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Abstract: RAPIDS AI is a promising open source project for accelerating Python end to end data science workloads. 

Our quest is to be able to integrate RAPIDS AI capabilities within PySpark and offload PySpark intensive 

tasks to GPUs to gain in performance.   

1 INTRODUCTION 

Within the scope of the CloudDBAppliance project, 

we investigate how Apache Spark™ can leverage a 

many cores and large memory platform, with a scale 

up approach in mind, as opposed to the commonly 

used scale out one. That is, rather than spreading a 

Spark cluster on many vanilla servers, the approach is 

to deploy it on a few BullSequana™ large servers 

with many cores (up to several hundreds) and large 

memory (up to several tera-byte).  

The target hardware platform of 

CloudDBAppliance is a BullSequana S server, a 

highly scalable and flexible server, ranging from 2 to 

32 processors (up to 896 cores and 1792 hardware 

threads), up to 32 GPUs and 48 TB RAM, and 64 TB 

NVRAM. 

In previous work (Waeselynck, 2019), we 

inculcate NUMA awareness to Spark, that provides a 

smart and application transparent placement of 

executor processes. This paper in the other hand will 

be dedicated to expose a solution that leverages GPUs 

in PySpark workflow using the new Nvidia library 

RAPIDS AI (RAPIDS, 2019). Our initiative is 

inspired from a previous work done by an Nvidia 

team to accelerate UDFs (user defined functions) in 

PySpark with Numba and PyGDF (Kraus and Joshua 

Patterson, 2018). Our work however will be adapted 

with the new library recently launched by NVIDIA 

“RAPIDS AI”. 
This document is organised in the following order. 

We first start by introducing PySpark and explaining 

how it is possible to offload tasks to the GPU using 

Apache Arrow (Apache Arrow, 2019) and RAPIDS 

AI. Then we represent the two types (Scalar and 

Grouped Map) of Pandas UDF within PySpark that 

leverages Apache Arrow. After that, we illustrate two 

implementations examples, that show how to create 

within PySpark both a scalar Pandas UDF that 

computes on the GPU the product of 2 columns and a 

Grouped Map Pandas UDF that subtract on the GPU 

the mean from each value in the group. Finally, we 

show and discuss the results obtained from our 

experiments with RAPIDS AI and PySpark. 

2 PySpark ACCELERATION 

WITH GPU 

In 2018 Python was the most popular language in data 

science (KDnuggets, 2019), and year after year it gets 

more and more attraction by data scientists. PySpark 

is Spark’s response to this trend: The python API for 

Spark, that enables Python programming on Spark. 

In this paper we introduce and make use of new 

technologies that recently come to surface and allow 

to accelerate Python functions on GPUs, where the 

processing pipelines spans from Spark executors to 

Python workers and finally lands on GPUs, all of that 

without dramatically losing speed-ups in cost of 

serialisations, data conversions and data movement.  

 Apache Arrow (Apache Arrow, 2019) is a 

framework to minimize data conversions and 

data serialisations when a data processing 

pipeline includes different computing 

frameworks. 

  RAPIDS AI (RAPIDS, 2019) is a promising 

project recently announced by Nvidia. 

RAPIDS AI aims to speed-up data science end 

to end workflow; it contains APIs and libraries 

that allow for executing Python jobs on GPUs. 
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2.1 PySpark Execution Model 

Spark runs Python programs differently than Scala 

programs: unlike Scala programs, Spark executors do 

not run Python programs directly – that operate on the 

data they hold, but delegate their execution to Python 

workers, that are separate processes. This architecture 

has some drawbacks, especially for data movements 

between Spark executors and Python executors due to 

data serialization/deserialization between those 

processes. The conversion of a Spark data frame to 

Pandas with the DataFrame.toPandas() 

method is quite inefficient: rows are collected from 

the Spark executor, serialized into Python’s pickle 

format, then moved to the Python worker, after that 

deserialized (from pickle format) into a list of tuples, 

finally transformed to a Panda data frame. And the 

reverse operations are to do in the other way for 

results. This overload gives results far below to the 

execution of an equivalent Scala program. 

Developers commonly work around this problem by 

defining their UDFs (user defined functions) in 

Scala/Java, calling them from PySpark. Experiments 

have shown that the time spent in serializing and 

deserializing data often exceeds the compute time 

(Kraus and Joshua Patterson, 2018), thus, targeting 

GPU acceleration would not be a good option, 

because so much time will be lost in serializing, 

deserialization and copying data. 

2.2 Apache ARROW in Spark 

Things have changed yet, as starting from version 2.3, 

Spark can leverage Apache Arrow technology. 

