
Of the Utmost Importance:
Resource Prioritization in HTTP/3 over QUIC

Robin Marx1, Tom De Decker1, Peter Quax1,2 and Wim Lamotte1

1Hasselt University – tUL – EDM, Diepenbeek, Belgium
2Flanders Make, Belgium

Keywords: Web Performance, Resource Prioritization, Bandwidth Distribution, Network Scheduling, Measurements.

Abstract: Not even five years after the standardization of HTTP/2, work is already well underway on HTTP/3. This
latest version is necessary to make optimal use of that other new and exiting protocol: QUIC. However, some
of QUIC’s unique characteristics make it challenging to keep HTTP/3’s functionalities on par with those of
HTTP/2. Especially the efforts on adapting the prioritization system, which governs how multiple resources
can be multiplexed on a single QUIC connection, have led to some difficult to answer questions. This paper
aims to help answer some of those questions by being the first to provide experimental evaluations and result
comparisons for 11 different possible HTTP/3 prioritization approaches in a variety of simulation settings. We
present some non-trivial insights, discuss advantages and disadvantages of various approaches, and provide
results-backed actionable advice to the standardization working group. We also help foster further experimen-
tation by contributing our complete HTTP/3 implementation, results dataset and custom visualizations to the
community.

1 INTRODUCTION

A revolution is coming to the internet in the form of
the nearly standardized transport-layer QUIC proto-
col (Langley, 2017). Sometimes called “TCP 2.0”,
QUIC combines over 30 years of practical inter-
net protocol experience into one neat package, using
UDP as a flexible substrate. QUIC re-imagines loss
detection and recovery, adds full transport-layer end-
to-end encryption, allows for 0-RTT overhead con-
nection setups and, of main importance to this work,
solves the TCP Head-Of-Line (HOL) blocking prob-
lem.

Some of TCP’s main strengths, namely reliability
and in-order delivery, can lead to severe performance
problems in the event of heavy jitter or packet loss
(Goel et al., 2017). This is because a TCP connec-
tion considers all data transmitted over it as a sin-
gle, opaque bytestream; it has no knowledge of a
higher-layer application protocol, such as the ubiqui-
tous HTTP. This is problematic if those application
layer protocols multiplex data from various, indepen-
dent resources on the single TCP connection. For ex-
ample, when loading a web page using the HTTP/2
(H2) protocol (RFC7540, 2015) we typically down-
load several separate resources at the same time (e.g.,
HTML, JavaScript (JS), images). As H2 uses a sin-

gle underlying TCP connection, data for these distinct
resources is scheduled and multiplexed onto this con-
nection, allowing them to share the available band-
width.

As such, if a TCP packet containing data for just
one of these resources is delayed or lost, there should
be no reason that succeeding packets containing data
for the other independent resources, can not simply
be processed by the H2 layer. However, this is not
what happens in practice. As TCP is unaware of
the various HTTP resources, if a packet is lost, sub-
sequent packets cannot be processed until a retrans-
mit of the lost packet arrives. This is called HOL-
blocking, see the top part of Figure 1. While this may
seem a mild issue, it has been shown to be one of
the major downsides of the H2 protocol running on
top of TCP (Goel et al., 2017). The key contribution
of QUIC in this area is that it moves this concept of
independent resources (more generally referred to as
‘streams’) away from the application level down into
the transport layer protocol. QUIC is inherently aware
of several streams being multiplexed on its concep-
tual single connection, and will not block data from
stream A or C if there is loss on stream B. Thus it
solves TCP’s HOL-blocking problem, see the bottom
part of Figure 1. It is important to note though, that
within a single resource stream, all data is still deliv-

130
Marx, R., De Decker, T., Quax, P. and Lamotte, W.
Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC.
DOI: 10.5220/0008191701300143
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 130-143
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

4 3 2 1

4 3 2 1
QUIC HTTP

Step 1: data is put on the wire

TCP HTTP

Step 2: packet 2 is lost

4 3 2 1

4 3 2 1
QUIC HTTP

TCP HTTP
43 1

43 1
QUIC HTTP

TCP HTTP

Step 3: packets 3 and 4 arrive

43

43
QUIC HTTP

TCP HTTP

Step 4: TCP suffers HOL-
blocking, QUIC does not

2'

2'

Stream A (e.g., HTML) Stream B (e.g., JavaScript) Stream C (e.g., CSS)Legend:

Figure 1: Head-Of-Line blocking in TCP vs QUIC. Lacking knowledge of the three independent streams, TCP is forced
to wait for the retransmit of packet 2 (2’). QUIC can instead pass packets 3 and 4 to HTTP immediately, where they are
processed before packet 2’.

ered in order and thus there is still HOL-blocking on
that level.

QUIC incorporating the concept of streams into its
transport layer design leaves H2 in a weird position,
as it also strongly defines stream semantics on the ap-
plication layer. Running H2 on QUIC directly without
changes would thus lead to two separate and compet-
ing multiplexers. As this can introduce much imple-
mentation complexity and inefficiencies, the choice
was made instead to define a new mapping of H2 onto
QUIC, which is now being called HTTP/3 (H3). De-
spite the higher version number, the intent is that H2
and H3 will exist side-by-side, the first over TCP, the
latter over QUIC. Currently, H3 is still just a rela-
tively straightforward mapping of H2 onto QUIC; the
main change is that all of H3’s stream-specific ameni-
ties have been removed in favor of QUIC’s streams.
However, this seemingly simple mapping introduces
some subtle issues, as several concepts in H2 rely on a
strict ordering between several control messages. Due
to QUIC stream data now potentially being passed
onto the H3 layer out-of-order, some H2 approaches
no longer hold and need to be revised. Main among
them is the prioritization setup, which orchestrates
the aforementioned stream data scheduling and mul-
tiplexing logic.

At the time of writing, QUIC and H3 are still be-
ing standardized1 within the dedicated IETF QUIC
working group. Recently, there have been many dis-
cussions on how to approach prioritization in H3.
This is only partly due to the out-of-order streams is-
sue though. Another important component is that sev-
eral implementations of H2’s prioritization approach
seem to severely underperform in real-world deploy-
ments (see Section 2.3). As H2’s prioritization system
was originally added without much practical experi-
ence or proof of validity, the working group is weary
of making the same mistake twice. It is torn between
wanting to retain as much consistency as possible be-
tween H3 and H2 on one hand, and attempting to fix

1tools.ietf.org/html/draft-ietf-quic-http

some of H2’s most glaring prioritization issues on the
other. This work explores both options. Firstly, we
explain the subtle issues and background underlying
the prioritization systems (Sections 2 and 3). Sec-
ondly, we compare different proposed approaches on
their various merits (Sections 3.3 and 4). Thirdly,
we perform experiments for 11 different prioritiza-
tion schemes on realistic websites in various condi-
tions (Section 5). Lastly, we make several action-
able recommendations to the wider QUIC commu-
nity in an in-depth discussion (Section 6). An ex-
tended version of this text, our source code, dataset,
results and visualizations are made publicly available
at https://h3.edm.uhasselt.be.

2 HTTP/2 PRIORITIZATION

2.1 Background: Web Page Loading

Web pages typically consist of different (types of)
resources (e.g., HTML, JavaScript (JS), CSS, font,
image files), which have very distinct characteristics
during the loading process. For example, HTML
can be parsed, processed and rendered incrementally.
This is different from JS and CSS files, which can be
parsed as data comes in but have to be fully down-
loaded to be executed and applied. Additionally, CSS
files are HTML render-blocking: the browser engine
cannot just continue rendering any HTML after a new
CSS file is included, as this CSS might impact what
that following HTML should look like. JS is even
worse; it is HTML parser-blocking, as it might pro-
grammatically change the HTML structure, removing
or adding elements. Consequently, JS and CSS files
referenced early in the HTML should be downloaded
as soon as possible.

