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Abstract: This paper formalizes the graphical modularization technique, View Traversal, for an ontology-based system
represented using the Domain Information System (DIS). Our work is motivated by the need for autonomous
agents, within an ontology-based system, to automatically create their own views of the ontology to address the
problems of ontology evolution and data integration found in an enterprise setting. Through DIS, we explore
specific ontologies that give Cartesian perspectives of the domain, which allows modularization to be a means
for agents to extract views of specific combinations of data. The theory of ideals from Boolean algebra is
used to formalize a module. Then, with the use of homomorphisms, the quantity of knowledge within the
module can be measured. More specifically, through the first isomorphism theorem, we establish that the loss
of information is quantified by the kernel of the homomorphism. This constitutes a foundational step towards
theories related to reasoning on partial domain knowledge, and is important for applications where an agent
needs to quickly extract a view that contains a specific set of knowledge.

1 INTRODUCTION

Conceptualizing ontologies and using them in an en-
terprise setting is a difficult task due to the problems
of data integration (Ziegler and Dittrich, 2004), the
co-ordination of multiple autonomous agents (Huhns
and Singh, 1997), and the evolution of the do-
main (Benomrane et al., 2016; Dietz, 2006). Despite
these problems, there does not yet exist an approach
that properly addresses them. Ontology-based Data
Access (OBDA) attempts to address the issues asso-
ciated with data integration and ontology evolution
(Poggi et al., 2008). The co-ordination of multiple
agents in an ontological setting is studied in several
papers (e.g., (Maedche et al., 2003; Belmonte et al.,
2008; Freitas et al., 2017)).

There is a need in addressing these three tasks
together such that the governing of the domain can
be conducted using an ontology that uses the data
in initial construction or reasoning tasks, such as
in (Nadal et al., 2019). Existing paradigms, such
as OBDA, are used to address the issues of evolv-
ing and heterogeneous data that come from multiple
sources. However, complications arise from updates
to the data. Therefore, restrictions must be placed on
schema changes to not affect the ontology, or on ver-
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sion controls to control the domain’s evolution. The
problems associated with ontology evolution are fur-
ther demonstrated in (Benomrane et al., 2016), which
discusses the complications introduced with multiple
agents and the current need of manual intervention by
an ontologist.

OBDA and the other approaches formalize their
ontologies using Description Logic (DL), such as in
(Maedche et al., 2003; Motik, 2006; Baader, 2003;
Hustadt et al., 2005; Bao et al., 2009). In (Maedche
et al., 2003) several limitations to DL-based ontolo-
gies are raised. The first is the complexity of rea-
soning tasks increasing with the expressivity of DL
fragment or the amount of data used (Motik, 2006;
Baader, 2003). In (Hustadt et al., 2005), it is noted
that the way the existential and universal quantifiers
interact with the data can cause the time complexity
of reasoning tasks to rise to exponential time. What
often results is during the design phase, a less expres-
sive fragment of DL is used to avoid the quantifiers or
operators, or the amount of data the ontology utilizes
is limited. Additionally, as discussed in (LeClair and
Khedri, 2016), DL only allows for a single context of
the concepts, which further limits the reasoning capa-
bilities, and has resulted in the effort for being able to
capture these contexts with extensions to DL such as
with Package-based DL (Bao et al., 2009). However,
even these are encumbered by the limited expressivity
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for reasoning inherent to using DL.
This work aims at addressing the issues associ-

ated with an evolving domain, rich with data, and
numerous autonomous agents. To reach this goal,
rather than using DL, we utilize Domain Informa-
tion System (DIS) (Marinache, 2016) to formalize an
ontology-based system. It is with DIS we aim to avoid
monolithic ontologies (discussed in (Maedche et al.,
2003)), and create an optimal ontology-based system
as described in (Jaskolka et al., 2015). We aim to
address domains that have a large set of constantly
evolving data that must be reflected in the ontology
that is being used by multiple agents for queries or
other governing tasks. We also make the open world
assumption, therefore, some data elements could be
unspecified.

In this work we address the particular issues as-
sociated with autonomous agents interacting with an
ontology-based system. DIS provides a means to for-
malize a procedure for the agents to extract a module
from the ontology to fit their needs. The theory of
ideals from Boolean algebra is used to extract smaller
components that are shown to be complete modules.
These customizable views are created through a pro-
cess called modularization. In other words, the views
are modules of the original DIS ontology. The un-
derlying theory of DIS is then used to characterize an
agent’s potential knowledge within the system.

Ontology modularization is an active research
field with the aim to ensure the ontologies are us-
able for tractable reasoning tasks, and adhere to es-
tablished engineering principles that promote main-
tainability. Examples of recent modularization efforts
can be seen in (Xue and Tang, 2017; Khan and Keet,
2015; Algergawy et al., 2016; Babalou et al., 2016;
Movaghati and Barforoush, 2016; De Giacomo et al.,
2018). These approaches vary by the ontology for-
malism they modularize on, the components of the
ontology used to modularize (data, concepts, or both),
and what types of modules they produce. The utiliza-
tion of ideals to discuss modularization in the context
of DL has been explored in (Del Vescovo et al., 2011),
but requires rigorous computation. DIS is able to sim-
ply compute ideals using its underlying theory.

