
Design and Implementation of Modular Honeynet System Based on
SDN

Yan Li1, Bin Wu1
1 School of Cyberspace security, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Beijing,

China

Keywords: Honeynet, Modular System, SDN, Attack Tree.

Abstract: Traditional honeynets cannot dynamically migrate traffic. The flexibility of SDN can solve this problem. At
the same time, the traditional honeynets have the disadvantages of complicated alarm logs and inability to
carry out targeted analysis, and lacks protection for the honeypot. It is easy to completely destroy the
honeypot and make it a jumper for the attacker to launch the next attack on the intranet. This paper proposes
a modular honeynet system based on SDN, which can respond to the scanning probe-exploit-worm injected
attack chain, reducing the complexity of the alarm log and improving the efficiency of the researchers in
analyzing attacks. Also, a honeypot switching strategy based on the detection of the attack tree phase is
proposed in the module of vulnerability response, which can delay the attacker's attack progress and reduces
the risk of the honeypot. The experiment also verified the feasibility of the modular system.

1 INTRODUCTION

The Internet has become an indispensable part

of people's daily lives and network security has

become an issue of increasing concern. The
defenders proposed the honeynet technology

(Jianwei Zhuge, 2013) as a mean of active defense

in a passive situation. In terms of passive defense,

active defense emphasizes that it can promptly warn
before the intrusion causes damage to the system,

avoiding and diverting the attack risk faced by the

system. In this paper, the Software Defined Network

(SDN) technology and honeypot technology are
deeply studied.

The honeynet is a hacker trap network system

consisting of several honeypots that can seduce

attackers and collect attack data. The honeynet
stores false sensitive data and does not provide

normal services. It is pre-arranged in the honeypot.

The vulnerability and monitoring system can seduce

the attacker and monitor and record the attack
behavior, so that the defensive party can restore and

trace the attack behavior, so as to better defend the

service network where the real host is located.

However, traditional honeynets are mostly based on
traditional network devices as honeynet gateways

(More Asit, 2013), which achieve the purpose of

traffic migration through program burning. This

method is not flexible enough and has security risks.
On the other hand, the traditional honeynet responds

to the attacker's overall attack behavior, which often

causes the recorded attack data to be too

cumbersome and confusing. It is difficult for
defenders to judge the impact of each attacker's

attack, which is not easy to analyze the attack

behavior.

To solve the problem that the traditional
honeynet alarm log has high complexity and lacks

protection for honeypots, this paper combines

honeynet and SDN technology, and uses SDN

flexible and convenient features to innovatively
propose a modular honeynet system based on SDN.

The attack behavior of the attacker is divided into

three stages: topology scanning-exploiting-worm

injecting. The three modules respond to the three-
stage attack respectively. It reduced the level of

alarm confounding, which is convenient for

researchers to analyze the attack in stages. Also, this

paper proposed a honeypot switching strategy based
on the attack tree to cut the exploit behavior and

reduce the success rate of the attacker, so as to

prevent the honeypot from being completely

attacked by the attacker and become a jumper for
attacking the net. It solved the problem of traditional

honeynet lack of protection for honeypots.

Li, Y. and Wu, B.
Design and Implementation of Modular Honeynet System Based on SDN.
DOI: 10.5220/0008098102030212
In Proceedings of the International Conference on Advances in Computer Technology, Information Science and Communications (CTISC 2019), pages 203-212
ISBN: 978-989-758-357-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

203

2 RELATED RESEARCH

2.1 Related Research on SDN

SDN technology is an innovative network

architecture proposed by the Clean State group of

Stanford University (Nunes, B., 2014). Different

from OSI seven-layer model, the SDN architecture
consists of the infrastructure layer, the control layer

and the application layer, as shown in Figure 1. In

the SDN architecture, the infrastructure layer is

responsible for data processing, forwarding, and
state collection. The control layer is responsible for

sending flow tables to the infrastructure layer

devices to achieve fast processing of matching flow

table traffic. The application layer includes various
services and applications. The application written by

the SDN controller is running on this layer to

implement network business functions (McKeown,

N., 2008).

