
Formalizing a Policy-based Compliance Control Solution with Event-B

Laura González and Raúl Ruggia
Instituto de Computación, Facultad de Ingenierı́a, Universidad de la República,

J. Herrera y Reissig 565, Montevideo, Uruguay

Keywords: Policy-based Management, Compliance Management, Event-B, Rodin Platform.

Abstract: Compliance management is gaining increasing interest in inter-organizational service-oriented systems, which
are usually supported by integration platforms. Due to their mediation role and capabilities, these platforms
constitute a convenient infrastructure for controlling compliance requirements affecting message exchanges
between organizations. This paper proposes a formal model for a policy-based compliance control solution
introduced in our previous work for such platforms. The model, which was developed using Event-B, provides
unambiguous specifications and enables formal proofs as well as the verification of the solution operation.

1 INTRODUCTION

Compliance management is gaining increasing inter-
est in inter-organizational service-oriented systems. It
aims to ensure that organizations act in accordance
with multiple established regulations (e.g. standards,
laws) (Tran et al., 2012), which introduce compliance
requirements. These requirements may affect inter-
organizational message exchanges and may concern
different areas (e.g. data quality, data protection).

Controlling compliance requirements (i.e. assess-
ing their fulfillment and acting accordingly) is a major
issue in these scenarios (Elgammal et al., 2016). Or-
ganizations are thus required to develop compliance
solutions in order to control such requirements.

In turn, inter-organizational service-oriented sys-
tems can be supported by integration platforms,
which are specialized infrastructures providing capa-
bilities to facilitate the integration of heterogeneous
systems. This way, systems in different organizations
communicate with each other by invoking services
through the platform via message exchanges, which
may be processed by integration flows to solve het-
erogeneity issues. These flows leverage different in-
tegration mechanisms (e.g. message transformation).

Due to their mediation role and capabilities,
integration platforms constitute a convenient in-
frastructure for controlling compliance requirements
that affect inter-organizational message exchanges
(González and Ruggia, 2018b). For example, a trans-
formation may remove sensitive data from messages
in order to comply with data protection regulations.

In our previous work we proposed an approach to
compliance management within inter-organizational
service integration platforms (González and Ruggia,
2018a). The main elements of the proposal are a
life cycle, a conceptual framework, and a compli-
ance management system. This system comprises
a system-level compliance control (SCC) subsystem
and a policy language (González and Ruggia, 2018c).
The language provides the means to specify how re-
quirements have to be controlled using the compo-
nents of the SCC subsystem. The SCC subsystem is
responsible for controlling compliance at the system-
level by processing all messages exchanged through
the platform based on the deployed policies. This
control may lead to compliance actions (e.g. remove
data from messages) which are based on integration
platforms mechanisms (e.g. message transformation).

In this context, formally assessing the behavior
of integration platforms and compliance control sys-
tems appears paramount to enhance the reliability of
their operations. Nevertheless, unlike research on the
architectural and technological aspects of such plat-
forms, formalization proposals are still very scarce.

This paper constitutes a step forward in our com-
pliance management approach by proposing a formal
model of the SCC subsystem, using the Event-B mod-
eling method and the Rodin platform (Abrial, 2010).
The formalization provides unambiguous specifica-
tions of how messages are processed by this subsys-
tem according to policy language constructs. It also
enables formal proofs of safety properties and the ver-
ification of the SCC subsystem in different scenarios.

González, L. and Ruggia, R.
Formalizing a Policy-based Compliance Control Solution with Event-B.
DOI: 10.5220/0008120406050613
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 605-613
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

605

The rest of the paper is organized as follows.
Section 2 presents a motivational scenario and back-
ground on Event-B. Section 3 describes the policy-
based compliance solution proposed in our previous
work and Section 4 presents its formalization using
Event-B. Section 5 analyzes related work. Finally,
Section 6 presents conclusions and future work.

2 PRELIMINARIES

This section presents a motivational scenario as well
as background on Event-B and the Rodin Platform.

2.1 Motivational Scenario

The scenario is inspired by the Uruguayan e-
Government Interoperability Platform (egovIP)
(González et al., 2012), which uses a general pur-
pose integration platform. The egovIP enables and
facilitates government organizations to offer business
services leveraging the web services technology.
These web services, which are usually hosted on or-
ganizations’ infrastructure, are exposed and invoked
through proxy services deployed on the egovIP. The
platform is thus able to process all service invocations
and apply mediation operations to them.

