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Abstract: The Software developer productivity is an important indicator that has attracted the attention of the industry 

over the years. It has been established that improving software productivity enhances the performance of 

organizations. Despite its importance, a full understanding of contextual factors and how they influence 

productivity is not attained. One such important factor is the developer’s emotions. In this paper, we conduct 

an experiment on 11 participants where they attempt to solve 10 ACM-style problems as we monitor their 

emotions and behaviour in the background. The experiments performed achieve an accuracy of 55.4% on the 

test set using a random forest classifier. There is room for multiple improvements such as increasing dataset 

size, performing class balancing, and utilizing different aggregation methods for the data. This paper opens a 

different track for experimentation relating to the relationship between emotions and software productivity. 

Achieving a better understanding of this relationship can aid further research that would utilize it to build 

context aware and pervasive systems that can automatically react to developers’ emotions when going through 

a low productivity phase and orient them towards emotions that are correlated with positive productivity. 

1 INTRODUCTION 

Enhancing software developer productivity has 

become a primary target for many corporate 

organizations since it reflects on the performance and 

success of the company. It is already established that 

focusing on human resources can lead to improved 

productivity (Boehm and Papaccio, 1988; Sampaio et 

al., 2010), and this has made the industry become 

more employee centric and try to enhance their work 

environment. One important contextual factor is the 

developer’s emotions, and this has been shown to 

affect multiple work-related variables such as 

decision making, motivation, meeting deadlines, 

among others (Barsade and Gibson, 2007). Thus, it is 

important to understand how emotions play a role in 

software development. Building a better 

understanding will aid further research to investigate 

methods to enhance software developer productivity 

through monitoring changes in emotions and trying to 

orient them towards a mindset that is positively 

correlated with productivity. Even better, pervasive 

systems can be created that automatically suggest 

content and actions to the developer based on sensors 

that monitor the behavior and emotions of the 

developers. 

Looking at existing research in the field, few 

studies have been conducted to address the impact of 

emotions on developer productivity, and a consensus 

has not been reached with regards to the findings 

reported. Some studies correlate increased 

productivity with positive emotions such as happiness 

(Graziotin et al., 2013), while others reported that 

some negative emotions such as anger and frustration 

can lead to a boost in productivity (Wrobel, 2013). 

Furthermore, assessing developers’ productivity is a 

difficult task since there hasn’t been an agreement on 

a unified metric by researchers (Oliveira et al., 2017). 

Looking at the existing research, studies in this 

area relied on different methods of capturing affective 

data as well as productivity measures. Some studies 

simply collected responses from developers on their 

opinion concerning the relationship between 

emotions and productivity through questionnaires 

(Wrobel, 2013; Graziotin et al., 2017; Graziotin et al., 

2018). Other studies conducted actual experiments to 

collect data and analyze them. A subset of them 

utilized self-assessment as a primary method of 

evaluating the software productivity of developers as 

they are working on software development tasks 

(Barsade and Gibson, 2007; Graziotin et al., 2014a; 

Graziotin et al., 2014b; Graziotin et al., 2015). 

Another group of studies tried to capture emotions 

from text through sentiment analysis. The text is 

usually in the form of commit logs and repository 

comments (Mäntylä et al., 2016; Murgia et al., 2014; 

Anany, M., Hussien, H., Aly, S. and Sakr, N.
Influence of Emotions on Software Developer Productivity.
DOI: 10.5220/0008068800750082
In Proceedings of the 9th International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS 2019), pages 75-82
ISBN: 978-989-758-385-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

75



Ortu et al., 2015; Sinha et al., 2016). Some 

researchers have relied on more intrusive 

technologies to monitor emotions such as biometric 

sensors that participants wear during the experiments 

(Fritz et al., 2014; Muller and Fritz, 2015; Müller and 

Fritz, 2016; Züger et al., 2018). Few studies also tried 

to induce emotions in developers before they 

performed the experiment as a way of investigating 

emotions’ impact on productivity (Khan et al., 2010). 

Despite the available studies, inconsistencies still 

exist in the findings. This can be due to the difficulties 

associated with measuring emotions and software 

productivity accurately. It should also be noted that 

monitoring the impact of emotions on productivity 

requires the ability to assess changes in productivity 

in short time spans, which might not necessarily make 

the existing metrics suitable. It was also observed that 

facial expression analysis was not explored as an 

option for evaluating emotions in the existing studies. 