Network

equipment

Network

equipment

Network

equipment

Network

equipment

Network

equipment

Infrastructure Layer

Control Layer
SDN control

software
Net Service

Net Service
Net Service

Control/Data Plane Interface e.g. OpenFlow

Application Layer
Application

Application
Application

API API API

Figure 1: The architecture of SDN.

2.2 Research on Honeynet Based on
SDN

Honeynet is a fake network architecture for
security defense. The proposed honeynet technology

benefits from the active defense theory proposed by

the defender in response to the long-term passive

situation of the attack. In the traditional honey
network architecture, the traffic forwarding function

is implemented by HoneyWall. The honey network

is connected to the external network, the internal

network, and the management server or IDS device.
However, such a deployment method requires a lot

of manual operation and high-performance hardware.

And the software running on the honey wall needs to

be constantly updated and re-programmed to meet
the different needs of the defender, which greatly

restricts the use of the honey wall.

With the introduction and development of SDN

technology, many researchers have noticed the
flexibility, programmable, and virtualized features of

SDN technology. Therefore, many SDN-based

honey network architecture solutions have emerged.

Wonkyu Han (2016) proposed the SDN-based
smart honeynet HoneyMix, which filters the

fingerprint information through controller

programming, making the honeypot more difficult to

be detected by the attacker and broadcasting the
connection request of the attack traffic to other

honeypots in the honeynet. Select the honeypot that

the attacker is most interested in to respond, to

achieve better effect of attracting attackers and
prolong the connection time of the attacker.

Stefan Achleitner (2017) designed an SDN

honeynet system for intranet scanning spoofing,

which forwards all traffic of the intranet to the RDS
(Reconnaissance Deceiving Server) via SDN. When

the scanning behavior is detected, the fake network

topology information is generated by the RDS.

Return to the attacker and extend the scan time
through the delay and queuing strategy to find the

location of the infected host before the attacker

completes the scan.

Wenjun Fan (2017) believed that the current
traffic redirection mechanism, especially the TCP

connection switching, is not hidden and easy to be

discovered by attackers. Therefore, an SDN-based

hybrid honeypot system network data controller is
proposed, which is forged. The serial number of the

current TCP session implements the secret switching

of TCP, and implements filtering of traffic based on

the alarm function of Snort.
Qiuchen Ren (2018) proposed an SDN honey

network system based on multi-controller

equalization strategy. The system can simulate

dynamic routing protocols, routing functions, and
virtualize the network topology to achieve the

purpose of deceiving attackers. At the same time, the

spectral clustering algorithm is improved, and the

functions of controller load balancing and flow
control are optimized.

2.3 Research on Attack Tree Model

Bruce Schneier (1999) first proposed the attack
tree model to describe the attack in 1999. The root

node of the tree represents the final intrusion target,

and the child node represents the attack method

adopted by the parent node. The relationships
between child nodes are "or" and "and", as shown in

Figure 2:

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

204

OR AND

Figure 2: Relationship between child nodes

An "or" relationship means that the completion

of any child node means the completion of the

parent node, and the "and" relationship means that

all child nodes have been completed to indicate that
the parent node is completed.

The generation of the attack tree is a process of

reasoning backwards from the root node. The

specific steps are as follows:
(1) Determine the ultimate goal of the attack,

which is the root node of the attack tree.

(2) Using the root node as a starting point,

matching the collected attack information for the
target with the attack rule in the attack tool library,

and if it matches, generating a new child node.

(3) Each node is regarded as a sub-goal, and a

new node is generated by the attack method and rule
matching the child node in the tool library as a child

node of the current sub-goal.

(4) Repeat the above steps until the child nodes

can no longer be split.

3 SYSTEM DESIGN

3.1 System Architecture

Attacker Router

OpenFlow

S2

Topology

generator

Strategy

center

Flow table

generator

Controller

OpenFlow

S3

Web Server SQL Server FTP Server

Web Hp SQL Hp FTP Hp

OpenFlow

S4

Mirror-

Honeypot

OpenFlow

S5

Web

Honeypot

Cluster

SQL

Honeypot

Cluster

FTP

Honeypot

Cluster

Worm trap

vSphere

OpenFlow

S1

Business

network

Traffic collector

Figure 3: System structure.