For example, as shown in Figure 1, the Ministry
of Public Health (Ministerio de Salud Pública, MSP)
offers the Death Certificates Service to other organi-
zations within the platform. In particular, this service
has an operation (i.e. getCertificate), which receives
a National Identification Number (NIN) and returns
death certificate data of the specified citizen1.

Figure 1: egovIP - Death Certificates Service.

In this context, compliance requirements arise in
various areas such as Quality of Service (e.g. compli-
ance with SOAP 1.1), Data Quality (e.g. syntactic ac-
curacy) and Data Protection (e.g. privacy issues). In
particular, syntactic accuracy requirements state that
countries should be specified using the Alpha-3 codes
of the ISO 3166-1 standard.

1https://www.agesic.gub.uy/innovaportal/v/5333/9/
agesic/consulta-certificado-de-defuncion-electronico.html

2.2 Event-B and Rodin Platform

Event-B is a modeling method for formalizing and
developing systems that can be modelled as discrete
transition systems (Romanovsky and Thomas, 2013).
The method is centered around the notion of events
(i.e. transitions) and its main purpose is to help engi-
neers developing systems that will be correct by con-
struction (Abrial, 2018). The basis for the models in
Event-B is first-order logic and a typed set theory.

The models described with Event-B are built by
means of: i) contexts, which contain the static part of
the system, and ii) machines, which contain the dy-
namic part of the system (Abrial et al., 2010). Event-
B supports the incremental development of models by
context extension and machine refinement. This pro-
vides the means to start from a very abstract model
and to subsequently introduce requirements in model
refinements. Verification of model properties is per-
formed by doing formal proofs of theorems, which are
automatically generated by the Rodin platform and
may be proved automatically or interactively leverag-
ing this platform (Su et al., 2014).

A context may contain carrier sets (i.e. user-
defined types), constants (i.e. static objects), axioms
(i.e. properties of carrier sets and constants) and the-
orems (i.e. derived properties of carrier sets and con-
stants) (Romanovsky and Thomas, 2013).

Machines specify behavioural properties of Event-
B models and may connect with several contexts (Ro-
manovsky and Thomas, 2013). Machines may con-
tain variables (which define the state of a machine),
invariants (which constraint variables), theorems (i.e.
additional properties of the variables derivable from
invariants), events (which may change the state of
the machine) and a variant (which may be used to
prove convergence properties). Machine refinement
provides a mean to introduce more details about the
dynamic properties of a model.

Events describe the dynamics of machines (Ro-
manovsky and Thomas, 2013). They may contain
parameters, guards (which specify the conditions un-
der which an event is enabled) and actions (which de-
scribe how the state variables evolve when the event
occurs). The simplest form of an event action is a sim-
ple deterministic assignment (Su et al., 2014). A set
of events can be proved to collectively converge (i.e.
these events cannot take control forever).

Proof obligations specify what is to be proved for
an Event-B model (Abrial, 2010). They are automati-
cally generated by the Rodin platform and transmitted
to the provers. The relevant proof obligations rules for
this work are invariant preservation, numeric variant,
variant and well-definedness.

ICSOFT 2019 - 14th International Conference on Software Technologies

606

3 COMPLIANCE SOLUTION

This section describes the policy-based solution to
compliance control proposed in our previous work
(González and Ruggia, 2018c). The solution com-
prises: i) a system-level compliance control (SCC)
subsystem, which extends integration platforms in or-
der to control compliance at the message level, and
ii) a compliance policy language, which enables the
specification of policy-based compliance methods in
order to state how requirements have to be controlled
using the components of this subsystem.

3.1 SCC Subsystem

The SCC subsystem is part of the Compliance Con-
trol Subsystem proposed in our compliance manage-
ment approach. It processes all platform messages to
control compliance at the system-level (i.e. message-
level), based on the deployed compliance methods.
This control may lead to system-level compliance ac-
tions (e.g. remove data from messages).

The SCC subsystem follows a policy-based ap-
proach to control compliance. It has the typical archi-
tecture of policy-based solutions and it is inspired by
the components and interactions specified in XACML
(OASIS, 2013). Its main components are: a Compli-
ance Policy Enforcement Point (cPEP), a Compliance
Policy Decision Point (cPDP), a Compliance Exter-
nal Services Point (cESP), a Compliance Event Mon-
itoring Point (cEMP), a Compliance Logging Service
(cLS) and a Compliance Actions Service (cAS).