The remainder of the paper is as follows. In Sec-
tion 2, we evaluate the work of utilizing ontologies
in multi-agent systems for customizing views, as well
as the literature regarding OBDA. In Section 3, we in-
troduce the necessary mathematical background to fa-
cilitate discussion on the modularization process and
knowledge quantification. In Section 4, we provide
the findings regarding how a DIS-based ontology can
be modularized. In Section 5, we discuss how said
modularization can be used to characterize the poten-

tial knowledge of an agent, followed by a discussion
in Section 6.

2 RELATED WORK

In (Wache et al., 2001), the authors highlight the
need for the ontology of an ontology-based system
to be modularizable so as to avoid the issues associ-
ated with using a monolithic ontology. In addition
to the complications caused by a monolithic ontol-
ogy, in (Jaskolka et al., 2015), the authors discuss the
need to have the ability for several local ontologies to
communicate by using a shared language. Nowadays,
DL, as an ontology formalism, is the standard due
to its wide usage by research teams and several im-
plementations. However, Wache et al. (Wache et al.,
2001) point to multiple limitations with the formal-
ism such as the static nature of the ontologies created,
intractability of reasoning tasks (when using expres-
sive fragments), and tendency to become monolithic.
Thus, we investigate DIS (formally introduced in Sec-
tion 3) as an alternative formalism for an ontology-
based system.

There exist several recent approaches to multi-
agent systems that utilize an ontology at its core (e.g.,
(Pakdeetrakulwong et al., 2016; Kantamneni et al.,
2015; Zhou et al., 2017)). These systems require
agents to have their own ontology, or pieces of a
shared larger ontology, that they can reason on. The
design of agents having their own queries that they
can answer allows for more efficient query answering
as the agent only needs to refer to a smaller, more spe-
cific ontology. Additionally, it allows for the agents
to collaborate, each with their respective expertise as
determined by the ontology they contain, to answer
more complex queries. However, for collaboration
to occur, the agents must have some shared language
that is provided by an additional ontology that every
agent can communicate through. Although the agents
can efficiently answer these small queries, any com-
plex query that requires collaboration will thus suffer
from the issues associated with monolithic ontologies.

The best way to provide each agent with the
needed part of the used large ontology is through
modularizing the ontology into modules that each
agent will utilize. As all modules come from the same
ontology, this mitigates the issue of needing another
ontology to facilitate communication between agents.
However, this requires an ontology that can be broken
into the modules that each agent requires. In other
words, this method requires an ontology that concep-
tualizes the entire domain (rather than a specific view
for an agent). Examples of such an implementation
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can be found in (Anand et al., 2014; Belmonte et al.,
2008). The modularization techniques that are pro-
posed in these papers are heuristic in nature, not able
to guarantee properties such as knowledge preserva-
tion or correctness. Concerns regarding the modu-
larization process and lack of formal method arise
when considering the use of ontologies that consist of
hundreds or thousands of concepts, such as in (Ash-
burner et al., 2000; Raimond et al., 2007; Brickley
and Miller, 2010; Spackman et al., 1997; Rector et al.,
1996; Bodenreider, 2004; Suchanek et al., 2008).

Regardless of the design approaches used for an
ontology-based system, it will require a full up-
date (recheck for completeness, etc.) whenever an
agent’s ontology changes due to the domain’s evo-
lution (Benomrane et al., 2016). This can be a con-
suming process depending on how often the agents
domain knowledge is expected to change, and can re-
sult in a design where the agents are static and seldom
react to change.

In addition to the complications associated with
ontology evolution, we investigate how the agents can
interact with the data. OBDA is the approach used
by the Semantic Web for linking data to an ontology
(Poggi et al., 2008). OBDA paradigm aims to connect
an ontology layer to a data layer so that rich queries
can be made using the ontology, and answered using
the data. However, it is not a trivial task to create an
ontology from a dataset. The task is described as the
bootstrapping problem (Jiménez-Ruiz et al., 2015),
and OBDA is mostly considered as read-only as it
puts restrictions on the ability to modify the datasets
and handle updates (Xiao et al., 2018). Additionally,
the query transformation process is not straightfor-
ward, depending on multiple aspects of the ontology,
queries, and data consistency (Bienvenu et al., 2018).

This research seeks to provide a means for agents
to automatically and systematically extract views
from an ontology on-the-fly to achieve the tasks they
are required to do. We seek to have only a single on-
tology that can be modularized to avoid a monolithic
ontology existing at the higher-level. By extracting
them from a single ontology, we ensure that the agents
are able to communicate using the same language. We
also seek to have a system that is adaptable to change
and evolution, allowing for the data that the agents
have to be malleable without the need for modifica-
tion of the ontology itself.

3 MATHEMATICAL
BACKGROUND

In this Section, we present the necessary mathemat-
ical background to communicate how the lattice and
underlying Boolean algebra is utilized in DIS to con-
duct the modularization.

