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Abstract: Agents with aberrant behavior are commonplace in today’s networks. There are fake profiles in social media,
malicious websites on the internet, and fake news sources that are prolific in spreading misinformation. The
distinguishing characteristic of networks with aberrant agents is that normal agents rarely link to aberrant
ones. Based on this manifested behavior, we propose a directed Markov Random Field (MRF) formulation
for detecting aberrant agents. The formulation balances two objectives: to have as few links as possible
from normal to aberrant agents, as well as to deviate minimally from prior information (if given). The MRF
formulation is solved optimally and efficiently. We compare the optimal solution for the MRF formulation to
existing algorithms, including PageRank, TrustRank, and AntiTrustRank. To assess the performance of these
algorithms, we present a variant of the modularity clustering metric that overcomes the known shortcomings of
modularity in directed graphs. We show that this new metric has desirable properties and prove that optimizing
it is NP-hard. In an empirical experiment with twenty-three different datasets, we demonstrate that the MRF
method outperforms the other detection algorithms.

1 INTRODUCTION

Agents with aberrant behavior are commonplace in
today’s networks. There are malicious websites on the
internet, fake profiles in social media, and fake news
sources prolific in spreading misinformation. There is
considerable interest in detecting such aberrant agents
in networks. Across contexts, the unifying theme is
that normal agents rarely link to aberrant ones. We call
this property aberrant linking behavior. This behavior
occurs in a number of different contexts.

Aberrant linking behavior was observed in web
graphs in the early days of search engines. In these
web graphs, the goal is to separate informative web-
sites (normal) from spam or malicious websites (aber-
rant). Informative websites typically link to other rele-
vant and informative websites, whereas spam websites
link to either informative websites or other spam web-
sites. Spam websites linking to each other creates
“link farms” (Wu and Davison, 2005; Castillo et al.,
2007). From the linking behavior of the websites, the
expected structure of normal and aberrant agents, with
aberrant linking behavior, arises. In one empirical
study, this structure of normal and spam sites is veri-
fied in a Japanese web graph with 5.8 million sites and
283 million links (Saito et al., 2007).

In social networks, the goal is to separate real pro-
files (normal) from fake profiles (aberrant). On Face-
book, it is estimated that nearly 10% of accounts are
either fake or otherwise “undesirable” (intentionally
spreading misinformation) (Fire et al., 2014). In an
empirical study of 40,000 fake Twitter accounts, it
was observed that most users of authentic social media
accounts avoid following fake accounts (Ghosh et al.,
2012). A similar study of 250,000 fake accounts on
LinkedIn corroborated this result (Xiao et al., 2015).
It is evident that the expected structure of normal and
aberrant agents, with aberrant linking behavior, arises
in these settings.

In the context of fake news, the goal is to separate
credible sources (normal) from dubious ones (aber-
rant) (Shu et al., 2017; Törnberg, 2018; Shu et al.,
2019). Credible sources typically link to other credi-
ble sources and will not link to dubious ones. Thus, the
expected structure of normal and aberrant agents, with
aberrant linking behavior, arises. In (Shu et al., 2017),
the authors observe that the credibility of a news event
is highly related to the credibility of the sources it ref-
erences. In (Shu et al., 2019) and (Törnberg, 2018),
the authors use the colloquial term “echo chamber”
to describe small networks of agents that amplify the
spread of false information by repeating it.
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The problem of aberrant agent detection is formal-
ized here as a classification problem on a directed
graph, where each vertex represents an agent and each
arc represents a link from one agent to another. In
contrast to an agent-based approach that classifies an
agent based on its individual features (Ntoulas et al.,
2006; Webb et al., 2008; Erdélyi et al., 2011), we use
information about the graph links to perform the clas-
sification (Becchetti et al., 2006; Gan and Suel, 2007).
These agent-based and link-based approaches are syn-
ergistic (Becchetti et al., 2008; Roul et al., 2016). For
example, the output of an agent-based learning algo-
rithm can be incorporated in a link-based approach as
prior scores for the agents. Multiple link-based tech-
niques have been proposed in the literature, including
spectral methods and random walks.

Spectral techniques for classifying aberrant agents
typically optimize a symmetric objective function,
which is the sum of a measure of disagreement be-
tween adjacent agents (Von Luxburg, 2007; Wu and
Chellapilla, 2007; Zhou et al., 2007). Such methods
are sometimes called “graph regularization methods”,
since they interpolate missing labels from known ones
(Abernethy et al., 2010). In other work, the objective
functions are NP-hard cut problems, such as normal-
ized cut (Shi and Malik, 2000) or generalized weighted
cut (Meilă and Pentney, 2007). Since these cut prob-
lems are NP-Hard, they are approximated with spectral
methods on an appropriately chosen symmetric ma-
trix. After the spectral algorithm returns a partition,
refinements may be made with pairwise swaps until a
local optimum is reached (Malliaros and Vazirgiannis,
2013).

Random-walk based approaches include PageRank
(Page et al., 1999), TrustRank (Gyöngyi et al., 2004),
AntiTrustRank (Krishnan and Raj, 2006), and several
domain-specific variants which have been proposed
over the years (Gori and Pucci, 2006; Wu and Chel-
lapilla, 2007; Liu et al., 2009; Rosvall and Bergstrom,
2008; Sayyadi and Getoor, 2009; Shu et al., 2019). If
a set of agents is highly internally connected and min-
imally externally connected, a random walk starting
in that set is expected to spend a lot of time inside it
before exiting. Thus, in a graph with aberrant linking
behavior, a random walk is expected to visit the nor-
mal agents more frequently than the aberrant agents
(Rosvall and Bergstrom, 2008). In some cases, the be-
havior of random walks is equivalent to optimizing an
explicit objective function. In other cases, no objective
function is specified. We describe the mechanics of
these algorithms in detail in section 2.

