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Abstract:  The information related to the impact of multi-user BCI on cortical activity is still relatively limited. This 

ongoing study performed a competitive multi-user BCI gaming that is based on alpha band operant 

conditioning and explored the brain activity and connectivity during the most, and the least successful gaming 

runs. Ten healthy adults were involved in three days of gaming experiments in pairs. Multi-channel paired t-

test found a significant decrease (p<0.05) of absolute alpha power in the frontal left hemisphere channels in 

the dominant players during the most successful gaming compared to the baseline of the same group. This 

decrease is associated with the frontal alpha asymmetry (FAA) that occurred in the leading players. 

Connectivity estimation via partial directed coherence (PDC) was also performed, showing the deactivation 

of brain networks during the successful gaming of the dominant players compared to their baseline which 

might indicate the “networks switching” mechanism from resting state to a more-demanding cognitive task. 

Different baseline connectivity patterns were also found in the group of dominant players compared to the 

group of non-dominant players, suggesting the possibility of using baseline connectivity information as a 

predictor of gaming performance.  

1 INTRODUCTION 

The development of BCI technology has increased 

the interest of BCI application for entertainment 

purpose, commonly formed as BCI games. Gaming is 

a highly stimulating activity that induces different 

kinds of cognitive responses, making it very 

challenging, yet very appealing for BCI application.  

More advanced BCI-gaming technology initiated 

the emerging of multi-user BCI games. The general 

requirement of a multi-user BCI has been described 

as the involvement of two or more users with 

integrated brain activity to a BCI application (Nijholt, 

2015; Nijholt & Gürkök, 2013). Social interaction 

tasks (i.e. cooperation and competition) are ideally 

implemented in multi-user BCI paradigms (Bonnet, 

Lotte & Lécuyer, 2013; Gürkök et al., 2013; Nijholt 

& Gürkök, 2013), as it has been widely used in the 

classic video gaming.  

Multi-user BCI development is a complex 

process. Several factors composed of technical 

challenges like the BCI architecture design and the 

classification accuracy to behavioral factors like the 

effect of social interaction on BCI performance 

require special attention. Multiple studies around 

interactive multi-player BCI gaming have been 

performed, mainly to test the BCI classification 

accuracy using different types of control, e.g.  Steady-

State Evoked Potential (SSVEP) (Cruz et al., 2017; 

Gürkök et al., 2013), P300 (Korczowski et al., 2016; 

Korczowski, Congedo & Jutten, 2015), motor 

imagery (MI) (Bonnet et al., 2013), and the 

combination of different paradigms such as SSVEP/ 

P300 with alpha power (Mühl et al., 2009). Some of 

these studies have also reported the impact of gaming 

interaction on the quality of BCI performance. For 

example, Bonnet et al. using BrainArena, an MI-

based multi-user BCI game, which was presented as 

a simple ball game, found that social interaction is not 

necessarily compensating the quality of BCI 

performance. Additionally, compared to the single 

player setup, they reported that the users prefer multi-

player gaming due to the fun and motivational factors 

(Bonnet et al., 2013).  

However, contradicting results were found by 

another study that investigated the different types of 

game control (BCI control and classic mouse control) 

and their implications on co-experience during a 

collaborative BCI game called “Mind The Sheep!” 

(Gürkök et al., 2013). They found that when using 

BCI control, co-experience was reduced by 
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collaborative interaction due to the users’ concern of 

losing control if they were paying too much attention 

to collaboration. 