Another issue is that not all the needed resources
are known up-front, as they are discovered incremen-
tally during the page load. Most are mentioned in the
HTML markup directly, but many (e.g., fonts, back-

Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC

131

ground images) are often imported from within CSS
or JS files, and are only discovered when those files
are fully executed.

A final aspect is that the user typically does not
get to see or interact with the full web page imme-
diately, as it often extends below the current screen
height. The immediately visible part is typically
called “Above The Fold” (ATF). As such, resources
that are ATF are conceptually more important than
those “Below The Fold”. Thus, resources that appear
first in the HTML (and their direct children) are usu-
ally considered the most important ones.

Combining all these points, it is clear that web
pages can have very complex resource interdependen-
cies. Individual resource importance depends on its
type, precise function, (potentially) location within
the HTML and how many children it will end up in-
cluding. As much of this information is unknown to
the browser before the page load starts, user agents
typically resort to complex heuristics for determining
relative resource importance in practice. To compli-
cate things even more, all browser implementations
employ (subtly) different heuristics, see (Wang et al.,
2013) and (Wijnants et al., 2018).

2.2 Dependency Tree: What and Why?

This idea that the client should use heuristics to steer
the server’s resource scheduling underpins H2’s prior-
itization system. H2 provides the client with so called
PRIORITY frames, control messages that it can use
to communicate its desired per-resource scheduling
setup to the server. The practical system by which
this scheduling is accomplished on the server is in the
form of a “dependency tree”, in which each individ-
ual resource stream is represented as a single node.
Available bandwidth is then distributed across these
nodes by means of two simple rules: parents are trans-
ferred in full before their children, and sibling nodes
share bandwidth among each other based on assigned
weights. For example, given a sibling A with weight
128 (out of a maximum of 256) and a sibling B with
weight 64, A will receive 2/3 of the available band-
width, ideally resulting in the following scheduled
packet sequence: AABAABAAB. . . .

As such, the browsers have to map their inter-
nal heuristics onto this type of tree structure. While
the tree setup is tremendously flexible and allows for
an abundance of approaches (Section 4.1), it is non-
trivial to define a good mapping for the heuristics in
practice. For example, it is unclear up-front what
this dependency tree should look like, as its form can
change frequently during the page load. If newly dis-
covered resources are of a higher priority than other,

B C

Make D
dependent on A

A

B C

A

B C

A

D

D OR

exclusively non-exclusively

Figure 2: HTTP/2 dependencies: exclusivity.

Make E
dependent on C

OR

If C was removed

B C

A

D
B C

A

D

EIf C is
still there

B

A

D E

Figure 3: HTTP/2 behaviour when referenced parent does
not exist. E is added as a sibling of D on the root, (uninten-
tionally) sharing its bandwidth.

previously requested resources (which already have a
node in the tree), the browser might wish to initiate
a re-prioritization. This means the new, high-priority
resource node needs to somehow be added to the tree
so that it will (immediately) receive more bandwidth
than the already present, but lower-priority resource
nodes. As such, the tree’s structure can become very
volatile and complex.

H2 adds to this complexity by allowing various
ways for clients to (re-)prioritize resources. Firstly,
nodes can be added as children to a parent in two
ways: exclusively and non-exclusively. As can be
seen from Figure 2, non-exclusive addition is the ‘nor-
mal’, less-invasive way of adding nodes to the tree.
Exclusive addition however, changes all of the po-
tential siblings beneath a parent to instead become
children of the newly added node itself. This allows
aggressive (re-)prioritization, by displacing (large)
groups of nodes in a single operation. Secondly, as
nodes can depend upon other nodes, it is also possi-
ble to group nodes together under conceptual ‘place-
holder’ nodes: these do not necessarily represent a
real resource stream, but rather just serve as anchors
for other streams.

Now, whenever the server has the ability to send
packets, it re-processes the dependency tree, deter-
mining which resource data should be put on the wire.
Depending on the implementation, the frequent (re-
)processing of the tree to determine the proper next
resource can be non-trivial and computationally ex-
pensive. Additionally, there is the memory cost of
maintaining the tree structure. To combat this, servers
are allowed to remove nodes from the tree once their
resource is transmitted fully. However, this can lead
to problems if the client attempts to add a new node to
a parent node that was already removed. At this point,
H2 specifies that the server should fall back to the
conceptual root of the tree as a parent instead. This
can unintentionally promote the importance of a re-

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

132

source, as it is now a sibling of more important nodes
under the root. See for example Figure 3, where on
the right side E should conceptually have been added
as a child of D instead. Note that while in this ex-
ample there is only one mis-prioritized node (E), its
possible that there are many at the same time, exacer-
bating the problem.

Given this complexity, one might start to wonder
why we decided it was the client that had to deter-
mine the resource priorities in the first place. Could
we not make a similar argument that the server (usu-
ally) already has all the resources and thus has a good
overview from the start? We could also say that
the server is controlled by the web developers, who
have knowledge of the intended resource priorities
up front. While these seem like solid arguments, in
practice there are many reasons why this is typically
much easier said than done. Still, to support such
use cases, H2 also allows the server to simply ignore
the client’s PRIORITY messages and instead decide
upon the proper resource scheduling itself. As such,
our road to flexibility seems complete, being able to
choose either client-side or server-side prioritization
and scheduling.

One might make the argument that this flexible
setup is too complex just to support the requirements
of the web page loading use case. Indeed, as we will
see in Section 3, there are several proposals for H3
that dramatically simplify this setup (e.g., by not con-
structing a dynamic tree), while still supporting fine-
grained bandwidth distribution. Why then was this
complex system chosen in the first place? As with
many protocol design decisions, a lot of the finer de-
tails are lost in the sands of time. From what we
were able to piece together from various H2 mail-
ing list threads2 and conversations with original con-
tributors, it seems that it was mainly meant to sup-
port more advanced use cases for cross-connection
prioritization. For example, some parties envisioned
multiplexing multiple (H2) connections onto a sin-
gle H2 connection. This is for example interesting
in the case of a general purpose proxy/VPN server
or a load balancing/edge server in a Content Delivery
Network (CDN). Another use case was for browsers
to have multiple tabs/windows open of the same web
site, which can share the same, underlying H2 con-
nection.

Surely, you might think, if the dependency tree
scheduling was added to H2 to support these use
cases, they must be implemented and deployed at
scale? Sadly, this is not the case. To the best of our
knowledge and as indicated to us by many of the in-
volved companies, no browsers, CDNs, proxy or web

2lists.w3.org/Public/ietf-http-wg/2019AprJun/0113.html

servers implement these advanced use cases today. In
fact, even the simpler use cases of fine-grained band-
width sharing for a single web page load are barely
utilized or improperly implemented and deployed in
practice.

2.3 Related Work: Theory vs Practice

(Wijnants et al., 2018) looked at how modern
browsers utilize H2’s prioritization system in prac-
tice. They found that out of 10 investigated browsers,
only Mozilla’s Firefox constructs a non-trivial depen-
dency tree and prioritization scheme, using multiple
levels of placeholders and complex weight distribu-
tions (see Figure 9). Google’s Chrome instead opts
for a purely sequential model where all resources are
added to a parent exclusively. Apple’s Safari goes
the other route with a purely interleaved model where
all resources are added non-exclusively to the root,
using different weights to achieve proper schedul-
ing. Microsoft’s Edge browser (before its move to the
Chromium engine) neglected to specify any priorities
at all, relying on H2’s default behaviour of adding all
the resources to the root with a weight of 16 (leading
to a Round-Robin bandwidth distribution). They re-
viewed these various approaches, and concluded that
H2’s default Round-Robin behaviour is actually the
worst case scenario (see also Section 3.3), while the
other browsers’ approaches are also suboptimal.