Apache Arrow (Kraus and Joshua Patterson, 2018) is 

a cross-language development platform for in-

memory data. It specifies a standardized language-

independent columnar memory format for flat and 

hierarchical data, organized for efficient analytic 

operations on modern hardware. It also provides 

computational libraries and zero-copy streaming 

messaging and interprocess communication. It 

enables execution engines to take advantage of the 

latest SIMD (Single instruction multiple data) 

operations included in modern processors (CPU, 

GPU)), for native vectorized optimization of 

analytical data processing. Columnar layout is 

optimized for data locality for better performance on 

CPUs and GPUs. The Arrow memory format 

supports zero-copy reads for lightning-fast data 

access without serialization overhead. 

As of Spark 2.3, Apache Arrow is introduced as a 

supported dependency to offer increased performance 

with columnar data transfer. Once the data is in 

Arrow memory format, it can transit (possibly 

without moving) along the processing pipeline from 

a framework to the next without the need to multiple 

serialization/deserialization, e.g. from the Spark 

executor (a java process) to the GPU through the 

Python worker (a Python process).  

2.3 RAPIDS AI  

 

Figure 1: RAPIDS AI components (RAPIDS AI, 2019). 

RAPIDS AI is a collection of open source software 

libraries and APIs recently launched by NVIDIA to 

execute end-to-end data science analytics pipelines 

entirely on GPUs. It relies on NVIDIA CUDA 

primitives for low-level compute optimization, but 

exposes GPU parallelism and high-bandwidth 

memory speed through user-friendly Python 

interfaces. RAPIDS AI also focuses on common data 

preparation tasks for analytics and data science. This 

includes a familiar DataFrame API that integrates 

with a variety of machine learning algorithms for end-

to-end pipeline accelerations without paying typical 

serialization costs. RAPIDS AI also includes support 

for multi-nodes nodes, multi-GPU deployments, 

enabling vastly accelerated processing and training 

on much larger dataset sizes.  

The RAPIDS AI cuDF API is a DataFrame 

manipulation library based on Apache Arrow that 

accelerates loading, filtering, and manipulation of 

data for model training and data preparation. The 

Python bindings of the core-accelerated CUDA 

DataFrame manipulation primitives mirror the 

Pandas interface for seamless onboarding of Pandas 

users. Previous efforts were provided by GoAI (GPU 

Open Analytics Initiative) project that initiated 

PyGDF (Python GPU DataFrame library): PyGDF is 

based on Apache Arrow data format, converts Pandas 

DataFrame to GPU DataFrame, and interfaces with 

CUDA using Numba, a compiler for Python arrays 

and numerical functions to speed up Python programs 

with high-performance functions. PyGDF is already 

integrated with cuDF, a more elaborated and 

complete library.  
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2.4 Bringing Data to the GPU 

Our objective is to bring GPU capabilities to Pyspark 

framework, as shown in the figure 2. Thanks to the 

common playground using Apache Arrow, allowing 

python processes to work more efficiently on Spark, 

data movements are no or low burden with optimized 

data conversion and serialisation, with a columnar 

format suited for GPU consumption. 

 

Figure 2: PySpark GPU acceleration model with cuDF. 

3 PANDAS UDFs WITH GPU 

In Spark we can create user defined functions (UDFs) 

that have a column-based format. This UDFs are used 

to create functions outside of the scope of Spark built-

in functions, they can be defined in Scala/Java or 

Python and be called from PySpark. As explained in 

the previous chapter, Arrow format is used in Spark, 

so data can be transferred most efficiently between 

JVM and Python processes, then to the GPU. Using 

Arrow in spark is not automatic and requires some 

changes to configurations or code. As shown in figure 

3, arrow optimization is needed when converting a 

Spark DataFrame to a Panda DataFrame using the 

call toPandas()  and the way around when creating 

a Spark DataFrame from a Panda DataFrame with 

creatDataFrame(pandas_df).  

 
Figure 3: Data conversion with Apache Arrow. 

To insure that Arrow format is used when 

executing these calls, we need to set the spark 

configuration ‘spark.sql.execution.arrow.enabled” to 

‘true’, this is disabled by default in Spark.  

In PySpark, we recognize two types of UDFs, 

Scalar Pandas UDFs and Group Map Pandas UDFs. 