The cPEP is responsible for processing messages
and enforcing compliance according to the decisions
made by the cPDP (e.g. the cPEP may accept or re-
ject messages). The cPDP renders compliance deci-
sions based on policies deployed in the platform and
data included in cPEP requests. The cPDP may also
interact with the cESP and the cEMP in order to get
the external services responses and monitored events,
respectively, required to make decisions.

When the cPEP receives a compliance response
(e.g. accept, reject) from the cPDP, it leverages dif-
ferent components in order to enforce compliance. In
particular, it may send monitoring data to the cEMP,
it may interact with the cESP in order to perform
an asynchronous external service request, it may log
compliance data leveraging the cLS component, it
may send these data to the BCC subsystem, it may
interact with the cAS in order to request the execu-
tion of adaptation actions (e.g. filtering messages con-
tent) and compensation actions (e.g. executing a com-
pensation service), and it may deliver the message to
other components of the platform for later processing.

Event-driven interactions may be also carried out
within this subsystem when the cPDP receives a mon-
itored event from the cEMP or an asynchronous exter-
nal service response from the cESP. In both cases, the
cPDP performs a similar processing as it does with
compliance requests. This processing may generate a
compliance event which is sent from the cPDP to the
cPEP and it is processed by the cPEP in a similar way
as it does with compliance responses.

The SCC subsystem supports seven decision val-
ues including: accept (the message exchange is com-
pliant and it must be accepted), reject (the message
exchange is not compliant and it must be rejected),
allow (the message exchange is not compliant but it
must be allowed), repair (the message exchange is not
compliant and actions must be taken to try to make it
compliant; after that, the message exchange has to be
evaluated again), and verify (the message exchange is
going to be verified to check if it is compliant or not;
in the meantime, it has to be allowed).

Figure 2 presents a sequence diagram showing the
decision and enforcement processes that are carried
out within the SCC subsystem, when controlling a
Data Quality (DQ) requirement of the motivational
scenario with a policy-based compliance method.

The DQ requirement specifies that the ”coun-
try” returned by the operation getCertificate has to
be compliant with Alpha-3 codes. The compliance
method to control this requirement comprises two
policies. PolicyForResponses applies to responses re-
turned by the operation, it states the value verify as
the result and it states an interaction with the cESP
in order to check if a country value is compliant with
Alpha-3 codes. PolicyForExternalResponses applies
to responses returned by the cESP and it states allow
with a compensation action if the cESP returns false
(i.e. the country is not compliant with Alpha-3 codes).
Otherwise it states accept as the result.

The decision and enforcement processes to control
the DQ requirement are described as follows. When a
compliance request is received, the cPDP returns ver-
ify as the compliance decision and specifies an exter-
nal request to be performed by the cPEP, according to
PolicyForResponses. An enforcement process takes
place which delivers the message and performs the re-
quest to the cESP. Later, the cESP returns a response
to the cPDP which indicates if the country included in
the request is compliant with Alpha-3. According to
PolicyForExternalResponses, the cPDP sends a com-
pliance event to the cPEP with accept or allow as the
decision. In the later case, a compensation action is
also included in the event. Finally, a second enforce-
ment process takes place where the compensation is
performed if the country is not compliant.

Formalizing a Policy-based Compliance Control Solution with Event-B

607

Figure 2: SCC Subsystem - Controlling a Data Quality Requirement.

3.2 Compliance Policy Language

The Policy Language for Compliance (PL4C) is
geared towards enabling the specification of policy-
based compliance methods that indicate how compli-
ance requirements have to be controlled at the mes-
sage level by the components of the SCC subsys-
tem. PL4C is inspired by XACML (OASIS, 2013)
and FACPL (Margheri et al., 2017).

The abstract syntax of PL4C is specified by an
Ecore metamodel and restrictions for model elements.
The concrete syntax of PL4C was developed with
Xtext and it is specified using the Xtext grammar lan-
guage. Listing 1 presents the PL4C specification of
the compliance method presented in Section 3.1.

First, Lines 1-8 specify general properties of the
method. Lines 2-4 establish that the method con-
trols the CountryCompliantAlpha3 requirement over
the GetCertificate operation. Lines 5-7 specify that
the method is applicable to messages that are returned
by this operation (of the Death Certificates service).

Second, lines 10-14 declare the use of an external
functionality (i.e. IsAlpha3Compliant) and a compen-
sation action mechanism (i.e. LogCompliance).