These points inspired us to conduct this investigation 

as an attempt to further understand the influence of 

emotions on the productivity of software developers. 

The rest of the paper is divided into the following 

sections. Section 2 provides some background 

information relating to emotions and productivity. 

Section 3 discusses the existing work in the field. 

Section 4 discusses the method we follow to conduct 

our experiment as well as the details of the setup and 

data collected. Section 5 discusses the results of our 

analysis. Section 6 highlights future contributions 

that can build on our current progress. Finally, section 

7 concludes the paper. 

2 BACKGROUND 

Studying the influence of emotions on software 

productivity requires measuring these 2 items in order 

to quantitatively assess them. There are multiple ways 

to perform measurements. Looking at emotions, these 

could be captured from different channels such as 

facial expressions, voice, text, keystrokes and mouse 

movements, biometrics, and body gestures (Garcia-

Garcia et al., 2017; Poria et al., 2017). Multiple APIs 

exist that support facial expression recognition, voice 

analysis, and text analysis. Little support exists for 

capturing emotions from keystrokes and mouse 

movements and body gestures. Biometric sensors 

typically come with API support but are expensive. 

There are multiple emotion representations that 

exist; however, the most common ones are the 

discrete model and the dimensional model. The 

discrete model is derived from Darwin’s work in 

“The Expression of Emotions in Man and Animals” 

(Borod, 2000). Paul Ekman identified 15 “families of 

emotion” that either have unique facial or vocal 

expressions (Ekman, 1993). These are: amusement, 

anger, contempt, disgust, embarrassment, excitement, 

fear, guilt, pride in achievement, relief, 

sadness/distress, satisfaction, sensory pleasure, and 

shame. Inspired by them, happiness, anger, disgust, 

sadness, fear, and surprise were identified as being 

universal facial expressions and have been widely 

used by researchers in the field of Affective 

Computing (Garcia-Garcia et al., 2017; Deshmukh 

and Jagtap, 2017; McDuff et al., 2016). As for the 

dimensional model, the most famous variation is the 

valence, arousal, and dominance (VAD) one. Valence 

describes the attractiveness to an experience (pleasant 

or unpleasant), arousal indicates the activation level 

of a person due to a stimulus (e.g. anger gives a high 

arousal value and boredom gives a low arousal value), 

and dominance describes the level of control the 

person is feeling. Figure 1 illustrates an example of 

the VA emotional space. 

 

Figure 1: Valence-arousal emotion representation. 

As for software productivity, various metrics have 

been introduced over the years. The oldest and most 

popular ones are the single-ratio metrics such as 

Lines-of-Code (LOC) and Function Points (FP) 

(Petersen, 2011). Data Envelopment Analysis (DEA) 

was also another metric that was introduced that 

gained some popularity in the industry (Petersen, 

2011). Other metrics include number of tasks, 

weighted factors methods, number of modification 

requests, change points, and use case points 

(Petersen, 2011; Oliveira et al., 2017). Despite the 

various metrics that were introduced over the years, it 

appears that classical methods such as LOC and FP 

are the most adopted in the industry due to their 

simplicity and ease of use. 
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3 RELATED WORK 

This section discusses and analyses previous 

contributions on the influence of emotions on the 

productivity of software developers. The 

contributions are grouped according to the methods 

of capturing emotions and software productivity data. 

3.1 Questionnaire-based 

Methods that relied on collecting data explicitly from 

developers usually utilized web-based questionnaires 

(Wrobel, 2013), Scale of Positive and Negative 

Experience (SPANE), and open-ended questions 

(Graziotin et al, 2017; Graziotin et al., 2018). Reports 

show that the top consequences of unhappiness 

include low productivity, low code quality, lower 

motivation, work withdrawal, delay, and low focus. 

The top 10 for happiness include high productivity, 

high motivation, high code quality, higher self-

accomplishment, and high work engagement and 

perseverance (Graziotin et al., 2018). 

While this method acquires direct information, the 

problem with it is that experimental evaluation is not 

performed, so developers report on their past 

experiences which may be subject to bias and 

inaccurate reporting. 

