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Abstract: Sub-pixel objects are defined as objects which due to their size and due to the resolution of the camera oc-
cupy a fraction of a pixel or partially span adjacent pixels. Unsupervised detection of sub-pixel objects can be
highly useful in areas such as medical imaging, and surveillance, to name a few. Hyper-spectral images offer
extensive intensity information by describing a scene at hundreds and even thousands of wavelengths. This
information can be utilized to obtain better sub-pixel detection results compared to those that are obtained us-
ing RGB images. Usually, only a small number of wavelengths contain the information that is required for the
detection. Furthermore, the intensity images of many wavelengths are noisy and contain very little informa-
tion. Accordingly, hyper-spectral images must be pre-processed first in order to extract the information that is
needed for the sub-pixel detection. This extraction process produces an image where each pixel is represented
by a small number of features which allows the application of fast and efficient detection algorithms. In this
paper we propose the Diffusion Bases (DB) dimensionality reduction algorithm in order to derive the essential
features for the sub-pixel detection. The effectiveness of the DB algorithm facilitates the application of a very
simple algorithm for the detection of sub-pixel objects in the feature space. The proposed approach does not
assume any distribution of the background pixels. We demonstrate the proposed framework for the detection
of cardboard objects in airborne hyper-spectral images of a desert terrain.

1 INTRODUCTION

Sub-pixel objects appear in images due to their rela-
tive small size compared to the resolution of the cam-
era and the camera’s distance from the objects. This is
commonly found in images of areas taken from high-
altitude cameras.

For example, in rescue missions of people lost in
open areas a camera is mounted on an airplane to
record images of the searched area. These images
are then analyzed by real-time object detection algo-
rithms. Due to the time-critical nature of such situ-
ations, large areas need to be covered quickly which
can be achieved by flying a rescue plane at a high alti-
tude. However, the higher the plane flies, the smaller
the objects appear in the images which may cause the
searched objects to occupy only a fraction of a pixel.
Thus, fast algorithms for the detection of sub-pixel
objects are required in such scenarios. Hyper-spectral
cameras can assist the detection of sub-pixel objects.
Such cameras capture an image in the visible spec-

trum as well as the invisible spectrum i.e. the infra-
red and ultra-violet spectrum sub-ranges. Body heat,
for example, can only be seen in the infra-red range.
Detection algorithms can combine the infra-red infor-
mation with the visible information to produce fast
and accurate detection results.

Unfortunately, processing large scale hyper-
spectral images incurs a computational cost that is
too high for most applications due to the high num-
ber of wavelengths. This is commonly known as the
curse of dimensionality. Furthermore, hyper-spectral
images usually contain noise due to poor lighting con-
ditions and physical conditions at the time the images
were taken. Hyper-spectral images also contain re-
dundant information since the number of wavelengths
is much higher than the actual degrees of freedom of
the data. Consider for example a task that separates
green objects from blue objects using an off-the-shelf
digital camera. In this case, the camera will produce,
in addition to the red and blue channels, a red channel,
which is unnecessary for this task. This phenomenon
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is usually unavoidable since general purpose cameras
are used. Moreover, constructing a mission-specific
camera according to a-priori knowledge of the wave-
lengths that are necessary for the task is unfeasible.
Consequently, a hyper-spectral image must initially
be pre-processed in order to remove the noise and re-
dundant information and extract the smallest amount
of information needed to facilitate the efficient detec-
tion of the sought-after objects. This process is com-
monly known as feature extraction or dimensional-
ity reduction and its output concisely describes each
original data item - in our case pixels - by a small
number of attributes instead of original high number
of values.

Every substance in nature has a unique spec-
tral signature that is described by the substance re-
flectance values at the different wavelengths of the
spectrum. Spectral signatures are often described
by hundreds or even thousands of wavelengths de-
pending on the hyper-spectral acquisition instrument.
Considering each signature as a vector, the number of
wavelengths defines the dimensionality of the signa-
ture.

Methods for detecting sub-pixel objects in hyper-
spectral images can be divided into two categories
- supervised and unsupervised. Supervised methods
commonly utilize the uniqueness of spectral signa-
tures. Specifically, these methods use a-priori spec-
tral information of the sought-after objects. Unsuper-
vised techniques, on the other hand, do not utilize any
a-priori information and rely on the fact that the spec-
tral signature of sub-pixel objects differs from those
of their neighboring pixels. The algorithm proposed
in this paper falls into the latter category.