Then, Lines 16-28 specify a message policy which
has the same scope of the method (lines 17-19)
and states the result verify (line 23). The policy
also specifies an ExternalRequestAction (lines 25-

28) in order to invoke the external functionality isAl-
pha3Compliant in an asynchronous way.

Finally, Lines 29-44 specify an external response
policy which applies to the response obtained from
the IsAlpha3Compliant functionality (line 30). This
policy has a rule (lines 34-37) which is evaluated
to allow if the external functionality returns a false
value. Otherwise, it is evaluated to accept as spec-
ified in the combining algorithm (lines 31-32). The
rule also specifies a CompensationAction which logs
the non-compliance when the decision is allow.

4 EVENT-B FORMALIZATION

This section presents a formalization of the SCC sub-
system developed with Event-B (Abrial, 2010) and
the Rodin platform (Abrial et al., 2010).

4.1 Formalization Approach

The formal specification of the SCC subsystem aims
to formally specify the execution of the decision and
enforcement processes, which are carried out within
this subsystem according to the different PL4C con-
structs. The overall formalization strategy consists in:
• Modeling the general operation of the SCC sub-

system independently of the deployed compliance

ICSOFT 2019 - 14th International Conference on Software Technologies

608

Listing 1: Compliance Method for DQ Requirement.

1 ComplianceMethod DQ CountryAlpha3 GetCertificate
2 controls:
3 requirement ”CountryCompliantAlpha3”
4 over object ”GetCertificate”
5 scope:
6 and (fromService ”DeathCertificates”,
7 fromOperation ”GetCertificate”)
8 algorithm:
9 accept UnlessOther

10 uses:
11 ExternalFunctionality(”IsAlpha3Compliant”)
12 isAlpha3Compliant
13 CompensationActionMechanism (”LogCompliance”)
14 logCompliance
15 policies:
16 MessagePolicy PolicyForResponses
17 scope:
18 and (fromService ”DeathCertificates”,
19 fromOperation ”GetCertificate”)
20 algorithm:
21 accept UnlessOther
22 rules:
23 Rule RuleForResponses (verify)
24 actions:
25 ExternalRequestAction (verify, allow)
26 isAlpha3Compliant ([”country”,
27 getDataItem(”//country”,
28 this.msgSrvMessage)])
29 ExternalResponsePolicy PolicyForExternalResponses
30 onResponse: isAlpha3Compliant
31 algorithm:
32 accept UnlessOther
33 rules:
34 Rule ”Rule1” (allow
35 condition:
36 not(boolean(
37 response.getResponseValue(”result”)))
38 actions:
39 CompensationAction (allow) logCompliance
40 ([”certNumber”,
41 getDataItem (”certNumber”,
42 response.message.msgSrvMessage)],
43 [”country”,getDataItem (”country”,
44 response.message.msgSrvMessage)]))

elements (e.g. methods, policies, mechanisms).

• Leveraging Event-B elements (e.g. predicates,
guards) to specify how PL4C constructs (e.g.
policies) extend the operation of the subsystem.

This way, the Event-B formalization consists of a
core model, which does not depend on the deployed
elements (e.g. methods), and extensions, which ad-
dress the operation of the subsystem according to the
deployed elements (e.g. to address DQ requirements).

In turn, the refinement strategy consists in:

• Specifying an initial model with a high level de-
scription of the operation of the SCC subsystem.

• Developing refinements which provide more de-
tails on a specific part of this operation.

Table 1 presents the aspects that are addressed by
the initial model and some of the refinements.

Table 1: Initial Model and Refinements.

Model Description
Initial Model High level processing (e.g. of mes-

sages, external responses).
2nd Refinement Getting applicable methods.
5th Refinement Evaluating rules.
8th Refinement Making a compliance decision.
12th Refinement Enforcing compliance.

4.2 Initial Model

The initial model of the SCC subsystem addresses the
high level processing of messages, monitored events
and external responses. The UML State Machine dia-
gram in Figure 3 presents part of this processing. Af-
ter initialization, the SCC subsystem waits for data
(e.g. messages). When a message is received, a com-
pliance request is built and processed. This generates
a compliance response which is also processed by the
subsystem. Afterwards, the processing of the mes-
sage may finish or the message may have to be pro-
cessed again (e.g. after repair actions).