In the field of multi-user BCI gaming, the amount 

of information related to the neurological impact of 

social interaction is still relatively limited. A study by 

Toppi et al. has explored the cortical changes and 

effective connectivity in the brain of pairs of pilots 

during a flight scenario inside the flight simulator 

(Toppi et al., 2016). They found that in theta band (3-

7 Hz), there is a significant influence (p<0.05) 

between the flight phase factor (take-off, cruising, 

and landing) on connections’ density and efficiency, 

and the involvement of frontal networks of all the 

pilots. They also reported a significant increase 

(p<0.05) of theta power in the frontal and parieto-

occipital areas of the co-pilots during take-off, and in 

the frontal area of both pilots during landing. A 

significant increase of parietal alpha power was also 

found only in co-pilots during landing (the captain led 

take-off and the co-pilot led the landing due to a 

deliberate electrical failure applied to the captain’s 

instrumentation). Although physical control was 

applied instead of BCI control, this study has 

successfully demonstrated the impact of interaction 

and the role changes on the cortical activity during a 

cooperative task that requires a high-degree of 

concentration, which can be a useful reference for 

interactive BCI gaming development, especially 

when applying high concentration task.  

The aim of the current study is to analyse the 

electrophysiological changes of the brain during a 

competitive multi-user BCI gaming that is based on 

the alpha band, non-verbalised operant conditioning. 

We analysed the cortical changes by measuring 

relative alpha power during gaming and resting states. 

Neuronal connectivity was estimated in both gaming 

and resting states, specifically during the most and 

least successful gaming runs. The following sections 

of this paper will be organised as: the materials and 

methods, the results, the discussion, and the 

conclusion.  

2 MATERIALS AND METHODS 

2.1 Experimental Setup 

Ten healthy able-bodied adults (mean age 26.9±4.14, 

6 females and 4 males) participated in EEG 

experiments where they were sorted into five pairs. 

They signed the written consent form prior to the 

experiments. Ethical permission was granted by the 

University’s College Ethical Committee.  

The application consisted of three main 

components: MATLAB functions (MATLAB 2015a, 

The Mathworks, Inc., USA), a Simulink model and a 

JAVA (version 1.8.0) Graphical User Interface 

(GUI). MATLAB worked as an entrance system for 

the application and served as the connector and 

controller of the Simulink model and JAVA GUI.  

The JAVA GUI shown in Figure 1 displays two 

bars at each side of the screen and a seesaw in 

between. Each bar represents the fluctuation of the 

percentage relative alpha power (RA) to the power of 

wider frequency band of 2-30 Hz, with a moving 

average window of 0.5 second provided from the 

electrode Pz in both players. Scoring was achieved 

when one player managed to increase the power 

≥10% than the other to make their side of seesaw tilt 

down, and hold it for at least 1 second. The bar 

changes colour from blue to green whenever players 

gain 1 point. Prior to gaming experiment, baseline RA 

was measured from each player to set individual 

thresholds, which were later used to calculate a 

normalising coefficient (NC). NC was applied to the 

input signal generated by the player with a higher 

threshold in the pair. This was done in order to 

equalise the initial conditions. Furthermore, these 

coefficients were acquired by dividing the RA of the 

player with the lower threshold (RALow) by that of the 

player with the higher threshold (RAHigh), explained 

as follows: 

NC = RALow / RAHigh  (1) 

This approach is expected to help the non-dominant 

player to maintain their control over their bar even if 

their opponent has significantly higher baseline alpha 

power.  

EEG signal was recorded by a g.USBamp (g.tec 

medical engineering GmbH., Austria) amplifier. The 

EEG electrodes arrangement was set following the 

standardised 10-20 EEG electrode placement system 

(Homan, Herman & Purdy, 1987). The impedance 

was kept below 5 kΩ. Linked ear reference was used 

and FCz was used as the ground. Sampling frequency 

was set to 256 Hz. Online band-pass filter was set 

between 0.5 and 60 Hz (and a notch filter at 50 Hz) 

using 5th order infinite impulse response (IIR) digital 

Butterworth filter within the g.USBamp.  

During the EEG experiments, two players were 

seated next to each other in front of one screen. They 

were instructed to compete with each other by 

increasing the power bar located on their side of the 

screen and to ‘push down’ the seesaw such that it 

would be heavier towards their side. 