A lattice is an abstract structure that can be de-
fined as either a relational or algebraic structure
(Davey and Priestley, 2002). We provide each defini-
tion, as well as the connection between them, below.

If (L,≤) is a partially ordered set, we define an
upper bound and lower bound as follows. For an arbi-
trary subset S ⊆ L, we define an element u ∈ L as an
upper bound of S if s ≤ u for each s ∈ S. Dually, we
define an element l ∈ L as a lower bound of S if l ≤ s
for each s ∈ S. An upper bound u is defined as a least
upper bound (dually, a lower bound l is defined as a
greatest lower bound) if u ≤ x for each upper bound
x ∈ S (x ≤ l for each lower bound x ∈ S). A least
upper bound is typically referred to as a join, and a
greatest lower bound as a meet. If every two elements
a,b ∈ L have a join, then the partially ordered set is
called a join-semilattice. Similarly, if every two ele-
ments a,b ∈ L have a meet, then the partially ordered
set is called a meet-semilattice. A lattice is a partially
ordered set that is both a join- and meet-semilattice.

An algebraic structure (L,⊕,⊗), which consists of
a set L and the two binary operators ⊕ and ⊗ that are
commutative, associative, idempotent, and satisfy the
absorption law (i.e., a⊕ (a⊗b) = a⊗ (a⊕b) = a, for
a,b,c ∈ L).

The relational and algebraic structure can be con-
nected a≤ b⇐⇒ (a = a⊗b)⇐⇒ (b = a⊕b).

The connection between the relational and alge-
braic definition of a lattice allows us to freely discuss
relational or algebraic aspects. This is significant as
we will be using both the algebraic and relational def-
initions interchangeably in the following sections and
that for simplicity. We will also require the notion of
a sublattice, which is simply defined as a nonempty
subset M of a lattice L that satisfies x⊕ y ∈ M and
x⊗y ∈M for all x,y ∈M. In other words, a sublattice
is a subset of the lattice in which all joins and meets
are preserved in the subset.

We now introduce a distinguished lattice: the
Boolean lattice (Sikorski et al., 1969). A Boolean lat-
tice is defined as a complemented distributive lattice.
A complemented lattice is one that is bounded (in-
cludes a top concept (>) and a bottom concept (⊥)),
and every element a has a complement (an element
b satisfying a⊕ b = > and a⊗ b = ⊥). A distribu-
tive lattice is one where the join and meet operators
distribute over each other, in other words, a lattice
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L is distributive if for all x,y,z ∈ L, x⊗ (y⊕ z) =
(x⊗ y)⊕ (x⊗ z) and x⊕ (y⊗ z) = (x⊕ y)⊗ (x⊕ z)

The algebraic structure for the Boolean lattice is
defined as B = (B,⊗,⊕,0,1,′ ). The unique elements
0 and 1 are the top and bottom concepts necessary for
the lattice to be bound, and the complement operator
′ is defined as above for a complemented lattice. In a
finite Boolean algebra, an atom is defined as an ele-
ment a ∈ B where for any b ∈ B, either a⊗ b = a or
a⊗b = 0. The Boolean algebra (and the correspond-
ing lattice) is thus generated from the power set of the
atoms (Hirsch and Hodkinson, 2002). As a result, all
Boolean algebras with the same number of atoms are
isomorphic to each other.

A notion from Boolean algebra that will be used
for the modularization is the ideal. For a Boolean al-
gebra B with set of elements B, I ⊆ B is called an
ideal in B if I is nonempty and if for all i, j ∈ I and
b ∈ B we have i⊗b ∈ I and i⊕ j ∈ I. In other words,
an ideal is ‘closed-downwards’ such that it is closed
under the lattice meet (⊗) operation.

An ideal is called proper if I 6= {0} or B. We can
also generate an ideal using an element, referred to as
the principal ideal. If we let B be a Boolean algebra,
and b ∈ B, then the principal ideal generated by b is
I(b) = {a ∈ B | a≤ b}.

3.1 Domain Information System

A DIS is composed of three components: an ontology,
the data, and an operator which maps data to an ontol-
ogy. This separation of data from the ontology grants
us this ability to manipulate the data through adding
or removing records without the need for rechecking
consistency or reconstructing the ontology. Figure 1
graphically shows how the three components interact.
We first present the ontology.

Definition 3.1 (Abstract Ontology). Let C =(
C,⊕,eC

)
be a commutative idempotent monoid.1 Let

L =
(
L,vC

)
be a Boolean lattice, with L ⊆ C, such

that eC ∈ L. Let G = {Gti
def
= (Ci,Ri, ti)}ti∈L be a set of

rooted graphs at ti.
We call an abstract ontology the mathematical

structure Odef
=
(
C ,L ,G

)
.

We recognize the relation on the set of concepts
L as the partOf relation, denoted by vC . The corre-
sponding Boolean algebra for this structure is defined
as B = (L,⊗,⊕,eC ,>,′ ). The binary operators ⊗ and

1A monoid is an algebraic structure that has a set S closed
under a single associative binary operation ·, and a distin-
guished element e ∈ S called the identity. It is denoted by
the triple (S, ·,e).