In this paper, we propose a new approach that for-
mulates the aberrant agent detection problem for the
first time as a Markov Random Field (MRF) prob-

lem (Geman and Geman, 1984). Others have consid-
ered an MRF formulation for the related problem of
detecting campaign promoters in social media, but
used loopy belief propagation instead of solving for an
optimal solution (Li et al., 2014). Our formulation bal-
ances obeying any given prior information with min-
imizing the number of links from normal to aberrant
agents. The optimal solution to the formulation is ob-
tained efficiently with known algorithms (Hochbaum,
2001). One advantage of the proposed formulation is
its ability to be given prior labels for the agents with
various degrees of confidence.

In an extensive empirical study, we compare MRF
with three well-known algorithms from the literature:
PageRank (Page et al., 1999), TrustRank (Gyöngyi
et al., 2004), and AntiTrustRank (Krishnan and Raj,
2006). We also use a random classifier as a baseline
algorithm. We find that MRF outperforms its competi-
tors. The average score of MRF is approximately 25%
higher than the next-best algorithm.

The main contributions of this work are:

1. We formulate the problem of detecting aberrant
linking behavior as a directed Markov Random
Field (MRF) problem. The formulation is solved
optimally and efficiently. This is the first time that
MRF is used to model the detection of aberrant
agents and the first use of MRF for directed graphs.

2. We develop a new variant of the modularity met-
ric (Newman and Girvan, 2004) that addresses its
known shortcomings on directed graphs. We show
that our metric has desirable properties and prove
that optimizing it is NP-hard.

3. We present an extensive empirical study in which
we compare MRF with three well-known algo-
rithms from the literature.

The rest of this paper is organized as follows: in
section 2, we present preliminaries, including the de-
tails of the existing algorithms. In section 3, we present
our MRF formulation. In section 4, we describe the
methods we used to evaluate the quality of the results
of the algorithms. In section 5 and section 6 we de-
scribe the experimental setup and results. Finally, we
conclude the manuscript in section 7.

2 PRELIMINARIES

Notation. We represent the network as a directed
graph G = (V,A), where V is the set of vertices and A
is the set of arcs. Each node in the graph G represents
an agent, and an arc represents a link from one agent to
another. Each arc (i, j)∈A has an associated wi j ∈R+,
which represents the number of links from agent i to
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agent j. We use dout
i and din

i to denote the weighted
out-degree and in-degree of vertex i, respectively.

We will ultimately partition V into two sets: C0, the
set of “normal” vertices and C1, the set of “aberrant”
vertices. The notation Wpq denotes the total weight of
arcs from Cp to Cq. That is,

Wpq = ∑
i∈Cp, j∈Cq

wi j.

We also define W = ∑(i, j)∈A wi j to denote to the total
sum of weights.

Priors. All the algorithms described here will take as
input a graph in which some or all of the vertices have
prior values associated with them. We use Vprior ⊆V
to denote the set of vertices which have priors, and
we use ci ∈ [0,1] to denote the prior value of vertex i.
These priors could represent information about known
vertices, the ratings of human judges or the output of
another algorithm. The prior values do not represent
“ground truth”. The priors may have various degrees
of confidence and may occasionally be imprecise or
unreliable. Besides the structure of the graph itself,
the priors are the only information we have on which
to base our final classifications.

Output. All algorithms output a continuous score,
xi ∈ [0,1], for every vertex i ∈ V , where closer to 0
means more likely normal and closer to 1 means more
likely aberrant. From these continuous scores, we
decide how to partition V into C0 and C1.

Existing Algorithms We consider the three exist-
ing algorithms that are most prevalent in the literature:
PageRank, TrustRank, and AntiTrustRank. These algo-
rithms and their variants are actively used (Tagarelli
and Interdonato, 2014, 2018).

In PageRank (Page et al., 1999), a Markov chain is
defined over the vertices in the graph. The trust score
of vertex i ∈ V is equal to the stationary probability
that the Markov chain is in state i. The state transitions
from vertex i to vertex j with probability

Pi j = α
wi j

dout
i

+(1−α)r j ∀(i, j) ∈V ×V.

Here, α ∈ [0,1] is a hyperparameter known as the at-
tenuation factor and r j ∈ [0,1] is the probability of
restarting the Markov chain from vertex j. The values
of r j must sum to 1: ∑ j∈V r j = 1.

In PageRank, r j =
1
n∀ j ∈V . The unique eigenvec-

tor with eigenvalue 1, π, is computed with the Power
method. The score, xi, returned by PageRank, is equal
to 1−πi.

TrustRank (Gyöngyi et al., 2004) is a modification
of PageRank where the probability for (re)starting at
vertex j is proportional to 1− c j (a measure of how
“trusted” the vertex is):

rtrust
j =

1− c j

∑i∈Vprior
(1− ci)

∀ j ∈Vprior.

The intuition behind TrustRank is that from trusted
nodes you should only reach other trusted nodes. Like
PageRank, the returned score is 1−πi, where πi is the
probability that the Markov chain is in state i.