The proposed algorithm initially applies the re-
cently introduced Diffusion Bases (DB) dimensional-
ity reduction algorithm (Schclar and Averbuch, 2015;
Schclar and Averbuch, 2017b; Schclar and Averbuch,
2017a) to extract a small number of features. The DB
algorithm is chosen since it efficiently captures non-
linear inter-wavelength correlations and produces a
low-dimensional representation in which the amount
of noise is drastically reduced. The main contribu-
tion of this paper is the application of the DB algo-
rithm since it produces a low-dimensional represta-
tion where sub-pixel objects appear as pixels that are
substantially different from their neighboring pixels.
The sub-pixel objects can then be detected using a
very simple procedure.

This paper is organized as follows: in section 2
we present a survey of related work on detection of
sub-pixel objects in hyper-spectral images. The DB
algorithm is described in section 3. In section 4 we
introduce the two phase sub-pixel object detection al-

gorithm. Section 5 contains experimental results and
concluding remarks are given in section 6.

2 RELATED WORKS

Subpixel segments are also regarded in the literature
as anomalies. Different approaches have been pro-
posed to detect subpixel segments.

The Reed-Xiaoli detector (Reed and Yu, 1990) is
considered the baseline to many algorithms that fol-
lowed. Specifically, this detector assumes that the
background follows a Gaussian distribution and uses
the Mahalanobis distance of each pixel to its neigh-
bors to detect sub-pixel objects. The covariance ma-
trix is calculated globally for the entire background.
In (Zhao et al., 2015) a variation of the Reed-Xiaoli
detector is proposed for situations in which the Gaus-
sian distribution assumption does not hold globally.
Namely, the covariance matrix is only calculated in
a local neighborhood of each pixel. A kernelized
version of the Reed-Xiaoli detector is presented in
(Kwon and Nasrabadi, 2005). The pixels are implic-
itly embedded in high-dimensional space where they
can be detected using a simple Euclidean distance.
This approach generalized the baseline Reed-Xiaoli
to cases where straightforward application of the Eu-
clidean distance fails to detect sub-pixel segments.

More recently, Ma et al. (Ma et al., 2018) pro-
posed a Deep Belief Network (DBN) to detect sub-
pixel objects. An autoencoder is used to extract
high-level features. Then, sub-pixels segments are
determined according to their weighted distance to
their neighboring pixels. Olson et al. (Olson et al.,
2018) proposed a manifold learning approach cou-
pled with sampling and out-of-sample extension to
model the background. Sampling can derive a back-
ground model that is more accurate than using the
entire image since the sample will be dominated by
background pixels.

3 THE DB DIMENSIONALITY
REDUCTION ALGORITHM

The DB algorithm (Schclar and Averbuch, 2015) uti-
lizes and preserves non-linear inter-coordinate corre-
lations to reduce the dimensionality of a given dataset
(it is dual to the Diffusion Maps algorithm (Coif-
man and Lafon, 2006; Schclar, 2008; Schclar et al.,
2010)). Since the uniqueness of each signature is
also inherent in its inter-wavelength correlations, the
DB algorithm is highly effective as a pre-processing
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tool for hyper-spectral images (Schclar and Averbuch,
2017b). Specifically, applying the DB algorithm to
hyper-spectral images reduces their dimensionality
while maintaining the vital spectral information of the
captured scene.

A hyper-spectral image can be represented as in-
dividual monochromatic images - one for each wave-
length. Each image is composed of the reflectance
values of the scene at a specific wavelength range.
The DB algorithm first constructs a graph in which
the wavelength images constitute the vertices and the
weights are determined according to a fast decay sim-
ilarity function. Next, it calculates the eigenvectors
of the graph Laplacian. The eigenvectors are sorted
in descending order according to the magnitude of
their eigenvalues and only the eigenvectors whose
eigenvalues are above a given threshold are main-
tained. These eigenvectors capture the non-linear
inter-wavelength variability of the original data. The
selected eigenvectors are used as an orthonormal sys-
tem on which the pixels of the original image are pro-
jected. The projected values constitute the extracted
features.