Next, Patrick Meenan and Andy Davies inves-
tigated how well various H2 implementations actu-
ally (re-)prioritize resources in practice (Davies and
Meenan, 2018). They first request some low-priority
resources. After a short delay, they then request a
few high priority resources, expecting them to re-
prioritize the dependency tree and be delivered as
soon as possible. They find that out of 35 tested CDN
services and H2 web server implementations, only
9 actually properly support (re-)prioritization. They
posit that these problems arise for various reasons.
Firstly, some implementations simply have faulty
H2 implementations or servers do not adhere to the
client’s PRIORITY messages. Secondly, implemen-
tation inefficiencies cause data to be mis-prioritized3.
Thirdly, they identify various forms of ‘bufferbloat’ as
the main culprit. If deployments use too large buffers,
the risk exists that these buffers will be filled with
low-priority data before the high-priority requests ar-
rive. It is often difficult or impossible to clear these
buffers to re-fill them with high-priority data when
needed. (Patrick Meenan, 2018) suggests limiting the
application-level buffers’ size, and to use the BBR

3blog.cloudflare.com/nginx-structural-enhancements-for-
http-2-performance

Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC

133

congestion control mechanism as solutions. Finally,
akin to (Wijnants et al., 2018), they indicate that the
browsers’ heuristics and their mapping to the H2 de-
pendency mechanism are not optimal, and propose a
better scheme in (Patrick Meenan, 2019a), which we
will refer to as bucket later.

Next to this H2 specific work, there are also con-
tributions looking at optimal browser heuristics and
prioritization in general. The WProf paper (Wang
et al., 2013) looks at resource dependencies and their
impact on total page load performance. They instru-
ment the browser to determine the ‘critical resource
path’ for a page load and use that to up-front deter-
mine optimal resource ordering. Similarly, Polaris
(Netravali et al., 2016), Shandian (Wang et al., 2016)
and Vroom (Ruamviboonsuk et al., 2017) collect very
detailed loading information (down to the level of
the JS memory heap) and construct complex resource
transmission and computation scheduling schemes.
Polaris and Shandian claim speedups of 34% - 50%
faster page load times at the median, while Vroom
even reports a flat median 5s load time reduction.
However, while their approaches are perfect candi-
dates for H2’s server-side prioritization, none of these
implementations choose that option. Instead they use
custom, JS-based schedulers or H2 Server Push.

At this time Cloudflare is the only commercial
party experimenting with advanced server-side H2
prioritization at scale, for which they employ the
bucket scheme from (Patrick Meenan, 2019a). This
scheme aligns more closely with their server imple-
mentation and is preferred over the web browser’s
PRIORITY messages. They claim improvements of
up to 50% for the original Edge browser. Overall, we
can conclude that advanced server-side prioritization
remains relatively unproven in practice.

3 HTTP/3 PRIORITIZATION

While the tenet of the QUIC working group has (so
far) mainly been to keep H3 as close to H2 as pos-
sible, lately there have been discussions on whether
to introduce major changes into the prioritization sys-
tem. Firstly, the dependency tree setup is quite com-
plex and little of its full potential is being used in the
wild. Secondly, due to QUIC’s independent streams,
the system can not be ported over to H3 in a triv-
ial manner. The working group has long struggled
with this latter aspect and has only very recently taken
steps to solve some of the issues that arise from the
QUIC mapping. We will now first discuss which
problems were originally identified and which solu-

Make B exclusively
dependent on A

A

C

A

OR

B arrives first,
is supplanted by C

Make C exclusively
dependent on A B

B

A

C
C arrives first,

is supplanted by B

Figure 4: Exclusive dependency end state in HTTP/3 for
two concurrent operations is non-deterministic.

IP A : Make A
dependent on X

X B

B arrives
before A

ROOT

A

X

B

ROOT

IP A
arrivesIP B : Make B

dependent on A

IP BHEADERS
B

IP AHEADERS
ASt

re
am A

St
re
am B

C
on
tro
l

St
re
am

Figure 5: HTTP/3 before draft-22: B ‘steals’ bandwidth
from X. (IP: Initial PRIORITY message).

IP A : Make A
dependent on X

X B

Headers arrive
before IPs

ROOT

A

X

B

ROOT

IP B : Make B
dependent on A

HEADERS
B

HEADERS
ASt

re
am A

St
re
am B

C
on
tro
l

St
re
am IP AIP B

ORPHAN

A
IP A

arrives

Figure 6: HTTP/3 after draft-22: A and B no longer steal
bandwidth from X and are sent only once X has finished.

tions where included up until draft version 204 of the
H3 Internet-Draft document. Then we look at how
and why those solutions were changed in draft ver-
sion 22 in July 20195 (due to a mistake in the process,
draft version 21 was never officially published).

3.1 Before Draft-22

One of the major problems in bringing H2 prioritiza-
tion to H3 is in the concept of exclusive dependen-
cies, which can move multiple nodes in the tree (see
Section 2, Figure 2). This approach relies heavily on
the correct ordering of PRIORITY messages. As they
are sent on the resource stream they are meant to pro-
vide priority information on, this can lead to prob-
lems. Due to packet loss or jitter on the network,
in QUIC these PRIORITY messages sent on different
streams can now arrive out-of-order, leading to non-
deterministic dependency tree layouts, see Figure 4.
The original “solution” to this was simply to remove
exclusive dependencies from the protocol.

However, the non-deterministic ordering of QUIC
streams leads to other problems. For example, let’s
say A and B are requested immediately after each
other, with B indicating A as its parent. If B arrives
before A, the server does not yet have A in its depen-
dency tree. It then has two options: either append B

4tools.ietf.org/html/draft-ietf-quic-http-20
5tools.ietf.org/html/draft-ietf-quic-http-22

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

134

to the root of the tree (default fallback), or create a
“non-initialized” node for A and hope its PRIORITY
message will arrive soon. However, even in the sec-
ond case, A would have to be added to the root, since
we don’t know its real parent yet. This leads to the
problem discussed in 2.2 and Figure 3, where these
new streams potentially compete for bandwidth with
streams of much higher importance, see Figure 5. The
“solution” for this problem was to simply ignore it, as
in this case A should in fact be arriving pretty soon.
However, note that in the case of a packet loss on
a long-fat network (high bandwidth, high latency) a
retransmit of A’s PRIORITY message could keep B
mis-prioritized for over 1 Round-Trip-Time (RTT). If
B is relatively small and the connection’s congestion
window is large, B could potentially be fully transmit-
ted or put into buffers before A’s retransmitted request
arrives.

In order to partially alleviate this problem in the
case of updates to the priority of existing nodes (an
additional PRIORITY message is sent), H3 uses a
separate “control stream”. As this is a single, concep-
tual stream, all messages sent on it are fully-ordered,
and the updates are applied in the expected order.
As such, in draft-20, normal H3 modus operandi is
to send the initial PRIORITY message as the very
first data on the resource stream itself, and subsequent
PRIORITY messages for that resource on the separate
control stream. However, this does not completely
eliminate all edge cases. As a potentially better solu-
tion, the text also allows implementations to send the
initial PRIORITY message on the control stream (see
the leftmost part of Figure 6). While this provides
deterministic tree buildup, it again suffers from the
same problem as above: if the request stream’s HTTP
headers arrive before the initial PRIORITY message
is received on the control stream, the request stream
is (temporarily) added as direct child of the root node.