AntiTrustRank (Krishnan and Raj, 2006) is similar
to TrustRank, but differs in two aspects: The Markov
chain traverses the graph in the reverse direction, and
the (re)start distribution is proportional to c j (a mea-
sure of how “distrusted” the vertex is):

ranti
j =

c j

∑i∈Vprior
ci
∀ j ∈Vprior.

The underlying idea is that from normal vertices you
should rarely reach aberrant vertices, and thus if you
follow arcs in the reverse direction, then from aberrant
vertices you should reach mostly aberrant vertices.

In contrast to PageRank and TrustRank, in Anti-
TrustRank the eigenvector with eigenvalue 1 represents
the distrust of the vertices. The score, xi, returned by
AntiTrustRank for vertex i ∈V is equal to πi.

3 MARKOV RANDOM FIELD
(MRF) MODEL

The MRF model (Geman and Geman, 1984) is defined
for a directed graph G = (V,A), where each vertex
i ∈V has an associated decision variable xi. For given
deviation functions Gi and separation functions Fi j,
the MRF model is defined as:

min λ ∑
i∈V

Gi(xi,ci)+ ∑
(i, j)∈A

Fi j(xi− x j)

s.t. li ≤ xi ≤ ui ∀i ∈V

The deviation function Gi(·, ·) penalizes a deviation of
the variable xi away from the prior value ci, whereas
the separation function Fi j(·) penalizes the difference
between the values assigned to neighboring vertices
in the graph. The trade-off parameter λ ≥ 0 deter-
mines the trade-off between the deviation and sepa-
ration penalties. When Gi(·, ·) and Fi j(·) are convex,
this problem is solved optimally and efficiently in ei-
ther continuous or integer variables (Hochbaum, 2001;
Ahuja et al., 2003). The problem is NP-hard otherwise.

For the problem of detecting aberrant agents, a
“good” solution is characterized by two properties.
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First, there should be few links from normal to aber-
rant agents. Second, the difference between the score
assigned to an agent and its prior value, if any, should
be small. These goals naturally map to an MRF model.

For each vertex i ∈Vprior, with associated prior ci,
we choose a quadratic penalty function Gi = (xi− ci)

2

to measure the deviation between the assigned xi
and the prior ci. The remaining vertices without
priors do not have an associated deviation penalty.
That is, Gi(xi,ci) = 0 for i /∈ Vprior. For each arc
(i, j) ∈ A with weight wi j, we have a separation func-
tion Fi j =wi j (x j− xi)

+, where (x j−xi)
+ =max{x j−

xi,0}. This separation function results in a penalty of
wi j(x j− xi) for arc (i, j) ∈ A if the score xi of vertex i
is lower than the score x j of vertex j, since the (more)
normal vertex i links to a (more) aberrant vertex j.

The resulting optimization problem is:

min λ ∑
i∈Vprior

(xi− ci)
2 + ∑

(i, j)∈A
wi j (x j− xi)

+

(MRF-Detection)

s.t. 0≤ xi ≤ 1 ∀i ∈V.

In the optimization problem, each agent i ∈ V is
assigned a score xi ∈ [0,1]. The behavior of an agent
with a score of 1 is considered aberrant, whereas a
score of 0 corresponds to normal behavior.

(MRF-Detection) is a special case of the MRF
problem with convex deviations and bi-linear sepa-
ration functions1, which was shown by Hochbaum
(2001) to be solvable with a parametric minimum
cut problem in the complexity of a single minimum
cut problem plus the complexity required to find the
minima of the convex deviation functions. Two para-
metric cut algorithms, based on the pseudoflow algo-
rithm (Hochbaum, 2008; Hochbaum and Orlin, 2013)
or the push-relabel algorithm (Goldberg and Tarjan,
1988; Gallo et al., 1989), achieve this complexity.
Since the deviation functions are quadratic here, the
complexity of finding the minima of the deviation func-
tions is O(|V |), which is dominated by the complexity
of a minimum cut problem. As a result, the complex-
ity of solving this parametric minimum cut problem
with either of these two algorithms is expressible as
O
(

mn log n2

m

)
where n is the number of nodes in the

graph and m is the number of arcs.
These results imply that we can solve the MRF

formulation for aberrant agent detection efficiently
and optimally.

1A bi-linear function refers here to a function of the form
max{u+z,−u−z} for u+,u− ≥ 0 and z ∈ R.

4 PERFORMANCE EVALUATION
METRICS

In the datasets available to us, there is no “ground
truth” to which we can compare our results. Instead
we assess the classification performance in terms of
how well the resulting partition obeys the property
of having few links from normal vertices to aberrant
vertices.

For this purpose, we will lay out several metrics.
The first are a series of ad-hoc metrics, such as the av-
erage out-degree from normal vertices to aberrant ones.
We also present a directed variant of the established
modularity clustering metric (Newman and Girvan,
2004).

4.1 Ad-hoc Metrics

Aberrant linking behavior implies that there should be
few arcs from normal to aberrant. For that reason, a
relevant metric is W01

N0
, the average degree of a normal

vertex to the set of aberrant vertices.
As a baseline for comparison, we also calculate

W11
N1

, the average degree of an aberrant vertex to the
set of aberrant vertices. If our labeling has the desired
property, then we expect that W01

N0
will be significantly

smaller than W11
N1

. For further comparison, we also

compute W01
W01+W11

, the fraction of weight into aberrant
vertices coming from normal vertices.

