to the devised metric. Another

possibility could be that using the mean to aggregate

the emotions data is not the best way to get a

representative emotion vector at 1-minute intervals.

6 CONCLUSIONS

The influence of emotions on developer productivity

is an important relationship to investigate as it is not

fully understood in the existing literature. A few

studies were conducted that tackled this point.

Methods used include questionnaires, self-

assessment, text analysis, utilizing biometric sensors,

and inducing emotions. Each of these methods has its

own limitations. One possible direction is to capture

emotions from facial features, and this was utilized in

the experiments conducted in this paper. A metric was

designed to measure productivity over short intervals

of time which uses a measure for effort and reward

points. The first experiment achieved an accuracy of

70.2% on the test set, however, the model was biased

towards productivity values of zero because of their

dominance in the dataset. To account for this issue, a

second experiment was performed that adjusted the

dataset and balanced the classes. The second

experiment achieved an accuracy of 55.4% on the test

set. Despite this being better than a random model, it

still suffers from some problems. The dataset is small,

the number of successful submissions is low, and the

aggregation method used could possibly be changed.

This opens many possibilities for experimentation

that could be performed to achieve better results.

7 FUTURE WORK

One significant limitation in the experiments

performed was the fact that dataset size was limited.

An obvious improvement is to collect more data to

achieve better and more reliable results. This will also

help solve the issue of having low amount of data

points in the dataset that have high productivity

values. Another way to tackle this issue is also to

adjust the productivity metric such that reward points

aren’t only earned through submissions but may also

be attained through performing effort. Another option

is to experiment with different aggregation methods

for the emotions other than the mean which could

possibly lead to better results. Data panelling could

also be explored during data analysis. Some data was

also collected during the data collection phase but

were not used in the experiment such as mouse clicks

and movement, active window data, and self-

assessment data. These could be utilized in further

experiments to investigate their usefulness.

Hopefully, these could ultimately help to achieve a

better understanding of the influence of emotions on

the productivity of software developers.

REFERENCES

"Affectiva Windows APIs", Knowledge.affectiva.com,

2019. [Online]. Available: https://knowledge.

affectiva.com/docs/getting-started-with-the-emotion-

sdk-for-windows. [Accessed: 03- Apr- 2019].

Influence of Emotions on Software Developer Productivity

81

Barsade, S. and Gibson, D. (2007). Why Does Affect

Matter in Organizations?. Academy of Management

Perspectives, 21(1), pp.36-59.

Boehm, B. and Papaccio, P. (1988). Understanding and

controlling software costs. IEEE Transactions on

Software Engineering, 14(10), pp.1462-1477.

Borod, J. (2000). Neuropsychology of Emotion (Series in

affective science). Oxford University Press.

Deshmukh, R. and Jagtap, V. (2017). A survey: Software

API and database for emotion recognition. 2017

International Conference on Intelligent Computing and

Control Systems (ICICCS).

Ekman, P. (1993). Facial expression and emotion.

American Psychologist, 48(4), 384-392.

Fritz, T., Begel, A., Müller, S., Yigit-Elliott, S. and Züger,

M. (2014). Using psycho-physiological measures to

assess task difficulty in software development.

Proceedings of the 36th International Conference on

Software Engineering - ICSE 2014.

Garcia-Garcia, J., Penichet, V. and Lozano, M. (2017).

Emotion detection. Proceedings of the XVIII

International Conference on Human Computer

Interaction - Interacción '17.

Graziotin, D., Wang, X. and Abrahamsson, P. (2013). Are

Happy Developers More Productive?. Product-

Focused Software Process Improvement, pp.50-64.

Graziotin, D., Wang, X. and Abrahamsson, P. (2014a). Do

feelings matter? On the correlation of affects and the

self-assessed productivity in software engineering.

Journal of Software: Evolution and Process, 27(7),

pp.467-487.

Graziotin, D., Wang, X. and Abrahamsson, P. (2014b).

Happy software developers solve problems better:

psychological measurements in empirical software

engineering. PeerJ, 2, p.e289.