In an attempt to prevent these issues from hap-
pening in practice, the concept of placeholder nodes
was revisited. In H2, servers could potentially remove
the placeholders from the tree prematurely, as they
were merely simulated using idle resource streams.
As such, in H3 these nodes are explicitly made sepa-
rate entities in the tree. They are created up-front at
the start of the connection to create a harness for the
prioritization setup, and are never removed. As such,
if resource nodes only depend on placeholders, those
parents will always be in the tree and these issues do
not occur. However, other edge cases still remained.

3.2 Draft-22

Given the suboptimal state of prioritization in draft-
20, working group members had their choice of two
main directions to continue in: Either attempt to
move the design even closer to H2 (e.g., by re-
introducing exclusive priorities) or introduce more
impactful changes to the setup (e.g., moving away
from the dependency tree setup). As proof was not
yet available that the second option would lead to
performance on par with or better than the H2 sta-
tus quo, for the time being, the working group de-
cided to bring H3’s prioritization system closer to
the original H2 setup. This was accomplished by
two main changes: Firstly, all PRIORITY messages
are now required to be sent on the control stream6,
where before the Initial PRIORITY messages could
be sent on the resource stream itself. As now all PRI-
ORITY altering information is fully ordered again,
this allows for the re-introduction of exclusive de-
pendencies into the specification7. The downside of
this change however is that, as before, problems can
arise if PRIORITY messages on the control stream
are lost: unprioritized request streams are added di-
rectly to the root with a weight of 16 (the default H2
fallback behaviour), where they can unintentionally
“steal” bandwidth from higher-priority streams.

The best solution to that issue was deemed to
change this default fallback behaviour. Partly in
thanks to the early results of this work, the concept
of an “orphan placeholder” was introduced8 to help
resolve this issue. This special purpose placeholder
replaces the dependency tree root as the default par-
ent for unprioritized nodes, but is not part of the nor-
mal dependency tree and has special semantics. The
text states that children of the Orphan Placeholder can
only be allotted bandwidth if none of the streams in
the main dependency tree can make progress (or there
are no more open prioritized streams under the root).
This means that unprioritized streams will never get to
send data as long as there is data available for priori-
tized streams, thus preventing the unintentional band-
width “stealing” (Figure 6).

3.3 Alternatives for HTTP/3 Priorities

Next to H3 draft-22, there also existed several propos-
als for H3 that aim to introduce alternative schemes to
the one defined in H2. Several of these flowed from
the aforementioned insight that a Round-Robin (RR)
bandwidth distribution scheme is undesirable in most
6github.com/quicwg/base-drafts/issues/2754
7github.com/quicwg/base-drafts/pull/2781
8github.com/quicwg/base-drafts/pull/2690

Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC

135

Priority

63

(critical)

. . .

. . .

31

(normal)

0

(idle)

Concurrency: 3 Concurrency: 2 Concurrency: 1

prefetch

Concurrency: 3 Concurrency: 2 Concurrency: 1

CSS

script

image

preload font video

otherasync script

HTML

Concurrency: 3 Concurrency: 2 Concurrency: 1

critical CSS

critical script

visible imagefont

other critical

.
.

.
.

.
.

Figure 7: Proposal for HTTP/3 prioritization based on pri-
ority buckets, from (Patrick Meenan, 2019b).

web page loading use cases (Wijnants et al., 2018)
and (Patrick Meenan, 2019a). This is mainly because,
as discussed in Section 2.1, for many high-priority re-
sources (e.g., JS, CSS, fonts) it is imperative that they
are downloaded in full as soon as possible. As dis-
cussed in detail in Section 5 and as can be seen at
the top of Figure 8, RR bandwidth interleaving leads
to resource downloads being completed very late. As
such a more sequential scheduler, which for exam-
ple sends a single resource at a time, is a much better
approach for many important resources, while a RR
scheme is more apt for lower-priority resources that
can be incrementally used (e.g., progressive images).
Since at the time, H3 did not support exclusive ad-
dition of nodes anymore, this type of sequential pri-
oritization was more difficult to obtain, and so many
of the proposals focus on ways to make this easier to
accomplish. A second main issue was the potential
overhead of placeholder nodes. As they are created
up-front and cannot be removed while the connection
remains alive, an attacker who sets up a large amount
of placeholders could potentially execute a memory-
based Denial of Service attack on the server. As a
response, servers can limit the amount of placehold-
ers a client is allowed to open. The question then be-
comes: how many is enough9? Some schemes might
require large amounts of placeholders for legitimate
reasons. As such, various proposals attempt to limit
the amount of placeholders needed10 or eliminate the
need for them altogether. Thirdly, many feel H2’s
scheme is overly complex and would prefer to see
simpler schemes. Finally, a combination of client and
server-side scheduling, where both parties contribute
importance information at the same time, might have
some merits.

9github.com/quicwg/base-drafts/issues/2734
10github.com/quicwg/base-drafts/pull/2761

The first proposal, termed bucket by us, is one
by Patrick Meenan from Cloudflare (Patrick Meenan,
2019b). He proposes to drop the dependency tree
setup and replace it with a simpler scheme of “priority
buckets”, see Figure 7. Buckets with a higher number
are processed in full before buckets with a lower num-
ber. Within the buckets, there are three concurrency
levels. Level three, called “Exclusive Sequential” pre-
empts the other two and sends its contents sequen-
tially by stream ID (streams that are opened earlier
are sent first). Levels two (“Shared Sequential”) and
one (“Shared”) are each given 50% of the available
bandwidth if level three is empty. Within level two,
streams are again handled sequentially by lowest re-
source ID, while within level one, they follow a fair
Round-Robin scheduler. As can be seen in Figure 7,
this allows a nice and fine-grained mapping to typi-
cal web page asset loading needs. This scheme was
deployed for H2 as well on Cloudflare’s edge servers
and they claim impressive speedups (Patrick Meenan,
2019a). Overall, this scheme is also easier to imple-
ment: all that is needed is a single byte per resource
stream to carry the priority and concurrency numbers.
Resources can easily be moved around by updating
these numbers.

A second proposal by Ian Swett from Google11

called “strict priorities” attempts to integrate the se-
mantics of Patrick Meenan’s bucket proposal with the
existing priority tree setup. Nodes can now have both
a priority value and a weight, and siblings with a
higher priority are sent before others. By disallow-
ing streams to depend on each other (i.e., streams can
only have placeholders as parents), this proposal also
side-steps many of the issues discussed before, while
allowing sequential sending without needing exclu-
sive dependencies. With this scheme, as with the pre-
vious one, placeholders could also be bypassed com-
pletely. While we could describe this proposal as a
“best of both worlds” endeavour, it is also relatively
complex.