Although baring some similarity to PCA, this pro-
cess produces better results than PCA due to: (a) its
ability to capture non-linear correlations within the
data by local exploration of each coordinate; and (b)
its robustness to noise. Furthermore, the DB algo-
rithm is more general than PCA and they coincide
when the weights in the graph are determined using
the inner product weight function.

We denote by H = {xi}m
i=1 , xi ∈ Rn the dataset of

the pixels in the hyper-spectral image. Let xi ( j) be
the j-th coordinate (the reflectance value at the j-th
wavelength) of xi, 1 ≤ j ≤ n. We define the vector
x′j , (x1 ( j) , . . . ,xm ( j)) as the j-th coordinate of all
the points in H i.e. the image corresponding to the
j-th wavelength. We denote the set of wavelength im-
ages by

H ′ =
{

x′j
}n

j=1 . (1)

Let wσ (xi,x j), be a weight function which measures
the similarity between the points xi and x j in H ′. Ide-
ally, wσ (xi,x j)→ 1 when xi and x j are similar and
wσ (xi,x j)→ 0 otherwise, where σ defines the size of
the local neighborhood of each data point. We denote
by wσ the weight matrix that is composed of all pair-
wise similarities in H. A common choice of wσ is the
Gaussian, however, other kernels that follow a similar
decay property can be chosen. A detailed discussion
regarding the choice of wσ and σ is given in (Schclar
and Averbuch, 2015).

A Markov transition matrix P is constructed by
normalizing the sum of each row in the matrix wσ to

be 1:

p
(
x′i,x

′
j
)
=

wσ

(
x′i,x

′
j

)
d (x′i)

, i, j = 1, . . . ,n

where d (x′i) = ∑
n
j=1 wσ

(
x′i,x

′
j

)
is the degree of x′i.

Next, the eigen-decomposition of p
(

x′i,x
′
j

)
is calcu-

lated

p
(
x′i,x

′
j
)
≡

n

∑
k=1

λkrk
(
x′i
)

lk
(
x′j
)

where {lk} and {rk} denote the left and the right
eigenvectors of P, respectively, and {λk}k=1,...,n are
the eigenvalues of P in descending order of mag-
nitude. We make use of the eigenvalue decay
property of the eigen-decomposition and construct
the orthonormal system containing only the first
ν eigenvectors B , {rk}k=1,...,ν. These eigenvec-
tors capture the non-linear directions with the high-
est variability of the coordinates of the original
dataset H. We project the original data H onto
the orthonormal system B. Let HB = {gi}m

i=1 , gi ∈
Rν be the set of these projections where gi =
(〈xi,r1〉 , . . . ,〈xi,rν〉) , i = 1, . . . ,m and 〈·, ·〉 denotes
the inner product operator. HB is the dimension re-
duced representation of H and the coordinates of each
pixel contain the extracted features. The DB algo-
rithm is summarized in Algorithm 1.

4 THE DB SUB-PIXEL OBJECT
DETECTION ALGORITHM

We introduce a simple and efficient algorithm for the
detection of sub-pixel objects in hyper-spectral im-
ages. First, the algorithm normalizes each wavelength
image so that its values will be in the range [0,1].
This is necessary since different wavelength sensors
can produce values at different scales. We denote
by H̃ = {x̃i}m

i=1 , x̃i ∈ Rn the set of normalized wave-
length images. Next, features are extracted from H̃
using the DB algorithm be letting H ′ = H̃ in Algo-
rithm 1. The extracted features capture the required
information for the detection. Let

H̃B = {g̃i}m
i=1 , g̃i ∈ Rν

be the set of pixels whose coordinates are composed

of the extracted features. We denote by H̃B
k
=(

g̃k
i
)

i=1,...,m the values of the k-th feature of all the
pixels. We normalize each g̃k

i to be in [0,1] and de-

note the the result by ĤB
k
=
(
ĝk

i
)

i=1,...,m. We refer to

ĤB
k

as the k-th feature image.
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Algorithm 1: The Diffusion Basis algorithm.
Input:
H ′ - A dataset where each wavelength image is a data item
wσ - A similarity function
σ - The local neighborhod size of each point
ν - The number of extracted features
Output:
HB - The reduced dimension representation
=======================
DiffusionBasis(H ′, wσ, σ, ν)
1. Calculate the weight function wσ

(
x′i,x

′
j

)
, i, j = 1, . . .n where x′i and x′j are the i-th and j-th wavelength images.