In order to normalize these values of across graphs,
we divide the degree measures by the average degree
of the graph, davg =

W00+W01+W10+W11
N0+N1

.

This leads to the following three metrics:

W01/N0

davg
,

W11/N1

davg
, and

W01

W01 +W11
.

4.2 Modularity

A metric commonly used in the graph partitioning
literature is modularity (Newman and Girvan, 2004).
It measures how many edges are within clusters versus
edges between clusters and compares that to a random
graph with the same degree distribution (Newman and
Girvan, 2004; Kim et al., 2010).

Given a weighted, undirected graph and a partition
of the set of vertices into clusters C0, . . . ,Ck, modular-
ity (Newman and Girvan, 2004) is defined as

1
2W ∑

i, j∈V

[
wi j−

did j

2W

]
δ(i, j). (UndirMod)
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Here, di is the weighted degree of vertex i, and

δ(i, j) =

{
1 ∃p | i, j ∈Cp,

0 otherwise.

A larger modularity value indicates that the cluster as-
signment is superior since there are more edges within
the clusters than in a random graph. It is NP-hard to
find the set of clusters that maximize modularity in a
graph (Brandes et al., 2006).

When modularity is applied to directed graphs,
there is no agreed-upon generalization (Newman,
2006; Rosvall and Bergstrom, 2008; Kim et al., 2010).
One straightforward adaptation of modularity to di-
rected graphs would be to calculate (Newman, 2006;
Rosvall and Bergstrom, 2008; Kim et al., 2010)

1
W ∑

i, j∈V

[
wi j−

dout
i din

j

W

]
δ(i, j). (DirMod)

Several issues with this generalization have been ob-
served. In (Malliaros and Vazirgiannis, 2013), small
example graphs are shown in which certain arcs can
be reversed without affecting the modularity. This is
problematic given our interest in asymmetry between
clusters.

In fact, we show in claim 1 that this definition of
directed modularity, with 2 clusters, is proportional to
the determinant of a matrix with entries Wi j for i, j ∈
{0,1}. We defer the proof to the appendix. This result
implies that this definition is symmetric with respect
to the cluster assignment and that the cluster labels are
exchangeable without affecting the modularity.

Claim 1. Let G = (V,A) be a directed graph with
vertex labels in {0,1}, defining two clusters C0 and C1.
The modularity of the clustering assignment on G, as
defined in equation (DirMod), is proportional to

W00W11−W01W10.

Corollary 1. Let G = (V,A) be a directed graph with
vertex labels in {0,1}, defining a cluster assignment C .
Let C ′ be the assignment with opposite labels. Then,
the modularity of cluster assignment C on G, as de-
fined in equation (DirMod), is the same as the modu-
larity of assignment C ′.

The symmetry with respect to the clustering labels
is undesirable for the problem of agent detection, since
only links from a normal vertex to an aberrant one
should be penalized. That is, we would like to penalize
arcs from C0 to C1 without penalizing arcs from C1
to C0. If the labels can be interchanged, then these
penalties are necessarily symmetric. We will propose
a change to the modularity metric which overcomes
this deficiency.

One option might be to change the definition δ so
that δ(1,0) = δ(0,0) = δ(1,1) = 1. In other words,
“rewarding” arcs from C1 to C0 in addition to arcs
within clusters. However, repeating the calculation
in Claim 1 gives a surprising result: even with the
new definition of δ, the modularity metric remains
proportional to W00W11−W01W10. For that reason, a
different change is needed.

We suggest a new variant of the directed modularity
metric, which captures the asymmetric nature of the
relation between normal and aberrant vertices. Our
metric only penalizes arcs in one direction between the
two clusters. We keep the W00W11 term, but instead
of subtracting off W01W10, we subtract off 3

4W 2
01. We

add the 3
4 coefficient to account for the larger expected

value of the term W 2
01 as compared to W01W10

2. Our
new definition of directed modularity in the two-cluster
case is:

4
(
W00W11− 3

4W 2
01
)

W 2 . (AsymMod)

Similarly to the result for undirected modularity,
we establish that maximizing AsymMod is NP-hard.
Our reduction is from the minimum bisection problem,
which is different from the undirected case. Again, we
defer the proof to the appendix.

Claim 2. Maximizing (AsymMod) is NP-Hard.

From now on, when we refer to modularity, it is as-
sumed that we are referring to (AsymMod).

5 EXPERIMENTAL SETUP

We compare MRF against the algorithms Page-
Rank (Page et al., 1999), TrustRank (Gyöngyi et al.,
2004), AntiTrustRank (Krishnan and Raj, 2006), and a
randomized baseline algorithm, which we name Ran-
dom. We measure the performance of the algorithms
in terms of modularity score and the ad-hoc metrics
described in section 4.

Datasets. We evaluate the experimental perfor-
mance of MRF on twenty-one different datasets from
the KONECT project (Kunegis, 2013), as well as two
Web Spam datasets (Castillo et al., 2006). The datasets
in KONECT are categorized into twenty-three cate-
gories. We chose twenty-one datasets in categories in
which we plausibly expected to find high-modularity
clusters. The two Web Spam datasets are based on web
crawls of the .uk top-level domain. The properties of

2The coefficient 3
4 is chosen such that the terms have

equal expectation when the Wpq/W values are drawn inde-
pendently and uniformly from the unit interval.
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the datasets are summarized in Table 1. We excluded
from our analysis four Konect datasets for which no
algorithm was able to attain a modularity score above
0.2.