Figure 1: High-level representation of a Domain Informa-
tion System.

⊕ are analogous to the meet and join, but are defined
by the relation vC . The unique elements eC and >
are the bottom and top concepts of the lattice, and are
respectively analogous to 0 and 1. The ⊕ operator
represents the Cartesian product of the concepts, and
it expresses the combination of concepts in the lattice
to form new concepts. The ontology is represented
as the components within the cloud in Figure 1. The
circles represent concepts, and are differentiated by
colour to signify whether they are in the Boolean lat-
tice or a rooted graph.

The second component is the data layer, which is
formalized using a diagonal-free cylindric algebra. Its
operators are indexed with the elements of the carrier
set L of the Boolean lattice. In Figure 1, it is repre-
sented as the dataset.

Definition 3.2 (Cylindric Algebra). Let A =
(A,+, ·,−,0,1,ck)k∈L be a diagonal-free cylindric
algebra (Henkin and Tarski, 1967) such that
(A,+, ·,−,0,1) is a Boolean algebra and ck is an
unary operator on A called cylindrification, and the
following postulates are satisfied for any x,y ∈ A, and
any k,λ ∈ L:

1. ck0 = 0
2. x≤ ckx
3. ck(x · cky) = ckx · cky
4. ckcλx = cλckx

We adopt cylindric algebra to reason on data as it
allows us to go beyond Relational algebra. Cylindri-
fication operations allow us to handle tuples with un-
defined values (open world assumption) and we can
work on tuples with different length.

Definition 3.3 (Domain Information System). Let O
be an abstract ontology, A be a diagonal-free cylin-
dric algebra, and a mapping τ : A→ L as the type
operator which relates the set A to elements of the
Boolean lattice in O.

We call a Domain Information System the struc-
ture I = (O,A ,τ).
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Table 1: Wine Dataset.
Grape Colour Sugar Body Region Winery
Merlot Red Dry Full Niagara Jackson Triggs
Merlot Red Dry Medium Okanagan Jackson Triggs

Pinot Grigio White Dry Medium Niagara Konzelmann
Pinot Grigio White Semi-sweet Medium Niagara Jackson Triggs
Pinot Blanc White Dry Light Okanagan Sperling

Riesling White Semi-sweet Light Niagara Jackson Triggs
. . . . . . . . . . . . . . . . . .

eC

BodySugar Region WineryColourGrape

Wine

Wine Product

Figure 2: The Boolean lattice for the Wine Ontology.

Figure 1 illustrates this system, with the dataset
and ontology linked by the dashed arrows which rep-
resents the τ operators. In essence, the abstract ontol-
ogy is the conceptual level of the information system.
The Boolean lattice can be mapped to, using the τ op-
erator, from the data that modeled using the cylindric
algebra. In a simplified way, the abstract ontology is
analogous to the Terminological Box (T-Box) of DL
and the cylindric algebra is the Assertional Box (A-
Box).

In Figure 2, we show a Boolean lattice of a DIS
representation for the Wine Ontology (Noy et al.,
2001). The Boolean lattice is constructed from a
sample data set shown in Table 1. Each attribute
of the data set is a ‘part’ of the concept Wine Prod-
uct, and thus they are atoms of the Boolean lattice.
The remaining concepts are the combinations of these
atoms: the power set. Some combinations hold more
semantic significance (as determined by domain ex-
perts), and are signified by larger hollow nodes. These
concepts can be named, such as Estate being the com-
bination of Region and Winery.

3.2 First Isomorphism Theorem

The first isomorphism theorem (Van der Waerden
et al., 1950) is used in this work to quantify knowl-
edge loss from modularization.

Theorem 3.1 (First Isomorphism Theorem). Let R
and S be rings, and let φ : R→ S be a ring homo-
morphism. Then:

1. The kernel of φ is an ideal of R,
2. The image of φ is a subring of S, and

3. The image of φ is isomorphic to the quotient ring
R/ker(φ).

In particular, if φ is surjective, then S is isomorphic to
R/ker(φ).

The first point introduces the kernel, which is a
structure associated with the homomorphism. If we
define a homomorphism between rings R and S as φ :
R→ S, then the kernel is defined as follows:

ker(φ) = {r ∈ R | φ(r) = 0S} (1)

The kernel is used to measure the non-injectivity
of the homomorphism. It is important to note any
Boolean ring with 1 can be made into a Boolean alge-
bra (Stone, 1936).

4 MODULARIZING THE
ONTOLOGY

From Figure 2, it can be seen that a dataset with even
a relatively small number of attributes results in a
Boolean lattice that is large and possibly unmanage-
able. The Boolean lattice will be of size 2n (where n
is the number of atoms), thus the number of concepts
doubles with each attribute added. Although this can
be partially mitigated with clever database design, it
minimization cannot be assumed. Using the entire
Boolean lattice is both impractical and unreasonable
when considering the motivation of this work: before
addressing the issues of evolution and data integra-
tion, we must employ agents that utilize smaller com-
ponents of the ontology. Simply using the entire on-
tology will result in the same tractability issues that
exist for existing monolithic ontologies. Thus, sound
modularization is necessary to produce views for the
agent(s).