The system structure is shown as Figure 3. The

controller (including topology generator, policy
center and flow table generator) is responsible for

the response to the topology scan. The honeypot

cluster is responsible for the response of the exploit

attack, and the worm trap is responsible for the
response of the worm impact. The system contains 5

OpenFlow switches, which are respectively recorded

as S1~S5. S1 acts as a master switch and connects

directly to the external network. The controller
consists of three modules, namely the topology

generator, which is responsible for generating the

virtual topology of the response scan according to

the configuration file. The policy center is
responsible for identifying malicious traffic and

worms. The flow table generator is responsible for

generating the switch flow table and delivering it to

the switch. The S2 switch is connected to the service
network, and normal traffic is accessed to the service

network through the S2 switch. S2 is also connected

to a traffic collector. All traffic of S2 is copied by

the traffic collector. The traffic collector analyzes
the traffic in the domain. If there is any malicious

traffic or worm virus that is under-reported, it will

feedback to the policy center through S2. The policy

center updates its own rule base to match the newly
discovered malicious traffic. The S4 switch is

connected to the mirrored honeypot. The physical

properties of the mirrored honeypot are the same as

those of the service network. The service network is
cloned. Each service network host has its own

mirrored honeypot. The purpose of setting up a

mirror honeypot is to attack the implanted third step,

the worm or Trojan that the attacker wants to
implant into the network, which will be directed to

the mirror honeypot, because the mirror honeypot is

for the business. The cloning of the network is very

similar to the real network environment, so the
behavior of the worm or the Trojan can be observed

in the mirror honeypot to infer the action and

destructive power of the virus in the real network

environment, so that the researchers can better
Targeted defense. The S5 switch connects honeypots

managed by vSphere. These honeypots are classified

according to the types of attacks they can respond to

and are used to respond to the second step of the
attack, namely exploit exploits. For this part of the

honeypot, the "honeypot switching" strategy is

adopted, that is, for the attack of a certain service,

the attacking step is hierarchically split by the
attacking tree, and then the honeypots in the same

cluster respond to different levels of attacks. When

the attack is found to enter the next stage, the attack
traffic is imported into another honeypot in the same

Design and Implementation of Modular Honeynet System Based on SDN

205

cluster, so that the attacker's previous attack will be

invalid. In this way, the attacker's attack progress is
delayed, and the honeypot is broken to be used as a

springboard to continue the attack on the intranet.

On the other hand, the attacker's attack time can be

prolonged, and the attack behavior can be more
easily collected. More attack data. In addition,

considering that in the process of honeypot

switching, since the response attacks are different

hosts before and after the handover, the sequence
number may be different in the attacked TCP

connection. For this case, the current TCP packet

sequence number is copied. The method in the next

stage of the attack, so that the switch is not
perceived by the attacker. A typical timing diagram

is as follows:

Attacker

Topology

simulation

module

Exploit

module

Worm

capture

module

Topology scanning

Return virtual topology

Vulnerability scanning
Modify the destination address

Return the honeypot vulnerability information.

PhaseⅠattack
Honeypot A responses

PhaseⅠfinished, begin PhaseⅡ attack

Switch to Honeypot B

Attack failed. Restart Phase Ⅰ&Ⅱ attack
Honeypot B responses

Phase Ⅱ finished, begin Phase Ⅲ attack
Switch to Honeypot C

Worm implant

Mirror-Honeypot capture the worm

Figure 4: Attack timing diagram.