The initial model comprises two contexts and one
machine. The contexts define an enumerated set to
represent the different states of the subsystem (e.g.
WaitingForData), a set of positive natural numbers
which represents the messages waiting to be pro-
cessed, and a natural number indicating the maximum
number of retries when re-evaluating a message.

The machine, presented in Listing 2, specifies
eleven variables which define its state. In particu-
lar, the machine defines variables for the message that
is being processed (i.e. message), the messages re-
ceived by the subsystem (i.e. receivedMessages), and
the current state of the subsystem (i.e. state), among
others. A variant is also defined to prove convergence
of an event which is presented in what follows.

The machine also defines seventeen events: one
for each transition between states. Listing 3 presents
the definition of the ReceiveMessage and Repro-
cessMessage events. Note that the ReprocessMessage
event is defined as ”convergent” in order to, along
with the specified variant, prove its convergence.

The proof obligation generator of the Rodin plat-
form produced twenty-six proof obligations which
were all discharged automatically. In particular,
twenty-four invariant preservation proof obligations,
one numeric variant proof obligation and one variant
proof obligation were generated and discharged.

Formalizing a Policy-based Compliance Control Solution with Event-B

609

Figure 3: Initial Model - High Level Processing.

Listing 2: Initial Model - Machine scc00.

MACHINE
scc00

SEES
ctx00b

VARIABLES
message // message that is being processed
receivedMessages // messages received by the SCC subsystem
state // current state (e.g. stWaitingForData)
nextMessage // next message to be processed
complianceRequest // current compliance request
nextComplianceRequest // next compliance request to be built
complianceRequests // generated compliance requests
complianceResponse // current compliance response
nextComplianceResponse // next compliance response to be built
complianceResponses // generated compliance responses
retries // current number of retries

INVARIANTS
inv1 : message ∈ messages ∪ {0}
inv2 : receivedMessages ⊆ messages
inv3 : state ∈ PROCESSING STATE
inv4 : nextMessage ∈ N1

inv5 : complianceRequest ∈ N
inv6 : nextComplianceRequest ∈ N1

inv7 : complianceRequests ⊆ N1

inv8 : complianceResponse ∈ N
inv9 : nextComplianceResponse ∈ N1

inv10 : complianceResponses ⊆ N1

inv11 : retries ∈ N
VARIANT

MAX RETRIES − retries

4.3 Second Refinement

The second refinement focuses on getting the ap-
plicable methods for the message being processed.
The second refinement is described through the UML
State Diagram presented in Figure 4. Each of the sub-
states of the GettingApplicableMethods state repre-
sents the applicability evaluation of one of the com-
pliance method, based on their compliance scope.

The second refinement comprises four con-
texts and one machine. The contexts de-
fine the type ComplianceMethod, a constant
ComplianceMethods (i.e. the deployed meth-
ods), a constant for each of the methods (e.g.
metDQ CountryAlpha3 GetCertificate), context

Listing 3: Initial Model Events.

ReceiveMessage =̂

STATUS
ordinary

WHEN
grd1 : state = stWaitingForData
grd2 : nextMessage ∈ messages
grd3 : nextMessage /∈ receivedMessages
grd4 : message = 0

THEN
act1 : message := nextMessage
act2 : receivedMessages := receivedMessages ∪{nextMessage}
act3 : state:= stMessageToProcess

END

ReprocessMessage =̂

STATUS
convergent

WHEN
grd1 : state = stComplianceResponseProcessed
grd2 : retries < MAX RETRIES

THEN
act1 : state := stMessageToProcess
act2 : retries := retries + 1

END

Figure 4: 2nd Refinement - Getting Applicable Methods.

elements (e.g. ORGANIZATION, SERVICE) and
functions specifying values of message properties
(e.g. fromService, fromOperation), among others.

The strategy to get the applicable methods for the
message being processed consists in:

1. Including two new variables in the machine (i.e.
scc02) for holding the methods that have already
been evaluated as applicable or not applicable.

2. For each deployed method, including two events
in the machine. One should fire when the method

ICSOFT 2019 - 14th International Conference on Software Technologies

610

is applicable and the other one when it is not ap-
plicable, updating the corresponding variables.

3. Strengthening the guard of the CompleteGettin-
gApplicableMethods event in order to continue
the processing only when the applicability of all
deployed methods has been evaluated.

The two new variables as well as the invariants
that restrict them are presented in Listing 4.

Listing 4: Second Refinement - Machine scc02.

