
GPU Acceleration of PySpark using RAPIDS AI

Abdallah Aguerzame, Benoit Pelletier and François Waeselynck
Atos, Grenoble, France

Keywords: CloudDBAppliance, BullSequana S, Scale-up, Spark, PySpark, GPU, Pandas UDFs, RAPIDS AI.

Abstract: RAPIDS AI is a promising open source project for accelerating Python end to end data science workloads.

Our quest is to be able to integrate RAPIDS AI capabilities within PySpark and offload PySpark intensive

tasks to GPUs to gain in performance.

1 INTRODUCTION

Within the scope of the CloudDBAppliance project,

we investigate how Apache Spark™ can leverage a

many cores and large memory platform, with a scale

up approach in mind, as opposed to the commonly

used scale out one. That is, rather than spreading a

Spark cluster on many vanilla servers, the approach is

to deploy it on a few BullSequana™ large servers

with many cores (up to several hundreds) and large

memory (up to several tera-byte).

The target hardware platform of

CloudDBAppliance is a BullSequana S server, a

highly scalable and flexible server, ranging from 2 to

32 processors (up to 896 cores and 1792 hardware

threads), up to 32 GPUs and 48 TB RAM, and 64 TB

NVRAM.

In previous work (Waeselynck, 2019), we

inculcate NUMA awareness to Spark, that provides a

smart and application transparent placement of

executor processes. This paper in the other hand will

be dedicated to expose a solution that leverages GPUs

in PySpark workflow using the new Nvidia library

RAPIDS AI (RAPIDS, 2019). Our initiative is

inspired from a previous work done by an Nvidia

team to accelerate UDFs (user defined functions) in

PySpark with Numba and PyGDF (Kraus and Joshua

Patterson, 2018). Our work however will be adapted

with the new library recently launched by NVIDIA

“RAPIDS AI”.
This document is organised in the following order.

We first start by introducing PySpark and explaining

how it is possible to offload tasks to the GPU using

Apache Arrow (Apache Arrow, 2019) and RAPIDS

AI. Then we represent the two types (Scalar and

Grouped Map) of Pandas UDF within PySpark that

leverages Apache Arrow. After that, we illustrate two

implementations examples, that show how to create

within PySpark both a scalar Pandas UDF that

computes on the GPU the product of 2 columns and a

Grouped Map Pandas UDF that subtract on the GPU

the mean from each value in the group. Finally, we

show and discuss the results obtained from our

experiments with RAPIDS AI and PySpark.

2 PySpark ACCELERATION

WITH GPU

In 2018 Python was the most popular language in data

science (KDnuggets, 2019), and year after year it gets

more and more attraction by data scientists. PySpark

is Spark’s response to this trend: The python API for

Spark, that enables Python programming on Spark.

In this paper we introduce and make use of new

technologies that recently come to surface and allow

to accelerate Python functions on GPUs, where the

processing pipelines spans from Spark executors to

Python workers and finally lands on GPUs, all of that

without dramatically losing speed-ups in cost of

serialisations, data conversions and data movement.

 Apache Arrow (Apache Arrow, 2019) is a

framework to minimize data conversions and

data serialisations when a data processing

pipeline includes different computing

frameworks.

 RAPIDS AI (RAPIDS, 2019) is a promising

project recently announced by Nvidia.

RAPIDS AI aims to speed-up data science end

to end workflow; it contains APIs and libraries

that allow for executing Python jobs on GPUs.

Aguerzame, A., Pelletier, B. and Waeselynck, F.
GPU Acceleration of PySpark using RAPIDS AI.
DOI: 10.5220/0008191404370442
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 437-442
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

437

2.1 PySpark Execution Model

Spark runs Python programs differently than Scala

programs: unlike Scala programs, Spark executors do

not run Python programs directly – that operate on the

data they hold, but delegate their execution to Python

workers, that are separate processes. This architecture

has some drawbacks, especially for data movements

between Spark executors and Python executors due to

data serialization/deserialization between those

processes. The conversion of a Spark data frame to

Pandas with the DataFrame.toPandas()

method is quite inefficient: rows are collected from

the Spark executor, serialized into Python’s pickle

format, then moved to the Python worker, after that

deserialized (from pickle format) into a list of tuples,

finally transformed to a Panda data frame. And the

reverse operations are to do in the other way for

results. This overload gives results far below to the

execution of an equivalent Scala program.

Developers commonly work around this problem by

defining their UDFs (user defined functions) in

Scala/Java, calling them from PySpark. Experiments

have shown that the time spent in serializing and

deserializing data often exceeds the compute time

(Kraus and Joshua Patterson, 2018), thus, targeting

GPU acceleration would not be a good option,

because so much time will be lost in serializing,

deserialization and copying data.