Priors. Since we do not have access to datasets
with prior labels, we generate priors with a simple
heuristic. For each dataset, we assign priors such that
pprior ≤ 50% percent of the vertices are marked aber-
rant and the same number of vertices are marked nor-
mal. The vertices are chosen according to the differ-
ence between out-degree and in-degree, since we ex-
pect that nodes with high out-degree and low in-degree
are potentially aberrant. We define ∆i = dout

i −din
i for

every vertex i ∈V . The vertices are then sorted such
that ∆σ(1) ≥ ∆σ(2) ≥ ·· · ≥ ∆σ(n). The first nprior =
bpprior nc vertices with the highest ∆ value are consid-
ered aberrant and given the prior values ci = 1. The last
nprior vertices with the lowest ∆ value are considered
normal and given the prior values ci = 0.

Labeling. Each of the algorithms returns a score
xi ∈ [0,1] for every vertex i ∈ V . We convert these
scores into a binary assignment to the clusters C0 and
C1 by means of a threshold τ. The clusters are given
by:

C1(τ) = {i ∈V : xi ≥ τ}
C0(τ) = {i ∈V : xi < τ}

We report the highest modularity obtained over a set
of thresholds T :

max
τ∈T

Modularity(C0(τ),C1(τ))

For the MRF algorithm, the set of thresholds T is
given by the set of unique values of the scores {xi :
i ∈V}. For the other algorithms, the set of threshold
values T consists of the 0th,5th, . . . ,100th percentiles
of the scores {xi : i ∈V}. We apply a different method
for MRF since its solution typically contains only a
few distinct values. In the results reported here, the
median number of unique scores in the MRF solution
is 13. In contrast, the node scores tend to be unique
for each of the other algorithms.

Algorithm Implementations. For MRF, we use the
formulation as described in equation (MRF-Detection)
with one modification: we normalize the trade-off
parameter λ. We call this new hyperparameter the
normalized trade-off parameter, λnorm. It is defined by
the following equation:

λ = λnorm
∑(i, j)∈A wi j

|Vprior|
.

We expect that the normalized parameter λnorm is more
consistent across datasets, since it corrects for the size
of the graph.

We use a parametric implementation of the pseud-
oflow algorithm (Hochbaum, 2008) to solve the para-
metric minimum cut problem.

For PageRank, we use the implementation of Page-
Rank in the NetworkX package for Python (Hagberg
et al., 2008). For TrustRank and AntiTrustRank, we
wrote a wrapper around the NetworkX implementa-
tion of PageRank. We use the default settings of the
PageRank solver, except for the attenuation factor α,
which we treat as a hyperparameter. The maximum
number of iterations is set to 1000.

The Random algorithm provides baseline compar-
ison. Each vertex is assigned a score, xi, uniformly
drawn from the unit interval. We report the average of
the best modularity obtained in each of 10 trials.

Our implementations of these algorithms, as well
as the code used to run the experiments, are available
open-source at https://github.com/hochbaumGroup/
mrf-aberrant-detection.

Hyperparameters. All algorithms, except for Ran-
dom, have hyperparameters. The hyperparameters for
MRF are the normalized trade-off parameter λnorm and
the percentage of priors pprior. The hyperparameters
for TrustRank and AntiTrustRank are the attenuation
factor α and the percentage of priors pprior. PageRank
has only the attenuation factor α as its hyperparameter,
since the algorithm does not utilize the prior values.

For each algorithm and dataset, we tested 200 com-
binations of hyperparameter values to maximize mod-
ularity. Each combination of hyperparameter values
was selected with the Tree-structured Parzen estima-
tor (TPE) algorithm (Bergstra et al., 2011) based on
previous evaluations and a prior distribution for each
of the parameters. The TPE algorithm uses approxi-
mate Bayesian Optimization to select a combination
of hyperparameter values that has the highest expected
increase in modularity score. Bayesian optimization
methods, such as TPE, have been shown to outperform
grid search and random search (Bergstra and Bengio,
2012) and to rival domain experts in finding good hy-
perparameter settings (Bergstra et al., 2011).

The prior distributions for the hyperparameters
were selected as follows: For the normalized trade-
off parameter λnorm, we used a lognormal distribution
with zero mean and a standard deviation of two. For
the attenuation factor α, we used a uniform distribution
on the unit interval, and for the percentage of priors
pprior we used a uniform distribution over the interval
from 1 to 50 percent.
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Table 1: Basic properties of twenty-one datasets from the KONECT project and the two datasets from the Web Spam project.

Dataset Vertices Arcs Link Significance Weights

Animal - Bison 26 314 Dominance behavior between bisons. yes
Animal - Cattle 28 217 Dominance behavior between cattle. yes
Animal - Hens 32 496 Pecking order among hens. no
Citation - Cora 23166 91500 Scientific citations. no
Citation - DBLP 12591 49728 Scientific citations in computer science. no
Communication - Company 167 5783 Emails within manufacturing company. yes
Communication - DNC Emails 1891 5517 Emails within committee. yes
Communication - Slashdot 51083 130370 Responses to messages. yes
Communication - University 1899 20296 Messages within university. yes
Hyperlink - Blogs 1224 19022 Links between political blogs. no
Hyperlink - Google 15763 170335 Links between internal Google pages. no
Hyperlink - Spam 2006 11402 730774 Links between UK sites. yes
Hyperlink - Spam 2007 114529 1771291 Links between UK sites. yes
Infrastructure - Airports 1 3425 37594 Flights between airports. yes
Infrastructure - Airports 2 2939 30501 Flights between airports. no
Metabolic - Proteins (Small) 1706 6171 Interactions between proteins. no
Social - Advogato 6539 47135 Trust relationships between users. yes
Social - Dorm 217 2672 Friendship ratings between students. yes
Social - High School 70 366 Friendship ratings in a high school. yes
Social - Physicians 241 1098 Trust relationships between physicians. no
Social - Twitter 23370 33101 Following relationships between users. no
Trophic - FL Dry Season 128 2137 Carbon exchanges between organisms. yes
Trophic - FL Wet Season 128 2106 Carbon exchanges between organisms. yes