Thirdly, our own proposal12 called “zeroweight”
has an aim to stay quite close to the default H2 setup.
The main change is that nodes can now have a weight
between 0 and 255 (where before it was in the range
1-256). Nodes with weight 0 and 255 exhibit spe-
cial behaviour, akin to Meenan’s sequential concur-
rency levels: siblings with weight 255 are processed
first, in full and sequentially in lowest stream ID or-
der. Then, all siblings with weight between 254 and
1 are processed in a weighted Round-Robin fashion
(assigned bandwidth relative to their weights, see Sec-
tion 2.2). Finally, if all other siblings are processed,

11github.com/quicwg/base-drafts/pull/2700
12github.com/quicwg/base-drafts/pull/2723

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

136

do zero-weighted nodes get bandwidth, again sequen-
tially in the lowest stream ID order. Note that draft-
22’s Orphan Placeholder could thus be implemented
as a zero-weighted placeholder under the root. The
resulting tree can be viewed in Figure 10. While this
proposal requires just a few semantic changes to the
H2 system, and is thus easy to integrate in existing
implementations, it does represent a potentially large
placeholder overhead. To get fully similar behaviour
to the previous two proposals, one would need three
placeholders per priority bucket (i.e., nine for the ex-
ample in Figure 7), as opposed to zero in their pro-
posals. However, a simpler practical setup in the zero
weighting scheme, such as the one used in our evalu-
ations and in Figure 10, requires no placeholders.

Note that (our implementations of) both bucket
and zeroweight rely, at least in part, on some addi-
tional inside knowledge that is typically not found
in browser heuristics. For example, Figure 7 men-
tions a “visible image” while in practice, browsers
have no way of definitively knowing which images
will eventually be visible or not. As such, these
schemes partially emulate the previously mentioned
case of a combination of client and server-side pri-
orities, where the web developer explicitly indicates
some up-front priorities. Since the other discussed
schemes do not utilize this additional metadata, this
will in part explain the seemingly best-in-class per-
formance of bucket and zeroweight in our results.

Various other setups were proposed, among which
there was one suggesting to go back to the prioriti-
zation scheme of the SPDY protocol (SPDY, 2014).
SPDY was the predecessor of H2 and had just “eight
levels of strict priorities”. As Chrome’s default H2 be-
haviour can be seen as a sequential version of SPDY’s
setup, for this work we have also created a Round-
Robin version of SPDY’s general concept, termed
spdyrr.

It should be noted that none of these proposals in-
troduce radical new ideas. The basic concepts remain
those of sequential versus Round-Robin. All the dis-
cussed schemes mainly differ in how easy it is to im-
plement them, in their runtime overhead, their support
of resource re-prioritization and in how fine-grainedly
they allow resource importance to be specified. Even
so, it is not immediately apparent that all these op-
tions will provide similar or better performance than
H2’s status quo. In fact, it is not even fully clear if
the current H2 prioritization schemes of the various
browsers are optimal. The results of (Wijnants et al.,
2018) at least seem to indicate that many browsers
use clearly sub par prioritization schemes. Given this
complex situation, the working group deemed that
working H3 implementations and evaluations of the

various schemes were required, which this work aims
to provide.

4 EXPERIMENTAL SETUP

4.1 Prioritization Schemes

For this work, we have implemented and evaluated
11 different prioritization schemes. Their main ap-
proaches are described in Table 1 and Figure 8 shows
to what kind of data scheduling they lead in prac-
tice. For example, as expected the Round-Robin rr
clearly has a very spread out way of scheduling data
for the various streams. The firefox, p+, s+ and
spdyrr schemes are quite similar, but include sub-
tle differences. Looking at the results for bucket we
see that the HTML resource (and the font that is
directly dependent on it) are delayed considerably,
which seems non-ideal. As such, we propose our own
variation, bucket HTML, which gives the HTML re-
source a higher priority. For this test page it dramat-
ically shortens the HTML and font file’s Time-To-
Completion (TTC). Note that we did not implement
Ian Swett’s proposal, as it should function identically
to bucket in our evaluation.

4.2 Evaluation Parameters

For easiest comparison with other work, we test the
11 prioritization schemes on the test corpus of (Wij-
nants et al., 2018). This corpus consists of 41 real web
pages from the Alexa top 1000 and Moz top 500 lists.
The corpus represents a good mix of simple and more
complex pages (10-214 resources), as well as small
and larger byte sizes (29KB-7400KB). See the origi-
nal paper for more details. We also add two synthetic
test pages: one of our own design that tests all types
of heuristics modern browses apply, and the one used
by (Davies and Meenan, 2018) (Section 2.3, Figure
8). These two pages can be seen as “stress-tests” and
are designed to highlight prioritization issues and be-
haviour. The full corpus is downloaded to disk and all
files are served from a single H3+QUIC server.

For this QUIC server, we choose the open source
TypeScript and NodeJS-based Quicker implementa-
tion (Robin Marx, Tom De Decker, 2019). We
have exhaustively tested the implementation to make
sure any inefficiencies stemming from the underlying
JavaScript engine did not lead to performance issues.
We choose Quicker because the high level language
makes it easy to add support for H3 and to implement
our various prioritization schemes. We test the valid-

Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC

137

rr
wrr
fifo

dfifo
firefox

p+
s+

spdyrr
bucket

bucket HTML
zeroweight

bucket HTML 280K
bucket HTML 1000K

ATF resource index.html top.js hidden1.jpg hidden2.jpg hidden3.jpg background.png font.woff2 hero.jpg bottom.js

Figure 8: Scheduling behaviour of various prioritization schemes for a single, synthetic test page from (Davies and Meenan,
2018). Each individual colored rectangle represents a single QUIC packet of 1400 bytes. Packets arrive at the client from left
to right. The bottom two lines show results with non-zero send buffers. Resources in the legend are listed in request-order
from left to right.

LEADERS
w=201

CSS
ID=2
w=32

FONT
ID=3
w=42

XHR
ID=5
w=32

IMG
ID=4
w=22

SCRIPT
ID=1
w=32

UNBLOCKED
w=101

BACKGROUND
w=1

FOLLOWERS
w=1

URGENT
w=240

SPECULATIVE
w=1

ASYNC
SCRIPT
ID=6
w=32

ROOT

HTML
ID=0
w=255

UNKNOWN
ID=7
w=16

Figure 9: Firefox’s HTTP/2 dependency tree.

ROOT

CSS
ID=2
w=255

FONT
ID=3
w=16

ASYNC
SCRIPT
ID=6
w=24

IMG
ID=4
w=8

XHR
ID=5
w=8

UNKNOWN
ID=7
w=0

Sent first

Sent second Sent third

These two parts
individually act

as fifo

This part on
itself acts as wrr

HTML
ID=0
w=255

SCRIPT
ID=1
w=255

Figure 10: Tree for our HTTP/3 zero weighting proposal.

ity of our H3+QUIC implementation by achieving full
interoperability with seven other implementations.

On the client side, there is currently sadly no
browser available that supports H3. This also prevents
us from doing qualitative user studies at this time. As
such, we use the Quicker command line client instead.
However, we do closely emulate the browser’s ex-
pected behaviour by using the open source WProfX
tool13, an easy to use implementation of the con-

13wprofx.cs.stonybrook.edu

cepts from the original WProf paper (Wang et al.,
2013). We host the test corpus on a local opti-
mized webserver (H2O) and load the pages via the
Google Chrome-integrated WProfX software. From
this load, the tool can extract detailed resource inter-
dependencies (e.g., was an image referenced in the
HTML directly or from inside a CSS file) and request
timing information. Our H3 client then performs a
“smart play-back” of the WProfX recording, taking
into account resource dependencies (e.g., if the cur-
rent prioritization scheme causes a CSS file to be de-
layed, the images or fonts it references will also be
delayed accordingly). The tool also indicates which
resources are on the “critical path” and are thus most
important to a fast page load.