2.2 Apache ARROW in Spark

Things have changed yet, as starting from version 2.3,

Spark can leverage Apache Arrow technology.

Apache Arrow (Kraus and Joshua Patterson, 2018) is

a cross-language development platform for in-

memory data. It specifies a standardized language-

independent columnar memory format for flat and

hierarchical data, organized for efficient analytic

operations on modern hardware. It also provides

computational libraries and zero-copy streaming

messaging and interprocess communication. It

enables execution engines to take advantage of the

latest SIMD (Single instruction multiple data)

operations included in modern processors (CPU,

GPU)), for native vectorized optimization of

analytical data processing. Columnar layout is

optimized for data locality for better performance on

CPUs and GPUs. The Arrow memory format

supports zero-copy reads for lightning-fast data

access without serialization overhead.

As of Spark 2.3, Apache Arrow is introduced as a

supported dependency to offer increased performance

with columnar data transfer. Once the data is in

Arrow memory format, it can transit (possibly

without moving) along the processing pipeline from

a framework to the next without the need to multiple

serialization/deserialization, e.g. from the Spark

executor (a java process) to the GPU through the

Python worker (a Python process).

2.3 RAPIDS AI

Figure 1: RAPIDS AI components (RAPIDS AI, 2019).

RAPIDS AI is a collection of open source software

libraries and APIs recently launched by NVIDIA to

execute end-to-end data science analytics pipelines

entirely on GPUs. It relies on NVIDIA CUDA

primitives for low-level compute optimization, but

exposes GPU parallelism and high-bandwidth

memory speed through user-friendly Python

interfaces. RAPIDS AI also focuses on common data

preparation tasks for analytics and data science. This

includes a familiar DataFrame API that integrates

with a variety of machine learning algorithms for end-

to-end pipeline accelerations without paying typical

serialization costs. RAPIDS AI also includes support

for multi-nodes nodes, multi-GPU deployments,

enabling vastly accelerated processing and training

on much larger dataset sizes.

The RAPIDS AI cuDF API is a DataFrame

manipulation library based on Apache Arrow that

accelerates loading, filtering, and manipulation of

data for model training and data preparation. The

Python bindings of the core-accelerated CUDA

DataFrame manipulation primitives mirror the

Pandas interface for seamless onboarding of Pandas

users. Previous efforts were provided by GoAI (GPU

Open Analytics Initiative) project that initiated

PyGDF (Python GPU DataFrame library): PyGDF is

based on Apache Arrow data format, converts Pandas

DataFrame to GPU DataFrame, and interfaces with

CUDA using Numba, a compiler for Python arrays

and numerical functions to speed up Python programs

with high-performance functions. PyGDF is already

integrated with cuDF, a more elaborated and

complete library.

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

438

2.4 Bringing Data to the GPU

Our objective is to bring GPU capabilities to Pyspark

framework, as shown in the figure 2. Thanks to the

common playground using Apache Arrow, allowing

python processes to work more efficiently on Spark,

data movements are no or low burden with optimized

data conversion and serialisation, with a columnar

format suited for GPU consumption.

Figure 2: PySpark GPU acceleration model with cuDF.

3 PANDAS UDFs WITH GPU

In Spark we can create user defined functions (UDFs)

that have a column-based format. This UDFs are used

to create functions outside of the scope of Spark built-

in functions, they can be defined in Scala/Java or

Python and be called from PySpark. As explained in

the previous chapter, Arrow format is used in Spark,

so data can be transferred most efficiently between

JVM and Python processes, then to the GPU. Using

Arrow in spark is not automatic and requires some

changes to configurations or code. As shown in figure

3, arrow optimization is needed when converting a

Spark DataFrame to a Panda DataFrame using the

call toPandas() and the way around when creating

a Spark DataFrame from a Panda DataFrame with

creatDataFrame(pandas_df).

Figure 3: Data conversion with Apache Arrow.

To insure that Arrow format is used when

executing these calls, we need to set the spark

configuration ‘spark.sql.execution.arrow.enabled” to

‘true’, this is disabled by default in Spark.

In PySpark, we recognize two types of UDFs,

Scalar Pandas UDFs and Group Map Pandas UDFs.