VARIABLES
applicableMethods // current applicable methods
notApplicableMethods // current not applicable methods

INVARIANTS
inv1 : applicableMethods ⊆ ComplianceMethods
inv2 : notApplicableMethods ⊆ ComplianceMethods
inv3 : applicableMethods ∩ notApplicableMethods = ∅

Following this strategy, Listing 5 presents the two
events for the DQ compliance method introduced in
Listing 1. Note that the fourth guard of these events
specifies the scope of the method using the func-
tions for specifying message properties (e.g. from-
Service). Listing 5 also presents how the guard
of the CompleteGettingApplicableMethods event is
strengthened, in order to transition to the state stAp-
plicableMethodsObtained only when the applicability
of all the compliance methods has been evaluated.

For the second refinement of the core model, the
proof obligation generator of the Rodin platform pro-
duced six invariant preservation proof obligations and
one well-definedness proof obligation, which were all
automatically generated and discharged.

4.4 PL4C Constructs

This section describes how the most relevant PL4C
constructs are specified within the SCC Subsystem
Event-B model, by leveraging Event-B elements.

Compliance methods are specified in contexts (by
means of constants) and in different refinements (by
means of events). For each compliance method,
events have to be included in order to evaluate its ap-
plicability, as described in Section 4.3, and to obtain
its compliance evaluation. Regarding methods appli-
cability, two events have to be included in the model:
one should fire when the method is applicable and
the other one when it is not. With respect to com-
pliance evaluation, events have to be included consid-
ering the combining algorithm of the method. Each
event should fire for different conditions that leads to
a compliance evaluation (e.g. accept, allow).

Message policies are specified in contexts (by
means of constants) and in different refinements (by

Listing 5: Second Refinement Events.

metDQ CountryAlpha3 GetCertificateApplicable =̂

STATUS
ordinary

WHEN
grd1 : decisionState = stGettingApplicableMethods
grd2 : metDQ CountryAlpha3 GetCertificate /∈

applicableMethods ∪ notApplicableMethods
grd3 : message ∈ messages
grd4 : (fromService(message)= DeathCertificates) ∧

(fromOperation(message)=GetCertificate) // scope
THEN

act1 : applicableMethods := applicableMethods ∪
{metDQ CountryAlpha3 GetCertificate}

END

metDQ CountryAlpha3 GetCertificateNotApplicable =̂

STATUS
ordinary

WHEN
grd1 : decisionState = stGettingApplicableMethods
grd2 : metDQ CountryAlpha3 GetCertificate /∈

applicableMethods ∪ notApplicableMethods
grd3 : message ∈ messages
grd4 : ¬((fromService(message)= DeathCertificates) ∧

(fromOperation(message)=GetCertificate)) // negation of the scope
THEN

act1 : notApplicableMethods := notApplicableMethods ∪
{metDQ CountryAlpha3 GetCertificate}

END

CompleteGettingApplicableMethods =̂
extended

STATUS
ordinary

REFINES
CompleteGettingApplicableMethods

WHEN
grd1 : decisionState = stGettingApplicableMethods
grd2 : card(ComplianceMethods) = card(applicableMethods ∪

notApplicableMethods) // guard strengthened
THEN

act1 : decisionState := stApplicableMethodsObtained
END

means of events). Similarly to methods, for each com-
pliance policy, events have to be included in order to
evaluate its applicability and to obtain its evaluation.
Similarly, external response and monitored event poli-
cies are also specified in contexts and in different re-
finements.

Rules are also specified in contexts and in differ-
ent refinements. In particular, three events have to be
included for each rule in order to evaluate them: i) one
that fires when the condition of the rule is true, ii) one
that fires when the condition of the rule is false, and
iii) one that fires when there is an error that prevents
from evaluating the condition of the rule.

The complete specification of the core model as
well as the model extensions for the different PL4C

Formalizing a Policy-based Compliance Control Solution with Event-B

611

constructs (e.g. policies, rules) of the DQ compliance
method presented in Listing 1 are available online2.

4.5 Contributions of the Formalization

The primary contribution of the formalization of the
SCC subsystem (provided by the core model) is the
unambiguous specification of its general operation.

The Event-B model also enabled formal proofs of
various safety properties of the core model concern-
ing invariant preservation, convergence of events and
well-definedness. This was achieved leveraging the
Rodin platform which automatically generated 501
proof obligations, which were mostly either automat-
ically or manually discharged.