None of the open source QUIC stacks (including
Quicker) currently has a performant congestion con-
trol implementation that has been shown to perform
on par with best in class TCP implementations. As
we want to focus on the raw performance of the pri-
oritization schemes and the order in which data is put
on the wire, we do not want to run the risk of ineffi-
cient congestion controllers skewing our results. We
instead manually tune the QUIC server to send out a
single packet of 1400 bytes containing response data
of exactly one resource stream every 10ms (i.e., sim-
ulating a steadily paced congestion controller). As
such, our results represent an “ideal” upper bound of
how well prioritization could perform in the absence
of network congestion and retransmits.

While we abstract away from fine-grained con-
gestion control, we do simulate other behaviours.
Firstly, we experiment with the effect of small and
larger application-level send buffers, to determine if
we see the same detrimental “bufferbloat” effects as
in (Patrick Meenan, 2018). Secondly, to illustrate
QUIC’s resilience to HOL-blocking, we add a mode

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

138

Table 1: Prioritization schemes. The top seven are from
browser H2 implementations and (Wijnants et al., 2018).
The bottom four are proposals for H3.

Name Description

rr
(Edge)

Fully fair Round-Robin. Each re-
source gets equal bandwidth.

wrr
(Safari)

Weighted Round-Robin. Resources
are interleaved non-equally, based on
weights.

fifo First-In, First-Out. Fully sequential,
lower stream IDs are sent in full first.

dfifo
(Chrome)

Dynamic fifo. Sequential, but higher
stream IDs of higher priority can inter-
rupt lower stream IDs.

firefox Complex tree-based setup with multi-
ple weighted placeholders and wrr for
placeholder children. See Figure 9.

p+ Parallel+. Combines dfifo for high-
priority with separate wrr for medium
and low-priority resources (Wijnants
et al., 2018).

s+ Serial+. Combines dfifo for high
and medium-priority with firefox for
low-priority resources (Wijnants et al.,
2018).

spdyrr Five strict priority sequential buckets,
each performing wrr on their children.
The Round-Robin counterpart of dfifo.

bucket Patrick Meenan’s proposal, Figure 7.
bucket
HTML

Our variation on bucket (HTML con-
tent is in bucket 63 instead of 31 in
Figure 7).

zeroweight Our proposal, Figure 10.

to Quicker that simulates TCP’s behaviour (i.e., pack-
ets are only processed in-order). As we do not use
congestion control or retransmits, we instead employ
network jitter rather than packet loss to demonstrate
how QUIC profits from having independent streams
(Section 5.2).

Due to our stable experimental setup we can not
simply use, for example, the total web page down-
load time as our metric, as these values are all identi-
cal per tested page across the different schemes. This
can easily be seen by understanding that each scheme
still needs to send the exact same amount of data;
it just does so in a different order. Instead, we will
mainly look at so-called “Above The Fold” (ATF) re-
sources. As discussed in Section 2.1, these resources
are either on the browser’s critical render path or con-
tribute substantially to what the user sees first (e.g.,
large hero images). We combine WProfX’s critical
path calculations with a few manual additions to ar-

0

0.2

0.4

0.6

0.8

1

1.2

1
0

1
5

0

2
9

0

4
3

0

5
7

0

7
1

0

8
5

0

9
9

0

1
1

3
0

1
2

7
0

1
4

1
0

1
5

5
0

1
6

9
0

1
8

3
0

1
9

7
0

2
1

1
0

2
2

5
0

2
3

9
0

2
5

3
0

2
6

7
0

2
8

1
0

%
 o

f
A

TF
 b

yt
es

 d
o

w
n

lo
ad

ed

Time (ms)

bucket rr

BI = 21589

BI = 1506

Figure 11: ByteIndex (BI) for bucket and rr schemes.
Bucket is clearly faster for ATF resources. Looking at these
schemes in Figure 8, it is immediately clear why.

rive at an appropriate ATF resource set for each test
page. This ATF set typically contains the HTML, im-
portant JS and CSS, all fonts and prominent ‘hero im-
ages’. Non-hero (e.g., background) images that are
rendered above the fold are consciously not included
in this set (e.g., see “background.png” in Figure 8), as
they should have less of an impact on user experience.

However, we also cannot directly use, for exam-
ple, the mean TTC for these ATF resources as our
metric. For example, receiving most of the ATF files
very early and then receiving just a single one late is
generally considered better for user experience than
receiving all together at an intermediate point, though
both situations would give a similar mean TTC. To
get a better idea of the progress over time, we use
the ByteIndex (BI) web performance metric (Bocchi
et al., 2016). This metric estimates (visual) loading
progress over time by looking at the TTCs of (visually
impactful, e.g., ATF) resources. At a fixed time inter-
val of 100ms we look at which of the resources under
consideration have been fully downloaded. The BI is
then defined as taking the integral of the area above
the curve we get by plotting this download progress,
see Figure 11. Consequently as with normal web page
load times, lower BI values are better.

Practically, we instrument Quicker to log the full
H3 page loads in the proposed qlog standard logging
format14 for QUIC and H3. We then write custom
tools to extract the needed BI values from these logs,
as well as new visualizations to display and verify our
results (Figures 8, 12 and 13).

5 RESULTS

5.1 Prioritization Schemes

Our main results are presented in Figure 12 and Ta-
ble 2. Like (Wijnants et al., 2018), we remark that

14github.com/quiclog/internet-drafts

Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC

139

Table 2: Mean speedup ratios compared to rr per other pri-
oritization scheme from Figure 12. Higher mean values are
better. #PH = number of placeholders used in this scheme.

Scheme #PH Mean
All

Mean
ATF

Mean
1000K

wrr 0 1.05 1.49 1.28
fifo 0 1.27 1.93 1.57

dfifo 5 1.27 2.30 1.72
firefox 6 1.07 1.22 1.25

p+ 3 1.17 2.20 1.64
s+ 8 1.14 1.45 1.56

spdyrr 5 1.14 1.96 1.57
bucket 0 1.20 2.13 1.82
bucket
HTML

0 1.20 2.49 1.83

zeroweight 0 1.15 2.8 1.9

the rr scheme is by far the worst performing of all
tested setups, with almost no data points performing
worse. As such, we take rr as the baseline and present
the other measurements in terms of a relative speedup
to that baseline result. As such, a speedup of x2 for
scheme Y means that, for a baseline rr BI of 1500,
Y achieves a BI of 750. Symmetrically, a slowdown
of /3 indicates that Y had a BI of 4500. We have
tested the schemes with application-level send buffers
of 14KB, 280KB and 1000KB, but found that these
had relatively small effects until the buffer grows sub-
stantially large. As such, we focus on results for send
buffers of 1000KB here.

Our main results are presented in Figure 12 and
Table 2. Like (Wijnants et al., 2018), we remark that
the rr scheme is by far the worst performing of all
tested setups, with almost no data points performing
worse. As such, we take rr as the baseline and present
the other measurements in terms of a relative speedup
to that baseline result. As such, a speedup of x2 for
scheme Y means that, for a baseline rr BI of 1500,
Y achieves a BI of 750. Symmetrically, a slowdown
of /3 indicates that Y had a BI of 4500. We have
tested the schemes with application-level send buffers
of 14KB, 280KB and 1000KB, but found that these
had relatively small effects until the buffer grows sub-
stantially large. As such, we focus on results for send
buffers of 1000KB here.

A few things are immediately clear from Figure
12: a) Almost all data points are indeed faster than rr.
b) With the exception of a few bad performers (i.e.,
firefox, wrr, s+), all schemes are able to provide im-
pressive gains of x3.5 to x5+ speedup factors for in-
dividual web pages. c) Medium sized pages seem to
profit less from prioritization overall, with smaller and
larger pages showing larger relative advancements. d)

Of the well-performing schemes, there is not a clear,
single winner or a scheme that consistently improves
heavily upon rr for all tested pages. e) The impact
of the 1000KB send buffer is visible, but less impres-
sively so than the slowdowns of /2 reported in (Patrick
Meenan, 2018).