3.1 Scalar Pandas UDFs

Scalar Pandas (Spark SQL, 2019) UDFs are used for

vectorizing scalar operations. They can be used with

functions such as select and withColumn. They

require a pandas.series as input and a

pandas.series as output. Both the input and the

output must be of the same length. Internally when

executing a Pandas UDF, Spark will split its columns

into batches and calls the function for each batch as a

subset of the data, then concatenating the results

together. In this regard cuDF API call

“cudf.Series()” can be used inside the UDF to

transform the input Python DataFrame to a GPU

DataFrame, so operations will be carried out on the

GPU.

def gpu_scalar_pandas_udf_example(spark):

import pandas as pd

 import cudf

from pyspark.sql.functions import col,

pandas_udf

from pyspark.sql.types import LongType

Declare the function and create the UDF

def gpu_multiply_func(a, b):

Create GPU Data Frame using cuML API

gdf_a = cudf.Series(a)

gdf_b = cudf.Series(b)

gdf_rslt = gdf_a * gdf_b

return gdf_rslt.to_pandas()

multiply_gpu =

pandas_udf(gpu_multiply_func,return

Type=LongType())

The above code is an example of a scalar user

defined function UDF that takes as input two columns

and gives the computed product as a result. We create

a Spark DataFrame from a Pandas DataFrame and

applied a UDF function to its column.

x = pd.Series([1, 2, 3])

df =

spark.createDataFrame(pd.DataFrame(x

, columns=["x"]))

The variable ‘x’ is a Pandas series that we

transform to ‘df’ which is a Spark DataFrame.

Internally Arrow format will be implicitly applied as

we activate it in our Spark session configuration
“spark.conf.set("spark.sql.execution.ar

row.enabled", "true")”.

Therefore, in the code above ‘gdf_a’ and

‘gdf_b’ will be executed as GPU DataFrame and

the multiplication operator will be a CUDA primitive

provided by the cuDF API and will be executed on

GPU. Finally we convert back the result to a Pandas

DataFrame ‘return gdf_rslt.to_pandas()’

Apache
Spark

Apache
Arrow

Pandas

creatDataFrame ()

df.toPandas()

GPU Acceleration of PySpark using RAPIDS AI

439

because the specified type in the return value of the

UDF is ’LongType()’ which is a Pandas type.

 df.select(multiply_gpu(col("x"),
col("x"))).show()

 # +-------------------+

 # |gpu_multiply_func(x, x)|

 # +-------------------+

 # | 1|

 # | 4|

 # | 9|

 # +-------------------+

As a result, we have the multiplication of the

column of a spark DataFrame by itself.

3.2 Grouped Map Pandas UDFs

Grouped map Pandas7 UDFs are used by the

groupBy().apply() function, it has a three steps

execution paradigm “split-apply-combine”. It first

splits the data into groups by using

DataFrame.groupBy then apply a function on each

group and finally combine the results into a new

DataFrame. The input and output data are both

pandas.DataFrame. The output DataFrame can be

any length.

In order to use groupBy().apply() we need to

designate a Python function that defines the

computation for each group, and a StructType object

or a string that defines the schema of the output

DataFrame. Each column of the returned

pandas.DataFrame should be labelled according to

the specified output schema. Either they match the

field names in the defined output schema if specified

as strings or they match the field data types by

position if not strings.

Seemingly data for each group must be converted

to GPU DataFrame using

“cudf.DataFrame.from_pandas ()” from cuDF

API. Therefore, the execution will be carried out by

the GPU.

from pyspark.sql.functions import

pandas_udf, PandasUDFType

import cudf

df = spark.createDataFrame(

[(1, 1.0), (1, 2.0), (2, 3.0), (2,

5.0), (2, 10.0)],("id", "v"))

@pandas_udf("id long, v double",

PandasUDFType.GROUPED_MAP)

def subtract_mean(pdf):

pdf is a pandas.DataFrame

gdf = cudf.DataFrame.from_pandas(pdf)

 v = gdf.v

return gdf.assign(v=v -

v.mean()).to_pandas()

df.groupby("id").apply(subtract_mean).sho

w()

In this example, we show how to implement a

Grouped Map user defined function that subtracts the

mean from each value in the group. We start by

creating a Spark DataFrame ‘df’ then we create a

UDF where the inputs matches the Spark DataFrame

schema (id,v) and a returned value as

PandasUDFType.GROUPED_MAP Pandas type.

Inside the the UDF we convert the pdf to a gdf

(GPU DataFrame) so the execution of the mean will

be carried out by the GPU. Seemingly the returned

result is a Pandas DataFrame so the result can be

shown as bellow.
+---+----+

| id| v|

+---+----+

| 1|-0.5|

| 1| 0.5|

| 2|-3.0|

| 2|-1.0|

| 2| 4.0|

+---+----+

4 EXPERIMENTS

In our work, we use a docker container containing all

the needed libraries. RAPIDS AI proposes different

docker containers, we use the latest image tag

“cuda9.2-runtime-ubuntu16.04” that comes with

RAPIDS AI 0.6, CUDA 9.2 and a Jupyter notebook.

We add to it Spark 2.4.3 that supports Apache Arrow

Format.

We run our code in a Jupyter notebook. It’s based

on the Grouped Map Pandas UDF example we show

in the section 3. It contains two functions, one that

uses RAPIDS AI API to calculate the mean and

subtracted it from each value in the group, and

another function that does the same thing but uses

PySpark native API instead.