 

3.1 Scalar Pandas UDFs 

Scalar Pandas (Spark SQL, 2019) UDFs are used for 

vectorizing scalar operations. They can be used with 

functions such as select and withColumn. They 

require a pandas.series as input and a 

pandas.series as output. Both the input and the 

output must be of the same length. Internally when 

executing a Pandas UDF, Spark will split its columns 

into batches and calls the function for each batch as a 

subset of the data, then concatenating the results 

together. In this regard cuDF API call 

“cudf.Series()” can be used inside the UDF to 

transform the input Python DataFrame to a GPU 

DataFrame, so operations will be carried out on the 

GPU.  

 
def gpu_scalar_pandas_udf_example(spark): 

import pandas as pd 

  import cudf 

from pyspark.sql.functions import col, 

pandas_udf 

from pyspark.sql.types import LongType 

# Declare the function and create the UDF 

def gpu_multiply_func(a, b): 

# Create GPU Data Frame using cuML API  

gdf_a = cudf.Series(a) 

gdf_b = cudf.Series(b) 

gdf_rslt = gdf_a * gdf_b 

return gdf_rslt.to_pandas() 

 

multiply_gpu = 

pandas_udf(gpu_multiply_func,return 

Type=LongType()) 

 

The above code is an example of a scalar user 

defined function UDF that takes as input two columns 

and gives the computed product as a result. We create 

a Spark DataFrame from a Pandas DataFrame and 

applied a UDF function to its column.     

 
x = pd.Series([1, 2, 3]) 

df = 

spark.createDataFrame(pd.DataFrame(x

, columns=["x"])) 

 

The variable ‘x’ is a Pandas series that we 

transform to ‘df’ which is a Spark DataFrame. 

Internally Arrow format will be implicitly applied as 

we activate it in our Spark session configuration 
“spark.conf.set("spark.sql.execution.ar

row.enabled", "true")”.  

Therefore, in the code above ‘gdf_a’ and 

‘gdf_b’ will be executed as GPU DataFrame and 

the multiplication operator will be a CUDA primitive 

provided by the cuDF API and will be executed on 

GPU. Finally we convert back the result to a Pandas 

DataFrame ‘return gdf_rslt.to_pandas()’ 

Apache 
Spark

Apache 
Arrow

Pandas 

creatDataFrame () 

df.toPandas() 
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because the specified type in the return value of the 

UDF is ’LongType()’ which is a Pandas type.     

 
    df.select(multiply_gpu(col("x"), 
col("x"))).show() 

    # +-------------------+ 

    # |gpu_multiply_func(x, x)| 

    # +-------------------+ 

    # |                  1| 

    # |                  4| 

    # |                  9| 

    # +-------------------+ 

     

As a result, we have the multiplication of the 

column of a spark DataFrame by itself.  

3.2 Grouped Map Pandas UDFs 

Grouped map Pandas7 UDFs are used by the 

groupBy().apply() function, it has a three steps 

execution paradigm “split-apply-combine”. It first 

splits the data into groups by using 

DataFrame.groupBy then apply a function on each 

group and finally combine the results into a new 

DataFrame. The input and output data are both 

pandas.DataFrame. The output DataFrame can be 

any length.  

In order to use groupBy().apply() we need  to 

designate a Python function that defines the 

computation for each group, and a StructType object 

or a string that defines the schema of the output 

DataFrame. Each column of the returned 

pandas.DataFrame should be labelled according to 

the specified output schema. Either they match the 

field names in the defined output schema if specified 

as strings or they match the field data types by 

position if not strings.  

Seemingly data for each group must be converted 

to GPU DataFrame using 

“cudf.DataFrame.from_pandas ()” from cuDF 

API. Therefore, the execution will be carried out by 

the GPU. 
 

from pyspark.sql.functions import 

pandas_udf, PandasUDFType 

import cudf    

df = spark.createDataFrame( 

[(1, 1.0), (1, 2.0), (2, 3.0), (2, 

5.0), (2, 10.0)],("id", "v")) 

 

@pandas_udf("id long, v double", 

PandasUDFType.GROUPED_MAP) 

def subtract_mean(pdf): 

# pdf is a pandas.DataFrame 

gdf = cudf.DataFrame.from_pandas(pdf) 

   v = gdf.v 

return gdf.assign(v=v -

v.mean()).to_pandas() 

 

df.groupby("id").apply(subtract_mean).sho

w() 

 

In this example, we show how to implement a 

Grouped Map user defined function that subtracts the 

mean from each value in the group. We start by 

creating a Spark DataFrame ‘df’ then we create a 

UDF where the inputs matches the Spark DataFrame 

schema (id,v) and a returned value as 

PandasUDFType.GROUPED_MAP Pandas type. 