When looking at the mean ratios in Table 2, we
see similar trends. We have highlighted some of the
the highest and lowest values for each column. Taking
into account all page assets, even though the speedups
are all modest, it is clear that fifo is a far better default
choice than rr. Looking at ATF resources only, it is
remarkable how badly some schemes implemented by
browsers perform (i.e., firefox and Safari’s wrr), while
Chrome’s dfifo is almost optimal, after bucket HTML
and zeroweight. Though all schemes suffer from
larger send buffers, bucket HTML and zeroweight
again come out on top. As mentioned before, the good
performance of these latter two schemes can be par-
tially attributed to giving hero images a higher server-
side priority, highlighting that indeed, there might be
merit in combining client and server-side directives.

While the reduced observed impact of larger send
buffers might seem unexpected and contrary to the
findings of (Patrick Meenan, 2018), it has a sim-
ple explanation in two parts. Firstly, larger send
buffers mainly impact the ability of the scheme to re-
prioritize its scheduler in response to late discovered
but important resources. In our data set however, we
seem to have few web pages that contain such highly
important late discoveries. Indeed, the test page
showing the most remarkable slowdown from the
larger send buffers was that of (Davies and Meenan,
2018) themselves (dropping from x9 speedup with-
out send buffer to x3 with 1000K). Secondly, as the
size of the send buffer grows, the resulting behaviour
more and more becomes that of fifo, as requested re-
sources can be put into the buffer in their entirety im-
mediately. This is clearly visible in Figure 8. As we
have seen, fifo performs well overall, so even larger
send buffers will also keep performing relatively well.
It is our opinion that the results seen by Davies and
Meenan for faulty prioritizations in the wild might
be less due to “bufferbloat” and more due to miscon-
figured or badly implemented H2 servers, or that the
observed impact is enlarged due to their choice of a
highly tuned test page.

To dig a bit deeper into some of the outliers, we
discuss two case studies. The first is outlined in black
on Figure 12. This web page suffers a slowdown
of about /3 for three separate schemes, yet sees ma-
jor improvements of x4 in others. This specific page
has relatively few resources with highly specific roles.
Most importantly, it features a single, page-spanning

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

140

fa
ct

or
fa

ct
or

1

x2

x3

x4

x5

sp
ee

du
p

/3

/2

sl
ow

do
w

n

baseline
(rr)

All ATF 1000K

wrr

All ATF 1000K

fifo

All ATF 1000K

dfifo

All ATF 1000K

firefox

All ATF 1000K

p+

All ATF 1000K

s+

All ATF 1000K

spdyrr

All ATF 1000K

bucket

All ATF 1000K

bucket HTML

All ATF 1000K

zeroweight

= case study 1

= case study 2

Small webpage < 500KB Medium webpage > 500KB, < 1000KB Large webpage > 1000KB All = BI ALL, no send buffer ATF = BI ATF, no send buffer 1000K = BI ATF, 1000KB send buffer

Figure 12: ByteIndex (BI) speedup and slowdown ratios for 10 prioritization schemes compared to the baseline rr scheme.
Each datapoint represents a single web page, split out by total page byte size. Higher y values are better.

hero image that is relatively small in byte size. Next to
this, it includes several very large JS files which, even
though included in the HTML <head>, are marked as
“defer”. This means they will only execute once the
full page has finished downloading. As such, the hero
image is marked as an ATF resource, but the JS files
are not. As the image is discovered after the JS files,
it is stuck behind them in fifo. For firefox (and sim-
ilarly s+), the image is in the “FOLLOWERS” cat-
egory (see Figure 9), while the JS files are in “UN-
BLOCKED”. While the group of the image receives
about twice the bandwidth as the JS (via the parent
“LEADERS” placeholder), the image is competing
with a critical CSS in the leaders, thus being delayed.
For the speedups, the schemes either know there is a
hero image (bucket (HTML) and zeroweight), allow
the smaller hero image to make fast progress via a
(semi) Round-Robin scheme or, in the case of dfifo,
accurately assign low priority to the JS files.

The second case study is outlined in blue on Fig-
ure 12. This web page interestingly has a few in-
stances where the 1000k send buffer outperforms
the normal ATF case. This is because this page’s
HTML file is comparatively very large (167KB). As
explained before, a large send buffer exhibits fifo-
alike behaviour. Thus, for schemes where normally
the large HTML would be competing with other re-
sources (e.g., pmeenan and firefox), it now gets to
fill the send buffers in its entirety, completing much
faster. Where in the previous case study Round-
Robin-alike schemes lead to smaller resources com-
pleting faster, here the large HTML file is instead
smeared out over a longer period of time due to in-
terleaving with the other (ATF) resources, leading to
relatively low gains for RR-alike schemes.

Finally, looking at Table 2, we can see that the
schemes using the most placeholders are partially

also those that showed sub par performance in vari-
ous conditions. Contrarily, the two best performing
schemes both use zero placeholders. With regards to
overall implementation complexity, bucket (HTML)
is the only scheme we actually implemented com-
pletely separately and this was indeed far easier than
the complex dependency tree implementation. How-
ever, defining new schemes such as zeroweighting or
spdyrr for the dependency tree was also relatively
straightforward.

5.2 QUIC’s HOL-blocking Resilience

As mentioned in Section 4, we also try to deter-
mine the practical impact of QUIC’s absence of HOL-
blocking. We induce the HOL-blocking by introduc-
ing jitter for semi-random packets: about one packet
in four is delayed until 1-3 other packets have been
sent. For normal QUIC (jitter only), the 1-3 later
packets can just be processed and passed on to H3
upon arrival. To determine how much this matters in
practice, we implement a HOL-blocking mode in the
Quicker client. In this mode, the 1-3 later packets
are instead kept in a buffer until the delayed packet
arrives, simulating normal TCP behaviour. Partial re-
sults for both approaches can be seen in Figure 13.

In opposition to Figure 8 we can now clearly see
empty areas where no packets arrived. Packets that ar-
rive together, or that are HOL-blocked and then deliv-
ered to the H3 layer together, are drawn stacked verti-
cally. Comparing the two rr setups, we can clearly see
the beneficial impact of QUIC’s independent streams:
rr jitter only has far fewer stacked packets (maximum
of two) than rr HOL-blocking, as packets containing
independent stream data can be processed directly. In
opposition, rr HOL-blocking shows various instances
of data from (critical) resources being blocked behind

Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC

141

rr
jitter only

rr
HOL-blocking

fifo
jitter only

fifo
HOL-blocking

Figure 13: Scheduling behaviour under jitter and HOL-blocking conditions for the same test page as Figure 8. Packets that
are stacked vertically are passed from QUIC to HTTP/3 at the same time. The color legend and other semantics are the same
as Figure 8.

packets of other (non-critical) streams, leading to fre-
quent stacks of four packets.

However, we do not see similar HOL-blocking
resilience for the fifo scheme. The reason for this
is simple: while QUIC removes inter-stream HOL-
blocking, data within a single stream still needs to be
delivered in-order. As in fifo there is always only a
single stream in progress at a time, this stream will al-
ways HOL-block itself, undoing one of QUIC’s main
promised improvements.