The formalization also provides an unambiguous
specification of how PL4C constructs (e.g. methods)
extend the general operation of the subsystem. This is
provided by the strategies presented in Section 4 and
the extension of the core model available online.

In addition, the Event-B model enables the appli-
cation of model animation and checking mechanisms
in order to verify the correct operation of the SCC
subsystem in specific usage scenarios (Ait-Sadoune
and Ait-Ameur, 2008). Model animation comple-
ments modeling and proving by providing the means
to check that the modelled system operates indeed as
it was expected (Abrial, 2010). Model animation and
checking was performed using ProB3.

First, the SCC subsystem model was animated in
a scenario based on the compliance method presented
in Listing 1 and considering the two messages shown
in Table 2: one is compliant with Alpha-3 codes (i.e.
msg15) and the other one is not (i.e. msg16).

Table 2: Messages for Model Animation and Checking.

Prop. / Mess. msg15 msg16
idMessageId 15 16
fromOrganization MSP MSP
fromService DeathCertificates DeathCertificates
fromOperation GetCertificate GetCertificate
msgSrvMessage country: URY country: URU
msgTimestamp 900 950

The results of the animation were the expected
ones: both messages were delivered and an action was
performed for the second message (i.e. msg16), given
that it is not compliant with Alpha-3 codes.

The model checking features of ProB were also
used to verify that the model has not invariant viola-
tions.

2https://www.fing.edu.uy/inco/grupos/lins/tesis/
compliance/SCCdq.zip

3https://www3.hhu.de/stups/prob/

5 RELATED WORK

Several compliance management proposals leverage
formal approaches for supporting their solutions.
Some examples of the use of temporal logic are the
Compliance Request Language (CRL) proposed by
the COMPAS project (COMPAS, 2008) and the way
in which compliance rules are specified within the
C3Pro project (Knuplesch et al., 2013). Deontic logic
is used in the Business Contract Language (BLC) pro-
posed by Governatori et al. (Governatori et al., 2006).
Compared to our approach, these proposals focus on
specifying compliance requirements at the business-
level and they do not address the formal specification
of how compliance requirements have to be controlled
at the system-level within integration platforms.

Existing work also addresses the formal speci-
fication of policy-based systems. The Formal Ac-
cess Control Policy Language (FACPL) is a formally-
defined language for the specification, analysis and
enforcement of attribute-based access control poli-
cies, inspired by XACML (Margheri et al., 2017).
Other proposals use the Event-B method for formal-
izing some aspects of XACML policies (Errachid,
2011)(Milhau, 2011). Compared to our work, these
proposals only focus on access control issues.

Finally, the Event-B method has been used in re-
lated contexts for developing formal specifications. It
was used for the formal modelling of web service
compositions (Ait-Sadoune and Ait-Ameur, 2015),
service-oriented architecture design patterns (Tounsi
et al., 2013) and BPMN models (Bryans and Wei,
2010). However, these proposals do not address the
formal specification of how compliance requirements
have to be controlled within integration platforms.

6 CONCLUSIONS

This paper presented a formalization of a policy-
based compliance solution using the Event-B method
and the Rodin platform. The solution, which is part
of a broader compliance management approach, com-
prises a System-level Compliance Control (SCC) sub-
system and a Policy Language (i.e. PL4C).

The formalization led to a core model, which
specifies the general operation of the SCC subsystem,
as well as an extension of this model for controlling a
DQ requirement with a specific compliance method.

The main contributions of the presented formal-
ization are the unambiguous specification of the oper-
ation of the SCC subsystem, formal proofs of safety
properties of the core model and unambiguous spec-
ification of how PL4C constructs (e.g. policies) may

ICSOFT 2019 - 14th International Conference on Software Technologies

612

extend the operation of the SCC subsystem. The for-
malization also enables model animation and check-
ing, which provide the means to verify the correct op-
eration of the SCC subsystem in specific scenarios.

This work also constitutes a step forward on
formalizing service integration platforms and value-
added services for inter-organizational environments,
such as compliance control. The ultimate goal is
to provide a solid ground to the specification of
such platforms by assessing their correctness inde-
pendently of specific implementations.

Future work includes the automatic generation of
Event-B models based on compliance methods and
the development of libraries containing already de-
fined and tested compliance elements (e.g. methods,
policies) for addressing specific areas of requirements
(e.g. QoS). We would also analyze and propose solu-
tions for context-aware compliance management.