The attacker first performs topology scan

detection on the network, and the topology
simulation module generates a corresponding virtual

topology according to the previously issued

topology file and presents it to the attacker. Then,

the attacker performs a vulnerability scan on the
terminal node in the collected topology. Since the IP

address in the virtual topology is forged, the virtual

IP needs to be reverse mapped to the honeypot IP,

and the honeypot responds to the vulnerability of the
attacker’s scanning. After finding out the

vulnerabilities on the honeypot, the attacker exploits

the vulnerability to attack. According to the stage of

the attack tree's vulnerability attack, each time the
attack reaches a new stage, a new honeypot is

switched to respond to the attack. Some attacks rely

on the results of the previous attack. Such a switch

causes the attacker to abandon the attack and needs
to restart the attack. The multiple switch will cause

the attacker to slow down and give up the attack. For

the honeypot, both the attacker's attack information

is collected and the self-protection effect is achieved.
When the attack progresses to the worm implant, the

worm is identified by the controller's policy center,

and is directed to the mirrored honeypot for worm

capture by sending the flow table. Because the
mirror-honeypot is a clone of the business. With the

height simulation of the web host, the researchers

can observe the behavior of the worm in the mirror

honeypot to assess its destructive power in the real
environment.

3.2 Topology Simulation Module

Receiver

Flow 1

Flow 2

Flow n

Flow 1

Flow 2

Flow n

Sender

Buffer

Configuration

information reading

Generating

information

calculation

Packet generatorFlow table generator

ARP ICMP

UDP TCP

Packet parser

Packet-in

message

Packet-out

message

Flow-mod

message

Figure 5: Block diagram of Topology simulation module.

The topology simulation module is shown in

the Figure 5. For the network traffic received by the

switch, the switch flow table is matched first, and

the matched data packets are directly forwarded
according to the rules specified in the flow table. If

the matching fails, the packet-in message is used.

The form is sent to the controller's packet buffer.

The controller first parses the data packet, and
according to the protocol of the data packet, it is

processed by different modules. Then the

configuration file is read to obtain the structure of

the network topology to be generated and the
information such as the IP address and the MAC

address of each node is used to calculate the packet

information based on the information. Finally packet

generator generates a packet to reply the requester in
the form of a Packet-out message.

If the traffic that does not need to be responded

to by the topology simulation module, for example,

the traffic that is used for the first time to access the
normal service, the flow table generator generates a

response flow table and sends it to the switch to

facilitate fast matching and processing of subsequent

traffic.

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

206

To complete the response to the network

topology scan, mainly to spoof ping and traceroute
(Windows system is tracert) command detection,

these two commands mainly rely on ICMP protocol,

and the premise of ICMP protocol is that the attacker

knows the physical address of the destination host,
That is, the ARP protocol. As long as you can

simulate the ARP and ICMP protocols, you can

respond to basic ping and traceroute probes. The

principle of topology simulation is described below:

3.2.1 ARP Simulation

The ARP (Address Resolution Protocol)

protocol is used to obtain the physical address based

on the IP address. The OpenFlow switch is a Layer 2

device. It does not have an IP address and cannot
answer ARP requests. The system uses the ARP

response method from the controller. When the

controller receives the ARP request, it searches for

the MAC address of the corresponding IP according
to the content of the configuration file, and

constructs a response packet according to this, and

returns it to the requesting party.

3.2.2 ICMP Simulation

The Internet Control Message Protocol (ICMP)
protocol is often used to test network connectivity.

Scanning the network topology is based on ICMP.

ICMP is generally used for two commands: ping and

traceroute. When the controller receives the ping
request, the configuration file is read, and the

connectivity between the target host and the request

source and the hop count are determined according

to the network topology defined by the configuration
file, and the response packet is constructed

according to the configuration, and returned to the

requesting party. The principle of detecting the

network topology by using traceroute is that the
attacker first sends a packet with a TTL of 1 to the

destination. When the first router on the path

receives it, the TTL is decremented by 1. At this

time, the TTL is 0. The router will discard the packet
and return a Time Exceed message. Upon receiving

the message, the attacker knows that there is a router

on the path, and then sends a packet with a TTL of 2

to probe the second route. Repeat the above actions
until the data packet is sent to the destination host.

Since the traceroute command generally sends UDP

packets, the destination port is 33434~33534. The

general application will not use this range of ports,
and the host will reply to ICMP after receiving it.

Port Unreachable message, after the attacker

receives it, it can judge that the destination has

arrived. The traceroute command can send UDP,

TCP, and ICMP packets separately using different
parameters. The system processes all three

traceroute requests and can respond to traceroute

probes under different parameters.