Referring to Figure 2, it can be argued that the
concept Wine Product is composed of two concepts
from closely related domains: the Wine and Estate.
The former is composed of Grape, Colour, Sugar,
and Body whereas the latter is Region and Winery. For
the remainder of this section, we are motivated by be-
ing able to modularize the lattice in Figure 2 as a first
step of obtaining modules that a Wine agent and an
Estate agent can use for reasoning purposes. That is
to say, queries regarding a wine would be delegated
to the wine agent, whereas queries about an estate are
delegated to the estate agent. Queries that involve ele-
ments from both would require the co-operation from
both agents. Thus, the modules the agents use need
to preserve the knowledge as though they were still a
part of the original Boolean lattice (i.e., they are com-
plete).
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eC

Colour SugarGrape Body

Taste

Mouthfeel Style

Wine

Figure 3: The modularization of the Wine Ontology on
Wine.

4.1 Generating a Module With View
Traversal

This work seeks to generate a module using the View
Traversal modularization technique, introduced by
Noy and Musen (Noy and Musen, 2009). It is a graph-
ical modularization technique that aims to produce a
module that contains all information necessary to an-
swer a query (or set of queries). This technique is for-
malized for DIS such that it can produce the Boolean
sublattice as shown in Figure 3. First, we present the
definition of a module so that modularization can be
explored:

Definition 4.1 (Module). Given an abstract ontology
O = (C ,L ,G), a module M of O is defined as as an
abstract ontology M = (CM,LM,GM) satisfying the
following conditions:

• CM ⊆C
• LM = (LM,vC) such that LM ⊆ CM , LM is a

Boolean sublattice of L , and ec ∈ LM

• GM = {Gn | Gn ∈ G ⊗ tn ∈ LM}
where CM and C are the carrier sets of CM and C ,
respectively.

In other words, a module is a sub-ontology. This
ensures that tasks which can be performed on the on-
tology (e.g., reasoning) can also be performed on a
module. It is evident that abstract ontology given
in Figure 3 conforms to the provided definition of a
module, if we consider GM = /0.

View Traversal allows for the freedom to extract a
module on any relation to any depth. To ensure that
the module we extract conforms to the definition, we
restrict the notion of View Traversal on DIS to only
traverse the partOf relation, and to travel the maxi-
mum distance. In the situation that the desired mod-
ule uses a concept from one of the rooted graphs (i.e.,
does not use the partOf relation), then we first de-
termine the concept that is the root of the graph, then
conduct the View Traversal from that concept.

With these restrictions, we claim that the applica-
tion of View Traversal to a Boolean lattice for a given

cst ∈ L is equivalent to the principal ideal generated
by cst, defined below.

Definition 4.2 (View Traversal Module). For a given

abstract ontology Odef
= (C ,L ,G) and starting concept

cst ∈ L, the module Mv = (Cv,Lv,Gv) is defined as:

1. Lv = (Lv,vC) is the principal ideal generated by
cst

2. Gv = {Gi | Gi ∈ G ∧ ti ∈ Lv}
3. Cv = {c | c ∈ LT D∨∃(Gi | Gi ∈ Gv : c ∈Ci)}2.

where Cv is the carrier set for Cv.

It is possible for a single View Traversal to be cre-
ated from cst. For example, consider the scenario
where we wish to create a single module given two
starting concepts c1 = (Colour⊕Sugar) and Taste =
(Sugar⊕Body). To achieve this, we are required to
extract a single Boolean sublattice that covers both
c1 and Taste. As the definition of View Traversal
provided uses a single concept, we construct a proxy
starting concept that is the combination of c1 and
Taste, i.e., cst = c1⊕ c2. In more general terms, let
Cv be a set of concepts to be modularized on such that
Cv ⊆ L, then the starting concept for the View Traver-
sal is defined as

cst =⊕(c | c ∈Cv : c) (2)

Referring to Figure 4, had we taken two View
Traversals for c1 and Taste, we would have acquired
the two modules shown using the bolded black lines.
However, this would provide two distinct modules
rather than just one. By determining a proxy cst, we
produce a single module that represents the informa-
tion that could be built using the existing concepts.
For example, by considering the proxy, we include
the concept Style that would have otherwise been for-
gotten had we taken the union of the two individual
modules (as Noy et al. do in (Noy and Musen, 2009)).

With this method, there exists two trivial scenar-
ios: for ci,c j ∈ Cv we have ci vC c j for disjoint
ci,c j ∈ Cv, or we have the joins of concepts in Cv
produce cst = >. In the former scenario, ci can be
disregarded as according to the definition of the lat-
tice, ci vC c j implies ci⊕ c j = c j. In the latter, the
Boolean lattice of the module will be isomorphic to

2Throughout this paper, we adopt the uniform linear no-
tation provided by Gries and Schneider in (Gries and
Schenider, 1993), as well as Dijkstra and Scholten in (Di-
jkstra and Scholten, 1990). The general form of the no-
tation is ?(x | R : P) where ? is the quantifier, x is the
dummy or quantified variable, R is predicate representing
the range, and P is an expression representing the body of
the quantification. An empty range is taken to mean true
and we write ?(x |: P); in this case the range is over all
values of variable x.
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eC

Colour SugarGrape Body

Taste

Mouthfeel Style

Wine

Figure 4: Modularization with c1 = Colour⊗ Sugar and
Taste = Sugar⊗Body.

the original ontology’s. Although counterintuitive to
modularization, this aligns with the notion of what in-
formation can be built. Such a module implies that all
atoms of the ontology were required.