3.2 Self-assessment 

Self-assessment as an instrument for data collection 

relies on the perception of the developer during 

evaluation. Some studies solely relied on it, while 

others included it for verification purposes. Self-

assessment techniques are various and include Self-

Assessment Manikin (SAM), SPANE, pre-task and 

post-task interviews, observations, and email 

exchanges. Experiments varied in sizes, varying from 

2 participants (Graziotin et al., 2015) to 42 

participants (Graziotin et al., 2014b). In most 

experiments surveyed, most authors interrupted the 

participants at 5 to 10-minute intervals to solve the 

self-assessment questions while they are performing 

the instructed tasks. Some results show that there is a 

correlation between the 2 affective states (valence and 

dominance) and the self-assessed productivity, but no 

correlation was built for arousal (Graziotin et al., 

2013; Graziotin  et al., 2014a). Other reports showed 

that positive affects correlate with high productivity 

while negative affects result in low productivity 

(Graziotin et al., 2015). 

Self-assessment is one step better than simply 

querying developers since it involves actual 

experiments, however it suffers from the inability to 

capture a continuous stream of emotions because it is 

usually performed at fixed time intervals. There is 

also latency between sensing an emotion and 

reporting it, which can result in confusions. Self-

assessment relies on the subjective evaluation of the 

participant, which can form inconsistencies across 

different individuals. 

3.3 Text Analysis 

Text analysis is yet another method for correlating 

emotions with productivity. These are typically used 

with platforms that support developer projects such as 

Jira and GitHub. Most evaluation was conducted 

using text sentiment analysis tools. These studies 

have access to huge amount of data such as 560 

thousand Jira comments (Ortu et al., 2015), 28,466 

GitHub projects (Sinha et al., 2016), and 700,000 Jira 

issue reports with over 2,000,000 comments (Mäntylä 

et al., 2016) which is good for generalization 

attempts. Some reports state that the issue fixing time 

(measure of productivity utilised) was shorter for 

happier developers, while negative emotions resulted 

in longer issue fixing time (Ortu et al., 2015). Others 

showed that negative sentiments were 10% more than 

positive sentiments, with most of the sentiments 

being neutral (Sinha et al., 2016).  

The problem is that text analysis is an indirect way 

of capturing emotions as compared to methods that 

rely on physical traits, such as facial expressions. 

Studying commit logs and comments is a limitation 

because this category of text tends to be formal and 

short and is often restricted by companies in terms of 

writing style. This makes it more difficult to extract 

emotions from the text, which was reflected in the 

results, showing that most of the sentiments were, in 

fact, neutral (Sinha et al., 2016). 

3.4 Biometric Sensors 

Biometric sensors have been used by researchers to 

evaluate emotions in several fields, such as 

psychology (Muller and Fritz, 2015). The studies 

usually involved participants performing a predefined 

task that usually lasted between 1 and 1.5 hours long. 

The number of participants varied between 10 and 17, 

and they were usually fitted with sensors such as eye 

trackers, EDA and EEG sensors, wristbands, and 

chest straps (Fritz et al., 2014; Müller and Fritz, 

2016). Most studies reported on task difficulty and 

very few addressed the issue in relation to emotions. 

Studies that utilised biometric sensors suffered 

from requiring an expensive setup. The technique is 

also invasive since it requires the participants to wear 
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wristbands and headbands. The process is also 

tedious because the sensor data needs to be filtered 

and cleaned. Measurement failures are also expected 

because of inappropriate equipment setup or shifting 

of equipment during work. 

3.5 Inducing Emotions 

Inducing emotions is a less popular approach towards 

the investigation. A study was conducted by Khan et 

al. in 2010 which tried to see the impact of mood on 

debugging performance (Khan et al., 2010). The 

study involved making the participants watch mood-

inducing movie clips prior to performing the tasks. 

The results show that moods, particularly arousal, 

affected the programmers’ performance. An increase 

in arousal and/or valence resulted in an increase in the 

performance of algorithm-tracing tasks. 

The main problem with inducing emotions, 

however, is that emotion measurements are not 

actually performed. Assuming the inducing process 

was successful, nothing guarantees their persistence 

as the participants are working on the tasks. 

4 METHODOLOGY 

This section discusses the design of our experiment 

with the objective of understanding the influence of 

emotions on software productivity. We discuss the 

experiment setup, the data that is collected, how it is 

collected, and how it is prepared for analysis. 