3.3 Exploit Module

In the exploit response module, we used a

honeypot switching strategy based on attack tree
phase detection. The attack that may be suffered is

represented in the form of an attack tree. The attack

is divided into multiple paths. Each path is regarded

as a phase of the attack. The IDS is configured to
detect the alarm rules of each phase. When the IDS

sends the next phase. When the attack is alerted, the

attack as the previous stage is completed. At this

time, the IDS reports the attack information to the
SDN controller, and the controller modifies the flow

table to switch the honeypot traffic that is

communicating with the attacker to another

honeypot, in such a manner that the attacker is in the
previous stage. The attack is invalid, which will

slow down the attack and protect the honeypot.

According to the attack tree generation method,
we created an attack tree model that represents a

general network attack (as shown in the Figure 6).

Due to the variety of actual attacks, it is difficult to

display all attacks on one attack tree. This paper
selects the experimental part. The privilege

escalation attack is detailed and analyzed, and other

forms of attack are similar.

G0

G1 G2 G3 G4

G21 G22 G23G11 G12 G31 G32 G33 G41 G42 G43

Figure 6: Normal attack tree.

The main sub-target symbols and meanings are

shown in the Table 1:

Design and Implementation of Modular Honeynet System Based on SDN

207

Table 1: Symbol & Meaning of Normal attack tree.

Symbol Meaning Symbol Meaning

G0
Fully attack

a host
G22

Configuratio
n error

G1 Scanning G23
Guess weak
password

G2
Get general
permissions

G31
Penetration

attack

G3
Get root

permission
G32

Known
system

vulnerabilities

G4
Damage a

host
G33

Unknown
system

vulnerabilities

G11 Ping G41 DOS

G12
Other

scanning
tools

G42 Backdoors

G21
Vulnerabilit

y attack
G43 Jumper

3.4 Worm Capture Module

Worm is a malicious program with a high

degree of harm. It can infect the target node and use

the infected node as the source of infection to scan

the network where the node is located, further infect
other nodes in the network, and achieve independent

reproduction and propagation. Once a node in the

network is infected, the entire network may be

compromised by the worm. At present, honeynet is a
main defense method for worms. However, the

traditional honeynet has great limitations on the

behavior of malicious programs such as worms. It is

difficult to study the destructiveness of worms in the
real environment. On the other hand, the detection of

worms relies too much on the feature library and

feature matching algorithms. Detection and feedback

of missing worms. In order to solve these problems,
the system makes full use of the network traffic

control capability of SDN technology, and designs a

worm capture module that can track the entire life

cycle of the worm, including generation,
propagation, propagation, detection and detection

feedback, and simulate the real environment. It is

convenient for researchers to study the behavior and

destructive power of worms in real environments.
The structure of the module is shown as Figure 7:

Attack flow

Matching

engine

Feature

Library

Detection

Result

Business network
Mirror-Honeypot

（Worm trap）

Traffic collector

Feedback

Controller-Policy center

S2 S4

Figure 7: Block diagram of Worm capture module.

The policy center module of the SDN controller
consists of a matching engine and a feature library.

The feature database records the characteristic

information of the known worm, and has the

characteristics of fast detection speed and low false
alarm rate. However, only the known worm can be

detected. The traffic collector can collect and

abnormally detect the traffic in the service domain.

The anomaly detection module uses an anomaly
detection algorithm based on network entropy for

detection (Gu Yu, 2005). The network entropy is

generated by the IP quintuple, and the normal traffic

sample is trained to obtain the maximum network
entropy model of the normal traffic. When the

anomaly detection is performed, the entropy

difference between the network entropy of the traffic

to be detected and the normal traffic is calculated,
and the threshold is about to be detected. The flow

rate is judged to be abnormal. The attacker's

operation of worm implantation is regarded as an
attack flow. The matching engine performs feature

matching on the load field of the traffic, that is,

performs matching search in the feature database. If

the result is matched, the traffic is regarded as
abnormal traffic, and the SDN controller is passed.