We now introduce how View Traversal operates
for concepts that belong to one of the rooted graphs
of the ontology (i.e., cst ∈ G). The definition of View
Traversal requires cst ∈ L, thus we define a rooted
View Traversal into the Boolean lattice as the sce-
nario where cst /∈ L. For example, in Figure 5, rooted
graphs have been added to the concept Mouthfeel.
The rest of the Boolean lattice is not shown for eas-
ier viewing. These rooted graphs are created by the
domain experts at the instantiation of the ontology to
enrich the domain by providing additional concepts
that are not comprised of the data that is in Table 1.
For example, since mouthfeel is partOf Wine, we can
say that a wine and opulence are related by associ-
atedWith relationship, but no data from our domain
contains specific data that corresponds to opulent. If
there existed data for opulent, it would belong to the
Boolean lattice (i.e., our L). With this in mind, we
project a View Traversal on the concept Opulent, i.e.,
cst = Opulent. As this concept does not belong to the
lattice, we cannot generate the ideal from it. There-
fore, we need to search for the root of the graph to
which opulent belongs and then work out the View
Traversal from it.

Recall that according to the definition of the
rooted graphs, the root must be a concept in the
Boolean lattice, thus, we can determine the principal
ideal of the root. In the example, Opulent belongs to
a rooted graph which Mouthfeel is the root of, thus,
Mouthfeel would be the root concept, and the ideal
can be generated as before. Additionally, the set of
rooted graphs that belongs to the module will be re-
stricted to only the graphs to which cst belongs. In
the example, the graph that contains Negative would
not be included because it is a different rooted graph.

If both graphs were desired from the View Traver-
sal, the agent would be required to modularize on
a concept that is shared among the graphs, such as
Smoothness. In this scenario, we generate a set of

Mouthfeel
Lattice in
Figure 2

Positive

Negative

Location

Smoothness

Opulent

Angular

Creamy

Buttery

Velvety

Fatty
EarthyAustere

Smoothness Cassis

Charcoal

assocWith

Figure 5: The Wine Ontology enriched with rooted graphs
(i.e., G) with root Mouthfeel.

root concepts,
Cp = {ti | cst ∈Ci, where Ci is the set of vertices in

Gi}
which is the set of concepts in the Boolean lattice
that are the root of a graph that has queried for View
Traversal. In other words, for each rooted graph that
contains a starting concept for View Traversal, we
take its root. Then, with this set of roots, we conduct
View Traversal as defined in Equation 2. This results
in the following:
Definition 4.3 (Rooted View Traversal). For a given

abstract ontology O def
= (C ,L ,G) and a set of root

concepts Cp corresponding to a cst /∈ L, the module
Mv = (Cv,Lv,Gv) is defined as:
1. Lv = (Lv,vC) is the principal ideal generated by
⊕(c | c ∈Cp : c)

2. Gv = {Gi | Gi ∈ G ∧Gi = (Ci,Ri, ti) ∧ ti ∈ Lv ∧
∃(cst | cst ∈Cp∧ cst ∈Ci)}

3. Cv = {c | c ∈ Lv∧∃(Gi | Gi ∈ Gv : c ∈Ci)}
There are two differences between Definitions 4.2

and 4.3. The first is that the Boolean lattice Lv is gen-
erated by the combination of the roots of the graphs
in the set Cp rather than the input cst. The second is
that not all graphs are included; we only include the
graphs that cst is one of its vertices.

4.2 Formalization of View Traversal

The modularization of DIS has been so far defined at
the abstract ontology level with Definitions 4.2 and
4.3. We now define the DIS that these abstract on-
tologies belong to and the function that produces it.
Definition 4.4 (View Traversal). For a given DIS

I def
= (O,A ,τ) and concept c such that c∈ C , we define

a View Traversal as a function such that
V T : I × c→Mv, where Mv = (Ov,Av,τv) satisfies:
1. Ov is the View Traversal Module generated by c.
2. Av = (Av,+, ·,−,0,1,ck)k∈Lv

3. τv is the restriction of τ to only the elements of Av.
where Lv is the carrier set of the Boolean lattice Lv in
Ov, and Av = {a | a ∈ A∧ τ(a) ∈ Lv}.
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We introduce the binary operators of composition
and chaining that are carried over View Traversals.
We show that, similar to the View Traversal in litera-
ture (Noy and Musen, 2009), they are preserved.