4.1 Experiment Details 

The experiment involves participants attempting to 

solve 10 ACM-style problems in an hour. The 

problems are selected from CodeForces (Problemset, 

n.d.) from the 2nd division sets with rated difficulties 

of A and B only. These problems are relatively easy 

and don’t require in-depth algorithmic knowledge to 

be able to solve them. The complexity of the 

problems was chosen to be low because the focus is 

on having participants mainly spend their time on 

implementation rather than critical thinking. This is 

because it is easier to evaluate aspects of productivity 

that are related to actual implementation rather than 

thinking which isn’t easily measurable. 

A unified language is chosen to control the 

experiment for the sake of analysis, so participants are 

instructed to develop their implementations in C++. 

They are also instructed to develop on Visual Studio 

Code on Windows. As they are working, a camera is 

used to record the participants’ faces in order to 

analyse their facial expressions. Emotion data is 

captured by analysing the facial expressions, which is 

performed using Affectiva’s APIs (Affectiva 

Windows APIs, n.d.). Productivity and activity data 

are collected by logging data in the background as the 

participant is working on the computer. While the 

participants are working, a self-assessment window 

pops up at 5-minute intervals to collect explicit 

information from the participants on their 

productivity and emotions. Figure 2 illustrates the 

self-assessment window used. 

4.2 Setup and Procedure 

The participants first sign a consent form agreeing to 

participate in the experiment before starting. Then 

they fill out a form to collect some background 

information about the participant. This information is: 

name, gender, date of birth, nationality, university, 

major, class standing, programming experience in 

years, whether the person participated in ACM 

contests previously or not, and familiarity with ACM-

style problems on a scale from 1 to 5. 

Then, the participant is handed a hard copy of the 

problem set and a sheet containing hints for some of 

the problems. The participants are free to make use of 

the hints or otherwise disregard them. Before starting, 

the experiment coordinator goes through the 

problems with the participants and explains the 

problems to them. This is done because we want to 

maximize the amount of time that participants spend 

on implementation as opposed to reading or thinking. 

The coordinator then explains the development 

environment to the participants. This includes 

familiarizing them with Visual Studio Code, how to 

run the local test cases, and how to make submissions 

through CodeForces to get a verdict for their 

solutions. Participants are given CodeForces handles 

that were prepared beforehand to be used for the 

experiment. When ready, the participants are seated 

at the workstations and the 1-hour experiment starts. 

 

Figure 2: Self-assessment pop-up window. Productivity is 

evaluated on a scale between 0 and 10. Valence and arousal 

are evaluated on a scale between -10 and 10.
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Table 1: Raw data collected. 

Database Table Data Stored 

Keyboard keystroke and timestamp 

Mouse mouse movement, click, click state, and timestamp 

Active Window window name and timestamp 

Affectiva 
9 emotions: [joy, fear, disgust, sadness, anger, surprise, contempt, valence, and engagement], 

21 facial expressions, and timestamp 

Self-assessment productivity, valence, and arousal scores (refer to figure 2) 

Lines of code changes filename, number of lines added, number of lines removed, and total number of lines 

CodeForces verdict, number of test cases passed, time consumed, and memory consumed 

4.3 Data Collected 

Seven different kinds of data are collected during the 

experiment. These are keystrokes, mouse activity, 

active window, changes in lines of code, emotions 

data from Affectiva’s API, self-assessment data, and 

CodeForces verdicts on the solution submissions. 

This data is stored in an SQLite database. Table 1 

outlines the database tables and data collected. 

5 ANALYSIS AND RESULTS 

This section discusses how the raw data was 

processed and the dataset was compiled. It then 

discusses the experiments that were conducted, their 

results, and provides analysis for the obtained results. 

Of the 11 participants, 2 were females and 9 were 

males. On a Likert scale of 1 to 5, the average 

familiarity with ACM-style problems was 2.82. The 

average number of submissions made by participants 

was 9. The average number of correct submissions 

was 2.82. Figure 3 shows the relationship between 

familiarity with ACM problems and the number of 

correct submissions made. It basically shows a direct 

correlation between them.  

 

Figure 3: ACM Familiarity (solid) and Correct Submissions 

(dashed). 

 

 

5.1 Dataset Preparation 

Data was collected from 11 participants, each 

providing 1 hour of continuous stream of data that 

was mentioned in section 3.3. In its raw form, the data 

is not ready for analysis and must therefore be 

preprocessed. The first step is to identify a reasonable 

time interval at which the data is going to aggregated. 

This was chosen to be a 1-minute interval. Going 

lower than 1-minute will make it difficult to obtain 

meaningful data points because, intuitively, it is very 

difficult to quantize developer productivity at 

intervals lower than a minute. 