The flow table is sent, and the traffic and all

subsequent traffic of the source IP are introduced

into the mirror honeypot through the OpenFlow
switch S4. A mirrored honeypot is a clone of a

service network host. It has the same topology,

physical attributes as the service network.

Researchers can cultivate and observe worms in
mirrored honeypots. If the signature database fails to

match, it is regarded as normal traffic, and traffic is

introduced to the service network providing normal

services through OpenFlow switch S2. All the traffic
in the service network is copied by the traffic

collector. The traffic collector collects the

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

208

abnormality of the traffic in the domain based on the

statistics. If the worm is missing, the feature
database is updated to the signature database of the

policy center. To improve the accuracy of feature

detection. In addition, since the worm has infected

the service network node when a missed report is
detected, the researcher is required to manually

remove the worm from the infected node.

4 EXPERIMENT & ANALYSIS

4.1 Environment

The environment of experiment is shown as

Figure 8 and Table 2. Use one server to run SDN

application layer software and three servers to

simulate real business network host, use one server
to accommodate honeypot cluster and run three

honeypots to simulate exploit module. We manage

them through vSphere. Another server was used for

the worm capture experiment.

Attacker
Router

OpenFlow

S1

Controller OpenFlow

S2

OpenFlow

S3

OpenFlow

S4

Worn trap

Honeypot

cluster

Web Server

FTP Server

DB Server

Figure 8: Environment of experiment.

Table 2: Equipment model and configuration.

Name System IP Address Note

Controller
Ubuntu
16.04

192.168.8.8
Run SDN
application

OpenFlow
Switch
S1~S4

OpenWRT
14.07

-

Embed
OpenWRT
on Home

router.
Run OVS

2.5.2

Web
Server

Ubuntu
16.04

172.16.0.101
Run HTTP

service

FTP
Server

Ubuntu
16.04

172.16.0.102
Run IIS
service

DB
Server

Ubuntu
16.04

172.16.0.103
Run

Mysql 5.6

Honeypot
Cluster

Windows
Server
2008

212.16.0.101-
103

Run HTTP
service

Worm
trap

Ubuntu
16.04

192.168.1.1
Clone of
Server

4.2 Experiment of Topology Simulation
Module

A topology file is sent to the module. The

topology is as shown as Figure 9:

R0

10.0.0.1

R1

R2 R3

R4

R5

R6 R7

114.0.0.101-103

152.0.0.101-103

192.168.0.101-103

Figure 9: Topology of the configuration file.

Before starting the topology simulation

function, we use Nmap on the attack host to scan the

business network. Then we start the simulation

function and repeat the above step. The result is

Figure 10:

Figure 10: Before & after start topology simulation
function.

The results of pinging are shown as Figure 11:

Figure 11: TTL of three virtual subnets.

The results show that the system can respond

effectively to the attacker's detection behavior. By

sending the configured topology file, the deceptive
network topology is presented to the attacker. The

system can hide the topology of the real network and

protect the hosts in business network.

Design and Implementation of Modular Honeynet System Based on SDN

209

4.3 Experiment of Exploit Module

After the scan detection, the attacker obtains a

false network topology, and then can attack the
network nodes in the topology. We construct an

attack tree model of the privilege escalation attack

(as shown in the Figure 12, other attacks are similar),

and use the privilege escalation attack as an example
to verify the exploit module response function.

G0

G1 G2

G11 G12 G13 G14 G21

G111 G112 G121 G141 G142

G143

G211

G1431 G1432

G14311 G14312 G14321 G14322

G212 G213

Figure

12: Attack tree of privilege escalation attack.

The main sub-target symbols and meanings are

shown in the Table 3:

Table 3: Symbol & Meaning of Privilege escalation attack.