6 DISCUSSION & CONCLUSION

Looking back on some of the questions the QUIC
working group had about changing H3’s prioritization
system in Section 3.3, we believe we can now answer
most of them.

Firstly, it is indeed a good goal to make sequential
behaviour easier to accomplish. As was shown time
and time again in our results in Section 5, more se-
quential schemes generally outperform more Round-
Robin-alike schemes. As such, we encourage the
working group to adopt fifo as the default fallback be-
haviour, instead of rr.

Secondly, we immediately need to nuance our
previous point in the case of networks with high
packet loss or jitter. There the Round-Robin-alike
schemes might actually outperform the more sequen-
tial schemes when there are many parallel streams,
benefitting fully from QUIC’s HOL-blocking re-
silience (Section 5.2). More experiments on actual
lossy networks with functioning congestion control
are needed however, to confirm this hypothesis.

Thirdly, it is perfectly possible to switch to a sim-
plified prioritization framework while still fully sup-
porting the web browsing use case and without losing
performance. Schemes such as bucket HTML and ze-
roweight are easy to implement performantly, do not
require placeholders and seem to provide good base-
line performance for most sites.

Yet, we have a problem with the “most” in the
previous sentence. As our results and case studies
have also clearly shown, no single scheme performs
well for all types of web pages. This is a conclusion
we and related work keep repeating: it is almost im-
possible to come up with a perfect general purpose
scheme. This is why some systems (e.g., (Netravali
et al., 2016)) aim to automatically determine the ex-
act optimal scheme and why efforts such as “Prior-
ity Hints”15 give developers options to manually indi-
cate resource priorities. However, we feel both these
complex automated systems and manual intervention
approaches require a lot of effort and do not scale
well. In summary, we want to get better performance
for individual web pages than default heuristics can
provide, but are unwilling to pay high automation or
manual labor costs.

So, Fourthly, we propose a different way forward.
We suggest that all H3 clients should ideally imple-
ment and support several more than one prioritization
scheme at the same time. Developers can then use
a low-overhead, easily automated “optimal scheme
finder” test to find the scheme that performs best for
their specific page. They simply need to load their
page a few times per scheme using any compliant
H3 client. The optimal scheme(s) can then be stored
server-side and communicated to new clients during
their H3 connection setup. While the chosen sched-
uler might be less optimal than what a more advanced
system could provide, it should perform better than
general purpose heuristics, treading an attractive mid-
dle ground. Additionally, this approach is still com-
plementary to manual interventions such as priority
hints. The ideal combination with a good default
client-side scheme (such as bucket HTML) ensures
that even web servers that do not specify a preferred
scheme fall back to decent behaviour. This option
would require the working group to provide guidance
as to which schemes clients should support and how
to best tweak heuristics to them.

15github.com/WICG/priority-hints

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

142

Finally, note that if we indeed want clients to sup-
port a wide array of schemes, this will probably only
be possible using a flexible underlying system, such
as the dependency tree setup. The high flexibility
is probably well worth the added complexity in the
long run. Additionally, as most H2 implementations
already support this more flexible base framework,
our proposed approach of multiple schemes per client
could be recommended and implemented for existing
H2 stacks as well. Note that this proposal does limit
the options for the combination of client and server-
side prioritization. As discussed in Section 3.3, in
such a flexible system it is difficult to infer the client’s
semantics, especially if it is now choosing between
multiple schemes. However, we feel that this is an in-
herent problem of how we communicate priority in-
formation from the client to the server at the moment.
To make proper client and server-side combinations
possible, the client would need to send additional
metadata (e.g., if a resource is critical, render/parser-
blocking, can be processed incrementally, etc. (Sec-
tion 2.1)), rather than/next to building a dependency
tree directly. As this is a heavy departure from H2,
this approach is unlikely to make it into H3, but it
is worth further investigation. For now, we remark
that server-side directives can also be communicated
to the client, allowing it to apply them properly at
client-side while building the tree, as opposed to the
server changing the tree. This is the route taken by
the aforementioned Priority Hints proposal, and fits
nicely with our proposal of having the server send the
client its preferred scheme.

As our general conclusion, we recommend to the
QUIC working group to remain with the existing H2
dependency tree system and to possibly even extend
it with new capabilities. The provided flexibility is,
in our opinion, well worth the additional implementa-
tion complexity. Future work can assess QUIC’s ac-
tual HOL-blocking resilience on lossy networks, look
at the dynamics of cross-connection or multipath pri-
oritization, discuss new forms of PRIORITY meta-
data from client to server and implement a proof-of-
concept of the proposed ‘optimal scheme finder’.

ACKNOWLEDGEMENTS

Robin Marx is a SB PhD fellow at FWO, Research
Foundation Flanders, #1S02717N.

REFERENCES

Bocchi, E., De Cicco, L., and Rossi, D. (2016). Measur-
ing the quality of experience of web users. In Pro-
ceedings of the 2016 Workshop on QoE-based Anal-
ysis of Data Communication Networks, Internet-QoE
’16, pages 37–42. ACM.

Davies, A. and Meenan, P. (2018). HTTP/2 priorities test
page. Online, https://github.com/andydavies/http2-
prioritization-issues.

Goel, U., Steiner, M., Wittie, M. P., Ludin, S., and Flack,
M. (2017). Domain-sharding for faster http/2 in lossy
cellular networks. arXiv preprint arXiv:1707.05836.

Langley, A. e. a. (2017). The quic transport protocol: De-
sign and internet-scale deployment. In Proceedings
of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages 183–
196. ACM.

Netravali, R., Goyal, A., Mickens, J., and Balakrishnan,
H. (2016). Polaris: Faster Page Loads Using Fine-
grained Dependency Tracking. In Proceedings of the
13th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’16, pages 123–136.

Patrick Meenan (2018). Optimizing HTTP/2 prioritiza-
tion with BBR and tcp notsent lowat. Online, https://
blog.cloudflare.com/http-2-prioritization-with-nginx.

Patrick Meenan (2019a). HTTP/2 priorities test
page. Online, https://blog.cloudflare.com/better-http-
2-prioritization-for-a-faster-web.

Patrick Meenan (2019b). HTTP/3 prioritization pro-
posal. Online, https://github.com/pmeenan/http3-
prioritization-proposal.

RFC7540 (2015). HTTP/2. Online, https://tools.ietf.org/
html/rfc7540.

Robin Marx, Tom De Decker (2019). Quicker: TypeScript
QUIC and HTTP/3 implementation. Online, https://
github.com/rmarx/quicker.

Ruamviboonsuk, V., Netravali, R., Uluyol, M., and Mad-
hyastha, H. V. (2017). Vroom: Accelerating the mo-
bile web with server-aided dependency resolution. In
Proc. of the ACM SIG on Data Communication, pages
390–403. ACM.

SPDY (2014). SPDY Protocol. Online, https://
www.chromium.org/spdy/spdy-protocol.

Wang, X. S., Balasubramanian, A., Krishnamurthy, A., and
Wetherall, D. (2013). Demystifying Page Load Per-
formance with WProf. In Proceedings of the USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI’13, pages 473–486.

Wang, X. S., Krishnamurthy, A., and Wetherall, D. (2016).
Speeding Up Web Page Loads with Shandian. In
Proc. of the 13th USENIX Conference on Networked
Systems Design and Implementation, NSDI’16, pages
109–122.

Wijnants, M., Marx, R., Quax, P., and Lamotte, W. (2018).
Http/2 prioritization and its impact on web perfor-
mance. In Proceedings of the 2018 World Wide Web
Conference, WWW ’18, pages 1755–1764. ACM.

Of the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC

143