The next step is to select the most relevant 

variables to include in the analysis. These were the 9 

emotions that are obtained through Affectiva, 

keystrokes, lines of code changes, and submissions on 

CodeForces. Mouse related activity was discarded 

because it was observed that it introduces noise when 

considering it with the other variables. Nonetheless, 

this data was recorded because gathering it was not 

difficult. Active window data was also not used; 

however, it can be useful in future experiments as it 

provides information relating to what the user is 

working on at a certain point in time. 

Given the variables, the input features are the 

emotions vector, while the keystrokes, changes in 

lines of code, and CodeForces submissions are used 

to compute a single value that represents productivity. 

The problem now becomes a matter of aggregating 

the continuous stream of emotions during a minute 

into a single data point and associating each data point 

with a value of productivity. Figure 4 is an illustration 

of a single data point. 

It basically shows a direct correlation between 

them.  

  

Figure 4: A single data point. The input features are the 

emotions, and the target is the productivity value. 
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Focusing on the emotions vector, the aggregation 

is performed by taking the mean over the whole 

minute and using this value to represent the emotion 

over the previous minute. This means that each data 

point will have a vector of 9 means for the 9 emotions. 

As for productivity, it is important to identify a 

proper way of utilizing the information at hand to 

come up with an appropriate metric to evaluate it. 

While most existing metrics in the literature are 

useful for evaluating productivity over months, 

weeks, or days, they are not practical for evaluating 

changes in productivity over a very short time span 

such as a minute. The metric should also be suitable 

to the domain of problem solving, since this was the 

nature of the experiment. 

The devised metric consists of 2 components: 

effort and reward points. Effort represents work that 

the developer performs to achieve his target, which is 

solving the problem. Effort is evaluated using 

keystrokes and changes in the number of semicolons 

in the files. Semicolon changes were chosen as 

opposed to simply changes in physical lines because 

it is more indicative of productive code. Since number 

of semicolon changes is more significant than the 

number of keystrokes, it is given more weight in the 

effort calculation. The weights assigned were 2/3 and 

1/3 for the semicolon changes and keystrokes 

respectively. These values were chosen through trial 

and error.  Equation 1 shows the calculation for effort, 

where K is keystrokes and S is semicolons. 

Effort = (1/3) * K + (2/3) * ΔS (1) 

Note that aggregation for keystrokes is done by 

adding up the keystrokes that happen during the 

minute. Similarly, semicolon changes are aggregated 

by adding these changes during the minute. This 

equation, however, cannot be applied directly 

because the keystrokes and Δsemicolons are of 

different scales. To account for this problem, the data 

is normalized first. 

As for the reward points, the way to gain them is 

by correctly solving problems. Each problem solved 

grants 100 points. As for submissions that were not 

successful, the points earned are awarded according 

to equation 2. PC stands for passed test cases while 

TC stands for total test cases. For example, if a person 

solves 3 problems successfully, and partially solves 

another problem such that 10 out of 20 test cases pass, 

he/she will be rewarded a total of 350 points. 

Points = (PC / TC) * 100 (2) 

The problem now becomes a matter of 

distributing the earned points during the 1-hour 

experiment time across the 1-minute interval points. 

This is where effort and reward points are combined. 

The process involves multiple steps. First, the 

submissions are filtered by removing any 

intermediate submissions that achieve an equal or 

lower score than a previous submission for the same 

problem. For example, given a certain problem, if the 

first submission achieves 50% success, the second 

achieves 30%, and the third achieves 100%, the 

second submission is dropped as it doesn’t achieve 

any improvements. Note that points are not double 

counted in multiple submissions that belong to the 

same problem, so only the percentage increase is 

accounted for. 

Next is the distribution process. The points earned 

at each submission are distributed on the timeframe 

that precedes it until the previous submission. Each 

minute in this frame receives a portion of the points 

earned that is directly proportional to the effort 

exerted in this minute. This value basically represents 

productivity for this minute. This is made clear in 

figure 5. 

  

Figure 5: S1, S2, and S3 are the submissions. T1, T2, and 

T3 are the timeframes. Points earned in S1, S2, and S3 are 

distributed on timeframes T1, T2, and T3 respectively. 

After the previous processes, the data for each 

person is sampled at 1-minute intervals and each data 

point is represented by a vector of emotions as the 

input features and a target value for productivity. For 

each person, 10% of the points are taken into the test 

set and 90% is used for the training set. 