Given a DIS I and two View Traversals T1 and T2
that are modularized on starting concepts c1 and c2,
we define composition of View Traversals as both T1
and T2 being applied to I :

T1 ∗T2 =V T (I ,c1⊕ c2) (3)

This definition of composition results in a single
module being produced from multiple View Traver-
sals. Additionally, ∗ is both commutative and asso-
ciative, inheriting the commutativity and associativity
of the join operator it utilizes. It is also trivial to show
the composition of a View Traversal on c1 and an-
other View Traversal on c2 where c1 vC c2 is equal to
the View Traversal of c2:

V T (I,c1⊕ c2)

⇐⇒ 〈c1 vC c2⇒ c1⊕ c2 = c2〉
V T (I,c2)

(4)

The chaining of two View Traversals T1 and T2 is
the process of applying T2 to the result of T1:

T2 ◦T1 =V T (V T (I ,c1),c2) (5)

This definition of chaining results in the sequen-
tial process of ‘modularizing a modularization’, and
is not necessarily commutative. T2 is restricted to the
module produced by T1, and may no longer include
c2. In this situation, the result would be the empty
DIS, i.e., C = ({},{},{}).

4.3 Properties of DIS View Traversal

We provide the properties of a module adhering to
Definition 4.2. We assume cst 6=> to avoid the trivial
case of the module being isomorphic to the ontology.

Claim 4.1. The produced Boolean algebra associ-
ated to the Boolean lattice of View Traversal is not a
subalgebra of the Boolean algebra associated to the
Boolean lattice of the ontology.

This is easily proven by showing the lack of
preservation of operators. In particular, the 0-ary op-
erator of> is not preserved in the module’s associated
Boolean algebra.

This claim is significant as the Boolean sublattice
(i.e., the module) can be compared to the Boolean lat-
tice of the ontology and be defined as an embedding.
However, as it is not a Boolean subalgebra, the alge-
bras cannot be defined in a similar way as an embed-
ding. This distinction results in the ability to guar-
antee the preservation of the structural information of

the concepts when modularizing (i.e., lattice operators
of join and meet), but not the information pertaining
the additional algebraic operators, summarized in the
following claim.

Claim 4.2. A View Traversal does not preserve the
complement operator of the ontology’s Boolean lat-
tice.

This is trivially proven by demonstrating that in
the View Traversal, e′

C
= cst, but in the ontology, e′

C
=

>, and due to our earlier stated assumption cst 6= >,
this is a contradiction.

The notions of local correctness and complete-
ness are defined in (d’Aquin et al., 2009), and cor-
respond to the logical modularization techniques that
are based on conservative extension. Using these def-
initions, we make the following claim.

Claim 4.3. A View Traversal is locally complete but
not locally correct with respect to the original ontol-
ogy.

The View Traversals completeness follows from
the Boolean lattice being an ideal, which by defini-
tion, must preserve and be closed under the join and
meet operators. However, as shown in Claim 4.2, the
complement is not preserved, and thus the module is
not locally correct.

5 QUANTIFYING KNOWLEDGE
LOSS

An important characteristic of the module is that its
Boolean lattice is the principal ideal generated by cst
(or the root starting concept cp

st). As a result of the
existence of this ideal and the first theorem of isomor-
phism (Van der Waerden et al., 1950), there must be a
homomorphism from one Boolean algebra to another
Boolean algebra that this ideal is its kernel.

The homomorphism is from one Boolean algebra
to another such that f : B1→ B2. We define f as fol-
lows:

f (p) = p⊗ p0 (6)

for every p ∈ B1 and an arbitrarily chosen p0 ∈ B1.
We remind the reader that the ⊗ operator of a DIS
functions identically to the meet operator (⊗) of tra-
ditional lattices. The kernel is defined as follows:

ker( f ) = {p ∈ B1 | f (p) = eC} (7)

To illustrate the utilization of this function, we use
the original Boolean lattice found in Figure 2, and
use Equation 6, setting p0 = Estate, where Estate =
Region⊕Winery. Intuitively, Equation 6 maps every
concept from the original Boolean lattice to Estate or
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(a) The Boolean lattice
mapped to by f
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Grape Colour Sugar Body

Taste

Mouth f eel

Style

Wine

(b) The kernel of f

Figure 6: f (p) = p⊗Estate.

one of its parts, populating the kernel with every ele-
ment that maps to eC according to Equation 7. As Es-
tate and all its parts is a subset of the original Boolean
lattice, there will be concepts that map to the same el-
ement (i.e., not be injective).

For example, consider the following three evalua-
tions,

f (Taste) = Taste⊗Estate = eC ,
f (Region) = Region⊗Estate = Region
f (Winery) =Winery⊗Estate =Winery

The function maps any value that is a part of
Estate (such as Region) to itself, and anything that
has no parts of Estate (such as Taste or Grape) to
eC . With the starting concept cst = Estate, we claim
that the kernel of the function f is composed of
the concept Wine and all its parts, i.e., ker( f ) =
{eC ,Grape,Colour,Sugar,Body, . . .}. Figure 6 dis-
plays both Boolean lattices: the one mapped to by f
and the one populated by ker( f ).