6 RESULTS

For each of the twenty-three datasets and five algo-
rithms, we report the best modularity found after the
hyperparameter search. In Table 2, in the final column
we report the highest modularity score found among
all the algorithms. In the remaining columns, we show
the relative modularity score obtained by each algo-
rithm as a percentage of the highest modularity score.
Thus, one algorithm always achieves 100 percent.

On average, our MRF algorithm achieves the high-
est percentage of the maximum modularity, at 92%.
The next best algorithms, TrustRank and AntiTrust-
Rank, achieve 74% and 73% respectively. MRF
achieves the highest modularity on thirteen of the
twenty-three datasets.

In Table 3, we examine the properties of these par-
titions with maximum modularity, using the ad-hoc
metrics described in section 4. Across all datasets,
the median value of W01/N0

davg
for MRF is 0.04. For Anti-

TrustRank, it is 0.13. This suggests that MRF is indeed
finding partition with fewer arcs from normal to aber-
rant. It attains the smallest value on twenty of the
twenty-three datasets. Looking at the median value of
W11/N1

davg
, we see another side of the story. For AntiTrust-

Rank, the median value is 1.18. For MRF, it is 0.60.
This suggests that the vertices classified as aberrant by
AntiTrustRank are more interlinked than those classi-
fied by MRF. These results make sense: whereas MRF
is minimizing the links from normal to aberrant, with-
out any stipulation about connections between aberrant
vertices, AntiTrustRank is working backwards from
known aberrant vertices to find aberrant clusters.

The last three columns in Table 3 corroborates
this analysis. MRF outputs a labeling in which the
fraction of weight to aberrant that comes from normal
(as opposed to other aberrant vertices) is 0.05 (median).
On the other hand, in TrustRank the same value is
0.15 and in AntiTrustRank it is 0.18. MRF attains the
smallest value on twenty of the twenty-three datasets.

The running times of all algorithms, with the excep-
tion of Random, were in the same order of magnitude.

7 CONCLUSIONS

In this paper, we studied the problem of identify-
ing agents with aberrant behavior in networks. Such
agents frequently appear in today’s networks, includ-
ing malicious websites on the internet, fake profiles in
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Table 2: Normalized asymmetric modularity score by algorithm for twenty-three datasets. Performance is reported as a
percentage of the highest asymmetric modularity score (last column) obtained among all the algorithms.

Dataset MRF Trust AntiTrust Page Random Best Modularity
Rank Rank Rank Score (100%)

Animal - Bison 82.4 100.0 94.3 84.4 36.2 0.279
Animal - Cattle 84.5 100.0 80.5 97.9 31.3 0.294
Animal - Hens 99.3 100.0 99.8 100.0 29.5 0.233
Citation - Cora 55.7 57.3 100.0 32.1 12.2 0.517
Citation - DBLP 100.0 89.3 41.2 58.1 16.4 0.409
Communication - Company 66.1 100.0 89.8 65.5 22.1 0.405
Communication - DNC Emails 100.0 47.4 37.7 22.3 21.2 0.402
Communication - Slashdot 93.9 69.2 100.0 49.9 20.7 0.321
Communication - University 100.0 63.1 62.1 29.7 18.1 0.342
Hyperlink - Blogs 100.0 70.8 81.2 57.8 23.3 0.302
Hyperlink - Google 100.0 71.2 94.4 53.1 15.7 0.448
Hyperlink - Spam 2006 100.0 53.4 91.5 37.2 12.8 0.743
Hyperlink - Spam 2007 100.0 47.6 63.7 45.5 19.9 0.505
Infrastructure - Airports 1 100.0 45.9 51.6 17.8 10.6 0.577
Infrastructure - Airports 2 100.0 71.2 47.9 19.9 10.7 0.591
Metabolic - Proteins (Small) 100.0 68.5 68.9 1.2 13.6 0.517
Social - Advogato 100.0 72.7 76.8 53.8 17.4 0.392
Social - Dorm 57.3 100.0 66.4 63.4 11.1 0.615
Social - High School 89.2 100.0 92.2 94.9 14.5 0.739
Social - Physicians 94.1 82.8 100.0 43.8 8.7 0.931
Social - Twitter 92.7 7.7 15.1 100.0 31.9 0.244
Trophic - FL Dry Season 100.0 85.3 51.1 90.4 22.1 0.581
Trophic - FL Wet Season 100.0 93.4 78.2 93.4 28.3 0.588

Average 92.0 73.8 73.2 57.0 19.5 —

Table 3: Ad-hoc metrics of the partition returned by each algorithm. The results are reported for the partition that maximizes
asymmetric modularity, as in Table 2. For brevity, we exclude PageRank and Random. For a partition that satisfies aberrant
linking behavior we expect the first and third metric to be small.