Each pair performed three experimental sessions 

on three separate days, where each session consisted 
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of six sub-sessions (5 minutes each). Pre- and post-

gaming eyes-open baseline were recorded in a relaxed 

state for 2 minutes in every session. For the first two 

sessions, EEG was recorded from only Pz electrode, 

and for the third session, 32 and 16 electrodes were 

used by the dominant (D) and the non-dominant (ND) 

group of players respectively, where the dominance 

was decided based on the highest average scoring 

performance in the previous two sessions. 

 

Figure 1: Competitive gaming interface. Users have to 

increase their power bar ≥10% than the other for at least 1 

second to score 1 point. 

2.2 Data Analysis 

All EEG data were analysed using EEGLAB (UC San 

Diego, SCCN, USA) toolbox in MATLAB. All EEG 

data were band-pass filtered between 2 and 30 Hz. 

For single-channel data, visual inspection and manual 

noise removal were performed, and for multi-channel 

data, independent component decomposition was 

performed by using an Independent Component 

Analysis (ICA) algorithm implemented in EEGLAB 

for further noise removal.  

The average power spectrum analysis was 

estimated by using Welch’s method (Welch, 1967), 

with a 50% overlap of 4 second long windows. 

Individual RA at Pz was analysed at a group and 

individual level. Spatial distribution of power in all 

conditions was estimated based on multi-channel 

EEG recording. Paired t-test analysis was applied to 

multi-channel EEG data to test statistical significance 

in absolute power between conditions.  

PDC, a multivariate measurement of directional 

causality in the frequency domain, was calculated to 

estimate brain connectivity. PDC from i to j can be 

defined as: 

𝜋𝑖𝑗(𝑓) =
𝐴𝑖𝑗(𝑓)

√𝑎𝑗
∗(𝑓)𝑎𝑗(𝑓)

 
 (2) 

Where 𝐴𝑖𝑗(𝑓) is the i,j-th element of A(f), a matrix of 

frequency domain transformed model coefficient, and 

𝑎𝑗(𝑓) is the j-th column of matrix A(f) (Baccalá & 

Sameshima, 2001). PDC values were measured from 

10 representative electrodes and the significant PDC 

values were estimated by using asymptotic statistic (p 

< 0.05) and False Discovery Rate (FDR) correction (p 

< 0.05) was applied for multiple comparisons.  

3 RESULTS 

Scoring results were used to measure the BCI 

performance of the users. From all three sessions (in 

a total of 30 gaming sub-sessions per session for all 5 

pairs), on average, group D won all the time in the 

first and second session and won only 80% (24 sub-

sessions) in the third session (group ND won 6 sub-

sessions). Results in Figure 2 show the average 

percentage of individual gaming RA along with the 

average scoring performance, from all sessions. The 

bars with an asterisk represent the players with higher 

baseline RA, where NC was applied to their RA 

during gaming (these players received feedback of 

their normalised RA instead of their real RA). Our 

results suggest that higher baseline RA does not 

always reflect better performance. Players with lower 

baseline RA can still win the game.  It also shows that 

daily adjustment of the baseline RA was necessary, as 

in some pairs, different players had larger/smaller 

baseline RA on different days. 

In multi-channel data, two gaming conditions 

were selected based on the highest/lowest scores of 

the last session. Table 1 shows the scores of the 

highest and the lowest scoring gaming sub-sessions in 

both groups during the last experimental session. 

Based on this measure, the multi-channel analysis 

was grouped into the highest scoring D, lowest 

scoring D, highest scoring ND, and lowest scoring 

ND. We then categorised highest scoring D as “the 

most successful gaming” and the lowest scoring ND 

as “the least successful gaming”.  

Paired t-test (p<0.05) of the multi-channel data 

across subjects (FDR correction applied) found 

significant decrease of absolute alpha power only in 

the most successful gaming compared to their 

baseline, specifically in the frontal electrodes of the 

left hemisphere (FP1, AF3, FC5, and FC3), as seen in 

Figure 3. There is no statistical significance found in 

the theta and beta bands in all conditions and groups, 

showing the selectivity of EEG power modulation in 

the alpha band only. Although there is no significant 

increase found on the training electrode, Figure 3 
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shows that spatially source of high alpha was reduced 

around Pz during successful gaming.  