Symbol Meaning Symbol Meaning

G0

Complete
penetration

attack
G143

rlogin/rsh
from

trusted
host

G1 Get shell G211 phf.cgi

G2 Excute shell G212 php.cgi

G11
Hijack TCP

session
G213 test-cgi

G12
Daemon buffer

overflow
G1431

FTP
Bounce

G13

Modify
configuration

files
G1432

Spoof
trusted

host and
connect

G14

Login via
authorized

method
G14311 ftp-rhost

G21
Vulnerabilities

in CGI
G14312 rsh login

G111
TCP spoofing
packet attack

G14321
Spoof
DNS

G112

Sniff TCP
sequence
number

G14322

Rcmd
connect
without

password

According to this attack tree, an attack path can
be expressed as G14311-G14312-G1431-G143-G14-G1-G0.

That is, the attacker first establishes the .rhost file in

the root directory of the remote ftp server through
the ftp_rhost vulnerability, obtains the trust

relationship with the target host, and then uses the

rsh vulnerability to secretly log in to the remote host,

and uses the local-setiud-bof vulnerability to raise
the right. Attack, get root privileges, and then use

the root privileges to get the shell of the target host

to complete the penetration attack. The system

performs phased detection for different phases of the
attack path. When snort detects the next step of the

attack, it sends information to the controller. The

controller modifies the flow table on the switch

according to the result of the Snort detection, selects
one of the honeypot clusters that provide the same

service, and migrates the attack traffic to the new

honeypot host and use the same TCP session number.

Through such switching, the attacker's previous
attack is invalid, delaying the attack progress,

prolonging the attacker's attack time, facilitating

more attack information, and reducing the attacker's

use as a springboard after the honeypot is broken.
The possibility of machine utilization.

The attack tree in the above figure is an

example. The attacker attacks the server

(114.0.0.101). This IP is virtual IP, and the actual
response honeypot is 212.16.0.101. The SDN

controller sends the flow table to S1, and the flow

table with the destination address of 114.0.0.101 is

modified to the destination address of 212.16.0.101,
forwarded to the switch S3, and the source IP of the

packet sent to the attacker by 212.16.0.101 is

changed. It is 114.0.0.101, so the attacker will think

that the host IP with which it communicates is
114.0.0.101.

The ftp-rhost vulnerability (CVE-2008-1396) is

used to attack the target host. A .rhost file is

uploaded to the root directory of the server to
establish a trust relationship with the target host. The

alarm is generated by the IDS. The alarm

information is shown as Table 4:

Table 4: Alarm info on IDS.

Information

msg:"PROTOCOL - FTP.rhosts";
flow:to_server,established;

content:".rhosts"; metadata:policy

max-detect-ips drop, service ftp;

classtype:suspicious-filename-
detect;

Result Upload success

Attack time 2018-12-15 14:12:45

Src_ip 10.0.0.1

Dst_ip 212.16.0.101

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

210

At this point, the switching policy takes effect,

and the attacker is unaware of it. The attacker wants
to use the trust relationship established in the

previous step to log in to the host without a

password, so he tries to log in using the rsh login

vulnerability (CVE-1999-0180). IDS generates the
following alarms as Table 5:

Table 5: Alarm info on IDS.

Information

msg:"PROTOCOL-FTP Login

Request";

flow:to_server,established;nocase;
content:"NEWER";

metadata:policy max-detect-ips

drop, service ftp;

classtype:suspicious-filename-
detect;

Result Login failed

Attack time 2018-12-15 14:13:13

Src_ip 10.0.0.1

Dst_ip 212.16.0.102

It can be seen that the attack attempted to log in

has not been successful, and the address of the

destination IP has changed to 212.16.0.102. This is
because after the host of 212.16.0.101 is attacked

and alerted, according to the honeypot switching

policy, the attack is considered to be in the next

stage, in order to delay the attacker's attack progress,
Controller modified the switch S3 flow table. The

traffic that communicates with the attacker changed

from 212.16.0.101 to 212.16.0.102. This honeypot

does not have the .rhost file uploaded by the attacker.
the attacker would like to use the trust relationship

established by the previous attack to perform rsh-

free login. At this point, the switch S3 flow table is

shown as Table 6:

Table 6: Flow table on switch S3.