REFERENCES

Abrial, J.-R. (2010). Modeling in Event-B: System and Soft-
ware Engineering. Cambridge University Press, 1st
edition.

Abrial, J.-R. (2018). On b and event-b: Principles, success
and challenges. In Lecture Notes in Computer Sci-
ence, pages 31–35. Springer International Publishing.

Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S.,
Mehta, F., and Voisin, L. (2010). Rodin: an open
toolset for modelling and reasoning in event-b. In-
ternational Journal on Software Tools for Technology
Transfer, 12(6):447–466.

Ait-Sadoune, I. and Ait-Ameur, Y. (2008). Animating event
b models by formal data models. In Communications
in Computer and Information Science, pages 37–55.
Springer Berlin Heidelberg.

Ait-Sadoune, I. and Ait-Ameur, Y. (2015). Formal Mod-
elling and Verification of Transactional Web Service
Composition: A Refinement and Proof Approach with
Event-B, pages 1–27. Springer International Publish-
ing, Cham.

Bryans, J. W. and Wei, W. (2010). Formal analysis of bpmn
models using event-b. In Kowalewski, S. and Roveri,
M., editors, Formal Methods for Industrial Critical
Systems. Springer Berlin Heidelberg.

COMPAS (2008). State of the art in the field of compliance
languages. Technical report, COMPAS.

Elgammal, A., Turetken, O., van den Heuvel, W.-J., and
Papazoglou, M. (2016). Formalizing and appling
compliance patterns for business process compliance.
Software & Systems Modeling, 15(1):119–146.

Errachid, M. (2011). Vérification des politiques xacml avec
le langage event-b. Master Thesis.

González, L. and Ruggia, R. (2018a). A comprehen-
sive approach to compliance management in inter-
organizational service integration platforms. In Pro-

ceedings of the 13th International Conference on Soft-
ware Technologies. SCITEPRESS.

González, L. and Ruggia, R. (2018b). On controlling com-
pliance requirements within adaptive integration plat-
forms. In Proceedings of the 19th Workshop on Adap-
tive and Reflexive Middleware - ARM 18. ACM Press.

González, L. and Ruggia, R. (2018c). Policy-based com-
pliance control within inter-organizational service in-
tegration platforms. In 2018 IEEE 11th Confer-
ence on Service-Oriented Computing and Applica-
tions (SOCA). IEEE.

González, L., Ruggia, R., Abin, J., Llambı́as, G., Sosa,
R., Rienzi, B., Bello, D., and Álvarez, F. (2012).
A service-oriented integration platform to support a
joined-up e-government approach: The uruguayan ex-
perience. In Advancing Democracy, Government and
Governance, volume 7452 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg.

Governatori, G., Milosevic, Z., and Sadiq, S. (2006).
Compliance checking between business processes and
business contracts. In 2006 10th IEEE International
Enterprise Distributed Object Computing Conference
(EDOC06). IEEE.

Knuplesch, D., Reichert, M., Fdhila, W., and Rinderle-
Ma, S. (2013). On enabling compliance of cross-
organizational business processes. In Lecture Notes
in Computer Science. Springer Berlin Heidelberg.

Margheri, A., Masi, M., Pugliese, R., and Tiezzi, F. (2017).
A rigorous framework for specification, analysis and
enforcement of access control policies. IEEE Trans-
actions on Software Engineering, pages 1–1.

Milhau, J. (2011). Un processus formel d’intégration
de politiques de contrôle d’accès dans les systèmes
d’information. PhD Thesis.

OASIS (2013). eXtensible Access Control Markup Lan-
guage (XACML) version 3.0.

Romanovsky, A. and Thomas, M., editors (2013). Industrial
Deployment of System Engineering Methods. Springer
Berlin Heidelberg.

Su, W., Abrial, J.-R., and Zhu, H. (2014). Formalizing hy-
brid systems with event-b and the rodin platform. Sci-
ence of Computer Programming, 94:164–202.

Tounsi, I., Hadj Kacem, M., and Hadj Kacem, A. (2013).
Building correct by construction soa design patterns:
Modeling and refinement. In Drira, K., editor, Soft-
ware Architecture. Springer Berlin Heidelberg.

Tran, H., Zdun, U., Holmes, T., Oberortner, E., Mulo,
E., and Dustdar, S. (2012). Compliance in service-
oriented architectures: A model-driven and view-
based approach. Information and Software Technol-
ogy, 54(6).

Formalizing a Policy-based Compliance Control Solution with Event-B

613