W01/N0
davg

W11/N1
davg

W01
W01+W11

MRF Trust AntiTrust MRF Trust AntiTrust MRF Trust AntiTrust

Animal - Bison 0.16 0.20 0.16 0.46 0.51 0.59 0.29 0.28 0.24
Animal - Cattle 0.02 0.08 0.03 0.58 0.63 0.69 0.04 0.06 0.05
Animal - Hens 0.03 0.04 0.04 0.45 0.48 0.48 0.07 0.07 0.08
Citation - Cora 0.00 0.02 0.05 0.36 0.41 0.98 0.00 0.01 0.08
Citation - DBLP 0.00 0.09 0.01 0.43 0.48 1.18 0.00 0.06 0.05
Communication - Company 0.33 0.94 0.19 0.83 0.55 1.91 0.18 0.23 0.28
Communication - DNC Emails 0.06 2.35 0.11 0.66 0.20 0.86 0.05 0.38 0.36
Communication - Slashdot 0.06 0.35 0.17 0.80 0.31 1.27 0.03 0.21 0.23
Communication - University 0.23 1.11 0.19 0.60 0.36 2.46 0.24 0.35 0.41
Hyperlink - Blogs 0.08 0.49 0.15 0.33 0.31 1.13 0.09 0.22 0.29
Hyperlink - Google 0.00 0.07 0.13 0.60 0.32 0.96 0.00 0.15 0.15
Hyperlink - Spam 2006 0.00 0.28 0.01 1.92 0.61 10.10 0.00 0.02 0.02
Hyperlink - Spam 2007 0.00 0.41 0.24 0.71 0.12 7.37 0.00 0.15 0.14
Infrastructure - Airports 1 0.24 1.84 0.19 0.87 0.25 4.15 0.09 0.45 0.30
Infrastructure - Airports 2 0.07 0.64 0.33 0.47 0.28 0.82 0.15 0.36 0.33
Metabolic - Proteins (Small) 0.19 0.69 0.22 0.52 0.37 1.25 0.27 0.38 0.34
Social - Advogato 0.11 0.75 0.13 0.39 0.29 1.86 0.10 0.31 0.28
Social - Dorm 0.19 0.21 0.25 0.55 0.65 0.86 0.29 0.17 0.23
Social - High School 0.04 0.08 0.09 0.62 0.85 0.76 0.05 0.05 0.08
Social - Physicians 0.00 0.00 0.00 0.88 0.79 1.03 0.00 0.00 0.00
Social - Twitter 0.00 0.03 0.00 0.80 0.74 1.57 0.00 0.01 0.00
Trophic - FL Dry Season 0.00 0.00 0.09 1.96 1.42 7.09 0.00 0.00 0.18
Trophic - FL Wet Season 0.00 0.35 0.05 1.70 0.34 5.80 0.00 0.06 0.14

Median 0.04 0.28 0.13 0.60 0.41 1.18 0.05 0.15 0.18

Detecting Aberrant Linking Behavior in Directed Networks

79



social media, and fake news sources prolific in spread-
ing misinformation. The unifying property of these
networks is that normal agents rarely link to aberrant
ones. We call this aberrant linking behavior.

We formulated the detection problem in a novel
way: as a directed Markov Random Field (MRF) prob-
lem. This formulation balances obeying any given
prior information with minimizing the links from nor-
mal to aberrant agents. We discussed how the formula-
tion is solved optimally and efficiently.

To compare the performance of the algorithms, we
developed a new, asymmetric variant of the modularity
metric for directed graphs, addressing a known short-
coming of the existing metric. We showed that our
metric has desirable properties and proved that max-
imizing it is NP-hard. We also used several ad-hoc
metrics to better understand properties of the solutions.

In an empirical experiment, we found that the MRF
method outperforms competitors such as PageRank,
TrustRank, AntiTrustRank, and Random. The solu-
tions returned by MRF had the largest modularity score
on thirteen of the twenty-three datasets tested. The
modularity for MRF was, on average, 25 percent bet-
ter than the modularity returned by TrustRank or Anti-
TrustRank.
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Meilă, M. and Pentney, W. (2007). Clustering by weighted
cuts in directed graphs. In Proceedings of the 2007
SIAM international conference on data mining, pages
135–144. SIAM.

Newman, M. E. (2006). Modularity and community structure
in networks. Proceedings of the national academy of
sciences, 103(23):8577–8582.

Newman, M. E. and Girvan, M. (2004). Finding and evaluat-
ing community structure in networks. Physical review
E, 69(2):026113.

Ntoulas, A., Najork, M., Manasse, M., and Fetterly, D.
(2006). Detecting spam web pages through content
analysis. In Proceedings of the 15th international con-
ference on World Wide Web, pages 83–92. ACM.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999).
The pagerank citation ranking: Bringing order to the
web. Technical report, Stanford InfoLab.

Rosvall, M. and Bergstrom, C. T. (2008). Maps of random
walks on complex networks reveal community struc-
ture. Proceedings of the National Academy of Sciences,
105(4):1118–1123.

Roul, R. K., Asthana, S. R., Shah, M., and Parikh, D. (2016).
Spam web page detection using combined content and
link features. International Journal of Data Mining,
Modelling and Management, 8(3):209–222.