5.2 Experiments and Discussion 

Two experiments were conducted and reported in this 

paper. This section discusses the experiments and 

their results and provides an analysis of the findings. 

For both experiments, training is performed by 

utilizing a random forest classifier. Class balancing 

was also used to make sure that any variations in 

frequency would be accounted for. 

5.2.1 Experiment 1 

For this experiment, the training set has 636 data 

points, and the test set has 67 data points. Before 

training, the productivity values were clustered into 

20 classes (considering the maximum value is 100). 

Upon training using the random forest classifier, the 

results show an accuracy of 98.3% on the training set 
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and 70.2% on the test set. However, after taking a 

closer look at the data, a problem was noticed. Most 

of the data points had a productivity value of 0, and 

this is since most participants were able to solve 

around 2 problems only. The confusion matrix shows 

that around 50% of the points in the test set belong to 

the 0-productivity class, which were correctly 

classified, hence the relatively high accuracy. 

However, observing the other classes, they were few 

in numbers and were wrongly classified as zeros. This 

motivated the need to devise another experiment that 

tackles the problems of the first one. 

5.2.2 Experiment 2 

For this experiment, one target was to lower the 

number of data points that were oriented towards 

zeros. To do this, data after the last submission that 

was made for each participant was trimmed. This is 

because any data points that come afterwards will 

receive a productivity of zero according to the metric 

used since the reward points will be zero. Doing so, 

the size of the training set was 555 data points and the 

test set had a size of 56 data points. 

Since the dataset is small, 20 classes were too 

much. To resolve this issue, 3 classes were used for 

this part of the experiment. The cut off thresholds 

were chosen to balance the number of data points 

belonging to each class. Basically, the classes 

represent low, medium, and high productivities. Upon 

training, the results show an accuracy of 98.0% on the 

training set and 55.4% on the test set. Despite it 

achieving less than the previous experiment, the 

confusion matrix in this scenario was more balanced, 

and hence is less biased. 

The accuracy is still considered low, given that a 

random model would achieve a 33.3% accuracy. This 

can be attributed to the fact that the dataset was small, 

given that only 11 participants were available. 

Another issue is also the low number of problems 

solved, which was a primary factor that indicated 

productivity according to the devised metric. Another 

possibility could be that using the mean to aggregate 

the emotions data is not the best way to get a 

representative emotion vector at 1-minute intervals. 

6 CONCLUSIONS 

The influence of emotions on developer productivity 

is an important relationship to investigate as it is not 

fully understood in the existing literature. A few 

studies were conducted that tackled this point. 

Methods used include questionnaires, self-

assessment, text analysis, utilizing biometric sensors, 

and inducing emotions. Each of these methods has its 

own limitations. One possible direction is to capture 

emotions from facial features, and this was utilized in 

the experiments conducted in this paper. A metric was 

designed to measure productivity over short intervals 

of time which uses a measure for effort and reward 

points. The first experiment achieved an accuracy of 

70.2% on the test set, however, the model was biased 

towards productivity values of zero because of their 

dominance in the dataset. To account for this issue, a 

second experiment was performed that adjusted the 

dataset and balanced the classes. The second 

experiment achieved an accuracy of 55.4% on the test 

set. Despite this being better than a random model, it 

still suffers from some problems. The dataset is small, 

the number of successful submissions is low, and the 

aggregation method used could possibly be changed. 

This opens many possibilities for experimentation 

that could be performed to achieve better results. 

7 FUTURE WORK 

One significant limitation in the experiments 

performed was the fact that dataset size was limited. 

An obvious improvement is to collect more data to 

achieve better and more reliable results. This will also 

help solve the issue of having low amount of data 

points in the dataset that have high productivity 

values. Another way to tackle this issue is also to 

adjust the productivity metric such that reward points 

aren’t only earned through submissions but may also 

be attained through performing effort. Another option 

is to experiment with different aggregation methods 

for the emotions other than the mean which could 

possibly lead to better results. Data panelling could 

also be explored during data analysis. Some data was 

also collected during the data collection phase but 

were not used in the experiment such as mouse clicks 

and movement, active window data, and self-

assessment data. These could be utilized in further 

experiments to investigate their usefulness. 

Hopefully, these could ultimately help to achieve a 

better understanding of the influence of emotions on 

the productivity of software developers. 
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