The system under test comprises of a BullSequana

S800 server with 8x12 cores processors and 4

terabytes (TB) RAM memory, that is a total of 96

cores and 192 hardware threads, as hyperthreading is

activated. The machine is coupled with 4 Tesla V100

GPUs with 16 Gb of memory each.

Our PySpark application is run with a parallelism

of 40 tasks - where each task is run by a thread,

launched in local mod with 40 GB Heap size. System

metrics are gathered by means of a sar command.

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

440

Figure 4: Screenshot of nvidia-smi output.

Only one GPU is used during our tests. Figure 4

shows a screenshot of the nvidia-smi command

output, that shows the GPU is used while executing

the first function that implements RAPIDS AI API.

Figure 5: CPU Load for the Grouped Map UDF example.

The input data is generated locally using Spark.

Figure 5 illustrates the CPU load while executing our

application of a grouped map Pandas UDF over a

vector of 800 million elements.

The blue area of the graph shows CPU load while

executing the first section of the code that uses

RAPIDS AI API and the gray area shows CPU load

when executing the second section that uses native

PySpark API.

We clearly distinguish that the CPU load is less

important in the blue area, because tasks are offloaded

to GPU when using RAPIDS AI API, whereas tasks

are fully computed by the CPUs where native

PySpark API is used.

Figure 6 demonstrates how much speed up we get

when using RAPIDS AI API with PySpark. We can

go as high as 3 time faster with RAPIDS AI when

using input data of 800 million elements. However,

we can only benefit of speed up when there is enough

data, so offloading tasks to GPU will not be

significantly affected by the overhead of data transfer

between CPU and GPU. Our experiments show that

when using RAPIDS AI we get a speed up for input

datasets of more than 500 million elements, whereas

we get a slow down below.

The results obtained here are bounded by the fact

that our code is executed on a Jupyter notebook from

a Docker container. We presume that more speed up

can be achieved if the Jupyter notebook is bypassed.

Speed up can also be more significant if executing

more complex operations over larger datasets, so

GPU power can be fully exploited and data transfer

overhead between GPU and CPU will be negligible.

Figure 6: Grouped map panda UDF example with different

data size.

5 CONCLUSION

Big Data analytic workloads have become more and

more demanding in terms of computational power.

Thus, CPU-only systems can no longer handle

efficiently the task. Especially that Moore’s law is

now coming to an end. So, hardware acceleration

using GPU becomes a key feature in modern

computational systems. Spark, as the most used

framework in Big Data, is a target for scaling up its

working environment to the GPUs.

RAPIDS AI might be a young project but it’s

growing rapidly profiting from NVIDIA’s backup.

RAPIDS AI cuML API contains a handful of machine

learning algorithms, such as K-Means, NN, SGD and

others… which makes a big asset for data scientist

and data engineers. There is also a graph analytics

API cuGraph containing a collection of graph

analytics that process data found in a GPU

DataFrame. All this makes RAPIDS AI an

auspicious project that is well suited for bringing

GPU capabilities to Apache Spark.

Our work is a verification process to make sure

that the connection between RAPIDS AI and Spark is

possible, and delegating Spark tasks to GPU is within

our reach. This however will in return open for us

other possibilities to make Apache Spark capable of

leveraging High-end servers such as BullSequana S

coupled to GPU. Thus enabling to process large

amount of data within a single system or few systems

in less time than if using larger systems with CPUs

only. Further work can be carried out to establish a

comparison test between Spark ML lib and RAPIDS

GPU Acceleration of PySpark using RAPIDS AI

441

AI cuML with Spark to elaborate on how much

acceleration we can get and provide some insights on

the benefits of using GPUs.

ACKNOWLEDGEMENTS

The CloudDBAppliance project

has received funding from the

European Union’s Horizon 2020

research and innovation

programme under grant

agreement No. 732051.

REFERENCES

Waeselynck, F. and Pelletier, B. (2019). “A NUMA Aware

SparkTM on Many-cores and Large Memory Servers”.

In Proceedings of the 9th International Conference on

Cloud Computing and Services Science - Volume 1:

ADITCA, ISBN 978-989-758-365-0, pages 648-653.

DOI: 10.5220/0007905506480653

RAPIDS. https://rapids.ai.

Keith Kraus and Joshua Patterson. "GPU-accelerating

UDFs in PySpark with Numba and PyGDF”.

AnacondaCon 2018.

Apache Arrow, http://arrow.apache.org.

KDnuggets. https://www.kdnuggets.com/2018/05/poll-

tools-analytics-data-science-machine-learning-

results.html.

RAPIDS AI, FOSDEM’19, NVIDIA.

Spark SQL. https://spark.apache.org/docs/latest/sql-

pyspark-pandas-with-arrow.html.

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

442