Inside the the UDF we convert the pdf to a gdf 

(GPU DataFrame) so the execution of the mean will 

be carried out by the GPU. Seemingly the returned 

result is a Pandas DataFrame so the result can be 

shown as bellow. 
+---+----+ 

| id|   v| 

+---+----+ 

|  1|-0.5| 

|  1| 0.5| 

|  2|-3.0| 

|  2|-1.0| 

|  2| 4.0| 

+---+----+ 

4 EXPERIMENTS 

In our work, we use a docker container containing all 

the needed libraries. RAPIDS AI proposes different 

docker containers, we use the latest image tag 

“cuda9.2-runtime-ubuntu16.04” that comes with 

RAPIDS AI 0.6, CUDA 9.2 and a Jupyter notebook. 

We add to it Spark 2.4.3 that supports Apache Arrow 

Format. 

We run our code in a Jupyter notebook. It’s based 

on the Grouped Map Pandas UDF example we show 

in the section 3. It contains two functions, one that 

uses RAPIDS AI API to calculate the mean and 

subtracted it from each value in the group, and 

another function that does the same thing but uses 

PySpark native API instead.  

The system under test comprises of a BullSequana 

S800 server with 8x12 cores processors and 4 

terabytes (TB) RAM memory, that is a total of 96 

cores and 192 hardware threads, as hyperthreading is 

activated. The machine is coupled with 4 Tesla V100 

GPUs with 16 Gb of memory each. 

Our PySpark application is run with a parallelism 

of 40 tasks - where each task is run by a thread, 

launched in local mod with 40 GB Heap size. System 

metrics are gathered by means of a sar command.   
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Figure 4: Screenshot of nvidia-smi output. 

Only one GPU is used during our tests. Figure 4 

shows a screenshot of the nvidia-smi command 

output, that shows the GPU is used while executing 

the first function that implements RAPIDS AI API. 

 

Figure 5: CPU Load for the Grouped Map UDF example. 

The input data is generated locally using Spark. 

Figure 5 illustrates the CPU load while executing our 

application of a grouped map Pandas UDF over a 

vector of 800 million elements.  

The blue area of the graph shows CPU load while 

executing the first section of the code that uses 

RAPIDS AI API and the gray area shows CPU load 

when executing the second section that uses native 

PySpark API.  

We clearly distinguish that the CPU load is less 

important in the blue area, because tasks are offloaded 

to GPU when using RAPIDS AI API, whereas tasks 

are fully computed by the CPUs where native 

PySpark API is used.   

Figure 6 demonstrates how much speed up we get 

when using RAPIDS AI API with PySpark. We can 

go as high as 3 time faster with RAPIDS AI when 

using input data of 800 million elements. However, 

we can only benefit of speed up when there is enough 

data, so offloading tasks to GPU will not be 

significantly affected by the overhead of data transfer 

between CPU and GPU. Our experiments show that 

when using RAPIDS AI we get a speed up for input 

datasets of more than 500 million elements, whereas 

we get a slow down below. 

The results obtained here are bounded by the fact 

that our code is executed on a Jupyter notebook from 

a Docker container. We presume that more speed up 

can be achieved if the Jupyter notebook is bypassed. 

Speed up can also be more significant if executing 

more complex operations over larger datasets, so 

GPU power can be fully exploited and data transfer 

overhead between GPU and CPU will be negligible.   

 

Figure 6: Grouped map panda UDF example with different 

data size. 

5 CONCLUSION 

Big Data analytic workloads have become more and 

more demanding in terms of computational power. 

Thus, CPU-only systems can no longer handle 

efficiently the task. Especially that Moore’s law is 

now coming to an end. So, hardware acceleration 

using GPU becomes a key feature in modern 

computational systems. Spark, as the most used 

framework in Big Data, is a target for scaling up its 

working environment to the GPUs.  

RAPIDS AI might be a young project but it’s 

growing rapidly profiting from NVIDIA’s backup. 

RAPIDS AI cuML API contains a handful of machine 

learning algorithms, such as K-Means, NN, SGD and 

others… which makes a big asset for data scientist 

and data engineers. There is also a graph analytics 

API cuGraph containing a collection of graph 

analytics that process data found in a GPU 

DataFrame. All this makes RAPIDS AI an 

auspicious project that is well suited for bringing 

GPU capabilities to Apache Spark. 

Our work is a verification process to make sure 

that the connection between RAPIDS AI and Spark is 

possible, and delegating Spark tasks to GPU is within 

our reach. This however will in return open for us 

other possibilities to make Apache Spark capable of 

leveraging High-end servers such as BullSequana S 

coupled to GPU. Thus enabling to process large 

amount of data within a single system or few systems 

in less time than if using larger systems with CPUs 

only. Further work can be carried out to establish a 

comparison test between Spark ML lib and RAPIDS 
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AI cuML with Spark to elaborate on how much 

acceleration we can get and provide some insights on 

the benefits of using GPUs.  
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