Figure 4 shows the estimated PDC in the alpha 

band, which reflects the connections among networks 

during baseline of both groups, and during the most 

successful gaming condition, highest scoring D (red 

square), and its counterpart- the other player on that 

particular session, and during the least successful 

gaming, lowest scoring ND (blue square), and its 
counterpart. Ten electrodes covering four brain 

cortical areas were chosen as the representative nodes 

(i.e., F3, Fz, F4, C3, Cz, C4, P3, Pz, P4 and Oz). Our 

observations found higher connectivity during 

baseline in group D (players with higher baseline 

RA), which are indicated by the higher estimated 

PDC values and the more complex connected 

networks, in contrast, the baseline of the group with 

lower RA (Figure 4 top right) shows relatively lower 

estimated PDC values and less connected networks. 

Table 1: The highest scoring (Hi) and the lowest scoring 

(Lo) gaming sub-sessions (SS) in both groups.  

Pair  D ND 

Hi Lo Hi Lo 

1 Score 149 134 6 1 

 SS 3 6 5 1 

2 Score 114 54 96 38 

 SS 2 4 4 2 

3 Score 105 76 61 33 

 SS 3 5 4 3 

4 Score 86 50 72 50 

 SS 4 3 5 4 

5 Score 139 105 38 17 

 SS 3 5 2 1 

During the most successful gaming (red square), 

our results show that the connectivity is decreasing 

(from baseline state) in terms of the PDC values and 

the number of network connections, and the 

remaining networks from baseline are found around 

the frontal electrodes. The ND counterpart of the most 

successful gaming shows increased connectivity 

around frontal and central areas, specifically in the 

left hemisphere (F3 ↔ Fz and C3 ↔ Cz) with an 

emerging connection from C3 to P3 compared to their 

baseline state. Similar to their counterparts, occipital 

connectivity is decreasing compared to baseline. This 

ND group is just the counterpart of the most 

successful gaming, not necessarily depicting the 

highest scoring condition for the group ND.  

For the least successful gaming (blue square), 

compared to their baseline, the number of 

connections found are low, with the only strong 

remaining connection found from F3 to Fz. The D 

counterpart of the least successful gaming, shows 

higher PDC values in the parieto-occipital 

connectivity, compared to their baseline and the 

highest scoring D. In contrast to the most successful 

gaming, group D of this particular condition shows 

more complex connectivity, reflecting that this is not 

their successful gaming performance, despite still 

dominating group ND during gaming.  

 

Figure 2: (a) Mean and standard deviation of individual 

gaming RA (%) at Pz from all sessions. The bars with 

asterisks show normalised RA, which used as the feedback 

to the players with higher baseline RA, and the bars without 

asterisks show real RA. (b) Mean and standard deviation of 

scores from all users from all sub-sessions.   

 

Figure 3: Paired t-test analysis shows a significant decrease 

of alpha in some frontal electrodes during the highest 

scoring gaming sub-sessions compared to baseline before 

gaming for group D.  
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Figure 4: PDC estimation results show connectivity in the 

alpha band in ten electrodes during baseline (top) and the 

highest scoring D (red square) and its counterpart 

representing the most successful gaming (middle), and the 

lowest scoring ND (blue square) and its counterpart 

(bottom).  

4 DISCUSSION 

The present study aimed to examine the effect of 

competitive gaming on brain cortical activity and 

neuronal connectivity. The results from the average 

of the individual gaming RA and the average scoring 

suggest that higher average RA (both in baseline and 

during gaming) does not directly produce higher 

scores. We found a case where the winning player had 

a lower average RA during gaming. One reason for 

this is that during gaming, players with higher 

baseline RA received feedback on normalised, i.e. 

lower RA than their original RA. In order to score, 

timing is essential, as someone can only score if they 

manage to hold their bar higher for at least 1 second. 