Saito, H., Toyoda, M., Kitsuregawa, M., and Aihara, K.
(2007). A large-scale study of link spam detection by

graph algorithms. In Proceedings of the 3rd interna-
tional workshop on Adversarial information retrieval
on the web, pages 45–48. ACM.

Sayyadi, H. and Getoor, L. (2009). Futurerank: Ranking
scientific articles by predicting their future pagerank.
In Proceedings of the 2009 SIAM International Con-
ference on Data Mining, pages 533–544. SIAM.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. Departmental Papers (CIS), page 107.

Shu, K., Bernard, H. R., and Liu, H. (2019). Studying fake
news via network analysis: detection and mitigation.
In Emerging Research Challenges and Opportunities
in Computational Social Network Analysis and Mining,
pages 43–65. Springer.

Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H. (2017).
Fake news detection on social media: A data mining
perspective. ACM SIGKDD Explorations Newsletter,
19(1):22–36.

Tagarelli, A. and Interdonato, R. (2014). Lurking in social
networks: topology-based analysis and ranking meth-
ods. Social Network Analysis and Mining, 4(1):230.

Tagarelli, A. and Interdonato, R. (2018). Mining Lurkers
in Online Social Networks: Principles, Models, and
Computational Methods. Springer.

Törnberg, P. (2018). Echo chambers and viral misinforma-
tion: Modeling fake news as complex contagion. PloS
one, 13(9):e0203958.

Von Luxburg, U. (2007). A tutorial on spectral clustering.
Statistics and computing, 17(4):395–416.

Webb, S., Caverlee, J., and Pu, C. (2008). Predicting web
spam with http session information. In Proceedings of
the 17th ACM conference on Information and knowl-
edge management, pages 339–348. ACM.

Wu, B. and Chellapilla, K. (2007). Extracting link spam
using biased random walks from spam seed sets. In
Proceedings of the 3rd international workshop on Ad-
versarial information retrieval on the web, pages 37–
44. ACM.

Wu, B. and Davison, B. D. (2005). Identifying link farm
spam pages. In Special interest tracks and posters of
the 14th international conference on World Wide Web,
pages 820–829. ACM.

Xiao, C., Freeman, D. M., and Hwa, T. (2015). Detecting
clusters of fake accounts in online social networks. In
Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, pages 91–101. ACM.

Zhou, D., Burges, C. J., and Tao, T. (2007). Transductive link
spam detection. In Proceedings of the 3rd international
workshop on Adversarial information retrieval on the
web, pages 21–28. ACM.

Detecting Aberrant Linking Behavior in Directed Networks

81



APPENDIX

Proof of Claim 1.

We multiply (DirMod) by the constant W 2:

∑
i, j∈V

[
Wwi j−dout

i din
j

]
δ(i, j)

=W ∑
i, j∈V

wi jδ(i, j)− ∑
i, j∈V

dout
i din

j δ(i, j).

Now, since δ(i, j) = 1 if and only if i and j are in the
same cluster:

=W (W00 +W11)− ∑
i∈C0

∑
j∈C0

dout
i din

j − ∑
i∈C1

∑
j∈C1

dout
i din

j

=(W00 +W01 +W10 +W11)(W00 +W11)

− (W00 +W01)(W00 +W10)

− (W11 +W10)(W11 +W01)

=2(W00W11−W10W01)

Proof of Claim 2. The proof is a reduction from the
minimum bisection problem on an undirected and un-
weighted graph G = (V,E). A bisection (C0,C1) is
a partition of the set of vertices V such that |C0| =
|C1|= n/2, where n is the number of nodes in the orig-
inal graph. The minimum bisection problem is to find
a bisection (C0,C1) that minimizes W01 = W10. This
problem is known to be NP-Hard (Garey et al., 1974).

Consider an undirected and unweighted graph G on
which we would like to solve the minimum bisection
problem. We create the graph G′ where we copy G
by turning each edge into two directed arcs and add
two vertices, s and t, with an arc from s to every vertex
in G and an arc from every vertex in G to t. Let the
weight of all these arcs be M, for sufficiently large M
(e.g. M ≥ m2 where m is the number of arcs in the
original graph).

Consider a partition of this new graph into C0 and
C1. We still use Wpq to denote the total weight in the
original graph between clusters p and q. We break the
modularity 3 calculation into four cases, depending on
which clusters s and t are in:

s ∈C0, t ∈C0:

(2|C0|M+W00)(W11)−
3
4
(|C1|M+W01)

2

s ∈C0, t ∈C1:

(|C0|M+W00)(|C1|M+W11)−
3
4
(nM+W01)

2

3We ignore the normalization term 4
W 2 .

s ∈C1, t ∈C0:

(|C0|M+W00)(|C1|M+W11)−
3
4
(W01)

2

s ∈C1, t ∈C1:

(W00)(2|C1|M+W11)−
3
4
(|C0|M+W01)

2

Expanding these expressions, we see that the co-
efficient of M2 is largest when s ∈ C1, t ∈ C0, and
|C0|= |C1|= n/2. Thus, for sufficiently large M, these
are necessary conditions to maximize the modularity
of the clustering in G′. The expression becomes:

n2

4
M2 +

n
2
(W00 +W11)M+W00W11−

3
4

W 2
01.

Assuming M is sufficiently large, an optimal solution
maximizes n

2 M (W00 +W11) and thus W00+W11. How-
ever, maximizing this quantity is equivalent to mini-
mizing W01 +W10 = 2W01. Thus, the partition which
maximizes modularity in G′ gives us the minimum
bisection in G.
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