Graziotin, D., Wang, X. and Abrahamsson, P. (2015). How

do you feel, developer? An explanatory theory of the

impact of affects on programming performance. PeerJ

Computer Science, 1, p.e18.

Graziotin, D., Fagerholm, F., Wang, X. and Abrahamsson,

P. (2017). Consequences of unhappiness while

developing software. Proceedings of the 2nd

International Workshop on Emotion Awareness in

Software Engineering, [online] pp.42-47. Available at:

https://dl.acm.org/citation.cfm?id=3105568 [Accessed

13 Nov. 2018].

Graziotin, D., Fagerholm, F., Wang, X. and Abrahamsson,

P. (2018). What happens when software developers are

(un)happy. Journal of Systems and Software, 140,

pp.32-47.

Khan, I., Brinkman, W. and Hierons, R. (2010). Do moods

affect programmers’ debug performance?. Cognition,

Technology & Work, 13(4), pp.245-258.

Mäntylä, M., Adams, B., Destefanis, G., Graziotin, D. and

Ortu, M. (2016). Mining valence, arousal, and

dominance. Proceedings of the 13th International

Workshop on Mining Software Repositories - MSR '16.

McDuff, D., Mahmoud, A., Mavadati, M., Amr, M., Turcot,

J. and Kaliouby, R. (2016). AFFDEX SDK.

Proceedings of the 2016 CHI Conference Extended

Abstracts on Human Factors in Computing Systems -

CHI EA '16.

Muller, S. and Fritz, T. (2015). Stuck and Frustrated or in

Flow and Happy: Sensing Developers' Emotions and

Progress. 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering.

Müller, S. and Fritz, T. (2016). Using (bio)metrics to

predict code quality online. Proceedings of the 38th

International Conference on Software Engineering -

ICSE '16.

Murgia, A., Tourani, P., Adams, B. and Ortu, M. (2014).

Do developers feel emotions? an exploratory analysis

of emotions in software artifacts. Proceedings of the

11th Working Conference on Mining Software

Repositories - MSR 2014.

Oliveira E., Viana D., Cristo M. and Conte T. (2017). How

have Software Engineering Researchers been

Measuring Software Productivity? - A Systematic

Mapping Study.In Proceedings of the 19th

International Conference on Enterprise Information

Systems - Volume 2: ICEIS, ISBN 978-989-758-248-6,

pages 76-87.

Ortu, M., Adams, B., Destefanis, G., Tourani, P., Marchesi,

M. and Tonelli, R. (2015). Are Bullies More

Productive? Empirical Study of Affectiveness vs. Issue

Fixing Time. 2015 IEEE/ACM 12th Working

Conference on Mining Software Repositories.

Petersen, K. (2011). Measuring and predicting software

productivity: A systematic map and review.

Information and Software Technology, 53(4), pp.317-

343.

Poria, S., Cambria, E., Bajpai, R. and Hussain, A. (2017).

A review of affective computing: From unimodal

analysis to multimodal fusion. Information Fusion, 37,

pp.98-125.

"Problemset", Codeforces, 2019. [Online]. Available:

https://codeforces.com/problemset. [Accessed: 03-

Apr- 2019].

Sampaio, S., Barros, E., Aquino Junior, G., Silva, M. and

Meira, S. (2010). A Review of Productivity Factors and

Strategies on Software Development. 2010 Fifth

International Conference on Software Engineering

Advances.

Sinha, V., Lazar, A. and Sharif, B. (2016). Analyzing

developer sentiment in commit logs. Proceedings of the

13th International Workshop on Mining Software

Repositories - MSR '16.

Wrobel, M. (2013). Emotions in the software development

process. 2013 6th International Conference on Human

System Interactions (HSI).

Züger, M., Müller, S., Meyer, A. and Fritz, T. (2018).

Sensing Interruptibility in the Office. Proceedings of

the 2018 CHI Conference on Human Factors in

Computing Systems - CHI '18.

PECCS 2019 - 9th International Conference on Pervasive and Embedded Computing and Communication Systems

82