The kernel is specifically the principal ideal gen-
erated by the complement of p0 that we denote by
p′0. In our example, Wine is the complement of Estate
(it is the concept that can be created by combining
the atoms that are not partOf Estate). Therefore, the
relationship between p0 and the module from View
Traversal can be observed: for any p0,cst ∈ B, where
p0 6= cst, the kernel of f corresponds to the mod-
ule generated by cst, or more specifically, V T (cst) is
equal to the lattice mapped to by f where p0 = c′st.

The nature of modularizing an ontology into
smaller components lends itself to the loss of knowl-
edge. The extraction of a smaller part of the ontology
implies something is lost. The relationship between
the kernel and the Boolean algebra mapped to via the
function f embodies this loss of knowledge. If the
kernel is taken to be the module extracted via View
Traversal, then the Boolean algebra mapped to by f
captures the knowledge that is lost. As we associate
with the kernel because it is the result of the modu-
larization, we speak of the knowledge that is kept (or
lost) in terms of the kernel. More specifically, by as-

sessing and quantifying the size of the kernel, we are
measuring what is being lost due to modularization.
In Figure 6, the concepts of Grape, Colour, and any
combination of them were lost. Thus, from an ontol-
ogist perspective, the manipulation of the homomor-
phism and the kernel allow for the control of what an
agent will know (through the kernel) or what an agent
cannot know (through the Boolean algebra mapped to
via f ).

One can envision a measure for loss of domain
knowledge due to View Traversal proportional to the
number of atoms included in the kernel. In other
words, for a given View Traversal, V T , we say the
percentage of knowledge lost L(V T ) is given as

L(V T ) =
number of atoms in kernel

total number of atoms
×100 (8)

We can further study this measure, its scale, and give
its laws.

6 DISCUSSION AND FUTURE
WORK

As a consequence of the module produced via View
Traversal not being locally correct, it implies that
what is reasoned from the module may be different
from what is reasoned from the ontology. However,
since the join and meet operators are preserved in the
module, any knowledge deduced in the module using
only those operators will be consistent i.e., the same
knowledge would be deduced in the original ontology.
This is not true for the complement: what they gen-
erate from the complement will be true in the context
of the module, but will not necessarily be when con-
textualized by the ontology. For example, referring
to Figure 6, the complement of Region in the mod-
ule will be Winery. However, in the original ontology
(when all atoms are present), the complement of Re-
gion is not Winery, it is the concept c, defined as

c =Winery⊕Grape⊕Colour⊕Sugar⊕Body.
We stress that what is generated from the complement
(in the context of the module) is merely incomplete:
the complement computed in the View Traversal will
be a partOf the complement computed in the ontol-
ogy. For example, Winery is a part of the true com-
plement c (as is grape, colour, sugar, and body).

Our approach also comes with a direct usage of
the algebraic notion of a homomorphism associated
to an ideal as a means for measuring the knowledge
that is lost due to only focusing on the module. This is
extremely important as the many questions that are in-
herent to modularization need to have an idea to what
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is left behind when you use a module for reasoning
rather than the whole ontology. It is the questions
of knowledge coverage by a module and whether a
set of modules covers the same knowledge that can
be generated using the ontology from which they are
obtained. The kernel associated to a module tells us
about the concepts that we are omitting through mod-
ularization, therefore indirectly telling us about the in-
formation and the domain knowledge we are losing.
Certainly there is still work to be done on explicitly
elaborating this issue. In particular, being able to de-
fine loss in more ways than just the size of the kernel.
Although this provides us with a way of measuring
loss and a way to compare modules based on this, it
does not sufficiently capture the idea that there may
exist concepts within the ontology that communicate
more information or knowledge. As far as we know,
we are the first to relate the notion of kernel to the part
of knowledge that is lost through modularization. We
illustrated this point using View Traversal techniques.
In this paper, we simply point to this direction as a
viable means for measuring loss of information when
using modularization.

7 CONCLUSION

In this paper, we presented the application of View
Traversal to an ontology represented with DIS. The
utilization of DIS is shown to be advantageous due to
the Boolean algebra allowing for the communication
of the module as the ideal. The Wine Ontology was
utilized as it is a common benchmark for demonstrat-
ing a conceptually rich ontology. With this, we are
able to formally define what a module is, and how it
can be produced using View Traversal on a starting
concept, cst. With the homomorphism, it is also pos-
sible to create a module that hides a specific set of
knowledge. This allows for the extraction of a mod-
ule based on what an agent should or should not know.
The knowledge that is lost in the modularization pro-
cess is quantified using the kernel of the homomor-
phism.

The proposed modularization technique is shown
to ensure the completeness of the module. Due to the
complement operator, the same cannot be said for the
correctness of the module. Extracting a module that
is both complete and correct would result in a subal-
gebra, and correspond to the widely-used techniques
that aim to exhibit conservative extension in DL. Ad-
ditionally, although the kernel quantifies the knowl-
edge that is lost due to modularization, other measure-
ments of knowledge need to be explored. It is com-
mon that certain concepts are more significant within

a domain, and the loss of such a concept due to mod-
ularization should be reflected in the measurement of
knowledge loss.
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