Thus, in this case, the losing player was not able to 

sustain high alpha power for a relatively long period, 

though on average, their RA might be high. BCI 

control requires skill and training is necessary to help 

the users obtaining and maintaining that skill. In this 

setup, the players were not only expected just to 

increase their RA, but also to control its duration and 

to play based on the opponent’s feedback which is 

changing over time.  

Our multi-channel spectral analysis shows a 

significant decrease of frontal alpha power during the 

most successful gaming performed by the dominant 

players. It has been known that naturally, alpha power 

tends to decrease during task-engagement (Bazanova 

& Vernon, 2014) and frontal alpha suppression has 

been reported during interactive synchronized finger-

tapping task of two subjects, particularly stronger in 

the leading subjects, reflecting their higher cognitive 

investment during the synchronized action 

(Konvalinka et al., 2014). However, in our results, 

significant activation only occurred in one side of the 

hemisphere, indicating that this suppression might be 

related to the frontal alpha asymmetry (FAA) which 

is defined as the different frontal alpha activity 

between hemispheres (Davidson et al., 1990). FAA 

has been associated with the motivation of 

approaching and withdrawing behavior, to be 

specific, if the left hemisphere is more activated, then 

it is associated with approaching behavior rather than 

withdrawing behavior (Coan & Allen, 2004), thus our 

results might reflect the motivation to be engaged in 

the task by the winning players. Furthermore, left 

hemisphere activation in a social setting has been 

associated with unsocial and anti-social behavior 

(Hecht, 2014), which is in line with our competitive 

setting, where the players were expected to play 

against each other.  

Connectivity estimation results in the alpha band 

during successful gaming have demonstrated the 

connectivity pattern changes, which consisted of the 

deactivation of several network connections from 

resting state to gaming performance. Previous 

observations of the changing connectivity pattern 

between resting state and cognitive task, have 

indicated the involvement of three different brain 

networks such as the default mode network (DMN), 

the central executive network (CEN), and the salience 

network (SN) (Goulden et al., 2014; Seeley et al., 

2007; Sridharan, Levitin & Menon, 2008). The DMN 

has been defined as a group of networks which is 

found to be more active when the task-engagement is 

absent whereas the CEN is a group of network that is 

activated when the brain is engaged in a specific 

mental task (Greicius et al., 2003; Raichle et al., 2001; 

Seeley et al., 2007). The SN, which comprised of the 

ventrolateral prefrontal cortex, fronto-insular cortex, 

and anterior cingulate cortex, is known as the 

mediator network that helps the network switching 

between task-free and task-engagement states, 

between the DMN and the CEN (Goulden et al., 

2014). An alpha neurofeedback training was reported 
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increasing the SN connectivity, where this increased 

connectivity was also found to be negatively 

correlated with mind-wandering task and resting 

alpha rhythm (Ros et al., 2013), two conditions which 

activate the DMN (Neuner et al., 2014; Simon & 

Engström, 2015).  

Our connectivity results also show different 

connectivity patterns during baseline in different 

groups. This difference might reflect the possibility 

of using resting state connectivity to predict gaming 

performance, where the similar idea has been 

proposed in predicting the neurofeedback training 

response in individuals with anxiety (Scheinost et al., 

2014).  

In order to obtain more detailed connectivity 

information, especially regarding the pattern changes 

between the three major networks, more specific and 

larger number of electrodes should be chosen for 

connectivity analysis. Larger number of subjects and 

different range of frequency bands are also required 

to explore the different impact of interactive BCI 

gaming in different frequency bands. An equal 

number of electrodes for both players should be used 

for the last gaming session to avoid bias by the 

more/less dominant players.  

5 CONCLUSIONS 

Our study introduced a multi-user competitive BCI 

game that is based on alpha operant conditioning. We 

reported the preliminary results of the cortical 

changes and connectivity from the most successful 

gaming. Further development of this study will 

include more participants and other social interaction 

settings (i.e., collaborative), in order to explore the 

brain activity and connectivity during the different 

interaction tasks.  
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