Packet Action

Input:1
Src_IP:10.0.0.1

Dst_IP:212.16.0.101

Mod_Dst_IP:212.16.0.102

Output:3

Input:3

Src_IP:212.16.0.102

Dst_IP:10.0.0.1

Mod_Src_IP:212.16.0.101

Output:1

4.4 Experiment of Worm Capture
Module

The expected result is that after detecting the
worm, the attack traffic is forwarded to the S4

switch, which is captured by the worm capture. The

researcher can cultivate and observe the worm’s

behavior. In the experiment, the eigenvalues of the
Sasser worm have been pre-stored in the feature

matching database of the strategy center. The Sasser

worm is implanted into the host with the IP address

of 114.0.0.1, and the related flow entries of the
switch S1 are observed, as shown in the Table 7:

Table 7: Flow table on switch S1.

Packet Action

Input:1

Src_IP:10.0.0.1

Dst_IP:114.0.0.1

Output:4

The S1 switch just forwards the packets to the

S4 switch with an output of 4. Continue to observe

the related flow entries of S4, as shown in the Table

8:

Table 8: Flow table on switch S4.

Packet Action

Input:1
Src_IP:10.0.0.1

Dst_IP:114.0.0.1

Mod_Dst_IP:192.168.1.1

Output:2

The worm's destination IP is modified to the

worm's IP and sent to its port, thus enabling the
capture of the worm.

5 CONCLUSION

In this paper, the combination of SDN
technology and honeynet technology is studied. A

new type of SDN-based modular honeynet system is

proposed, which fully utilizes the flexibility of SDN

to realize the method of responding to attacks by
sub-modules, making up for the past. The traditional

honey net is attacked and has many shortcomings

such as alarm logs and difficult analysis. In the

exploit module, the honeypot switching strategy
based on the detection of the attack tree phase is

adopted, which reduces the risk that the honeypot is

completely broken and becomes the attacker

attacking the intranet's springboard, delaying the
attacker's progress and facilitating the researcher to

collect. More attack data is analyzed. Based on the

above content, the experiment is designed to verify

the feasibility of the sub-module response attack.

Design and Implementation of Modular Honeynet System Based on SDN

211

REFERENCES

Zhuge, J. W., Tang, Y., Han, X. H., & Duan, H. X. (2013).
Honeypot technology research and
application. Ruanjian Xuebao/Journal of
Software, 24(4), 825-842.

 More, A., & Tapaswi, S. (2013, March). A software
router based predictive honeypot roaming scheme for
network security and attack analysis. In 2013 9th
International Conference on Innovations in
Information Technology (IIT)(pp. 221-226). IEEE.

Nunes, B., Mendonca, M., Nguyen, X. N., Obraczka, K.,
& Turletti, T. (2014). A survey of software-defined
networking: Past, present, and future of programmable
networks. IEEE Communications Surveys &
Tutorials, 16(3), 1617-1634.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., ... & Turner, J. (2008).
OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication
Review, 38(2), 69-74.

Han, W., Zhao, Z., Doupé, A., & Ahn, G. J. (2016, March).
Honeymix: Toward sdn-based intelligent honeynet.
In Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks
& Network Function Virtualization (pp. 1-6). ACM.

Achleitner, S., La Porta, T. F., McDaniel, P., Sugrim, S.,
Krishnamurthy, S. V., & Chadha, R. (2017).
Deceiving Network Reconnaissance Using SDN-
Based Virtual Topologies. IEEE Transactions on
Network and Service Management, 14(4), 1098-1112.

Fan, W., & Fernández, D. (2017, July). A novel SDN
based stealthy TCP connection handover mechanism
for hybrid honeypot systems. In 2017 IEEE
Conference on Network Softwarization (NetSoft) (pp.
1-9). IEEE.

 Qiuchen, R., (2018). Research and Implementation of
SDN Honeynet System Based on Multi-controller
Balancing. Beijing University of Posts and
Telecommunications.

Schneier, B. (1999). Attack trees. Dr. Dobb’s
journal, 24(12), 21-29.

Gu, Y., McCallum, A., & Towsley, D. (2005, October).
Detecting anomalies in network traffic using
maximum entropy estimation. In Proceedings of the
5th ACM SIGCOMM conference on Internet
Measurement (pp. 32-32). USENIX Association.

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

212