2. Construct a Markov transition matrix P by normalizing each row in wσ to sum to 1:

p
(
x′i,x

′
j

)
=

wσ

(
x′i,x

′
j

)
d (x′i)

where d (x′i) = ∑
n
j=1 wσ

(
x′i,x

′
j

)
.

3. Perform eigen-decomposition of p
(
x′i,x

′
j

)
p
(
x′i,x

′
j

)
≡

n

∑
k=1

λkrk (x′i) lk
(
x′j
)

where the left and the right eigenvectors of P are given by {lk} and {rk}, respectively, and {λk} are the
eigenvalues of P in descending order of magnitude.

4. Project the original data H onto the orthonormal system B , {rk}k=1,...,ν to obtain

HB = {gi}m
i=1 , gi ∈ Rν

where
gi = (〈xi,r1〉 , . . . ,〈xi,rν〉) , i = 1, . . . ,m, rk ∈ B, 1≤ k ≤ ν

and 〈·, ·〉 is the inner product.
5. return HB.

The effectiveness of the DB feature extraction al-
lows us to employ a very simple algorithm in order to
detect sub-pixel objects. The algorithm makes use of
the fact the

sub-pixel objects are substantially different from
the hyper-pixels in their local neighborhood. This dif-
ference is apparent in a number of their features and it
is visible when inspecting some of the individual fea-
ture images. This is due to the difference in their cor-
relations with the vectors in the diffusion basis which
stems from the difference between the spectral signa-
ture of the sub-pixel object and the spectral signature
of its neighboring hyper-pixels.

The detection of sub-pixel objects is composed of
the following steps. We define the α-neighborhood of
ĝk

i to be

α

(
ĝk

i

)
,
{

ĝk
j |‖i− j‖ ≤ α

}
where ‖i− j‖ denotes the distance between pixel i
and pixel j. Next, we compute the number of pix-
els in α

(
ĝk

i
)

whose differences from ĝk
i are above a

given threshold τ1. We denote this number by

∆α

(
ĝk

i

)
,
∣∣∣{ĝk

j :
∣∣∣ĝk

i − ĝk
j

∣∣∣> τ1, ĝk
j ∈ α

(
ĝk

i

)}∣∣∣ .
If the size of ∆α

(
ĝk

i
)

is larger than a given threshold
τ2 then ĝk

i is classified as a sub-pixel object candidate.
τ2 determines the number of pixels that are required
to be different from ĝk

i in its neighborhood, in order
for ĝk

i to be classified a sub-pixel object candidate.
Finally, a pixel i is classified as a sub-pixel ob-

ject if it is a candidate in at least two different feature
images. This final requirement prevents the misclas-
sification of noisy pixels as sub-pixel objects.

5 EXPERIMENTAL RESULTS

In order to simulate sub-pixel objects, twenty four
cardboards were placed in a desert terrain. The color
of the cardboards resembled the color of the sand
in order to make their detection harder using only

Unsupervised Detection of Sub-pixel Objects in Hyper-spectral Images via Diffusion Bases

499



Figure 1: The WAV of a hyper-spectral image of a mountain
terrain which contains 24 sub-pixel objects. The sub-pixel
objects are visually undetectable.

the visible spectrum. A 121 wavelengths 300× 300
hyper-spectral image of the terrain was taken from a
high altitude airplane. The altitude was determined
according to the camera resolution and the size of the
cardboards so that the cardboards will appear as sub-
pixel objects in the image.

In order to display the geometry (objects, back-
ground, etc.) of the hyper-spectral image we use a
300× 300 gray image which is derived as the av-
erage of the 121 wavelength images. We refer to
it as the wavelength-averaged-version (WAV) of the
hyper-spectral image.

The similarity function that was used by the
DB algorithm was the Gaussian kernel wσ (xi,x j) =

exp
(
−‖xi−x j‖2

2σ2

)
. where σ was chosen according to

the procedure that is described in (Schclar and Aver-
buch, 2015).

The image and the results are given in Fig. 1-4.
Figure 1 shows the WAV of the image. Figures 2 and
3 show the 35th and 50th wavelengths, respectively.
The noise in the image is due to atmospheric condi-
tions at the time the image was taken. These prob-
lems can be found in most of the wavelengths. The
sub-pixel segments are manifested in the image as iso-
lated points. Figure 4 displays the 2nd feature image
Ĝ2 with squares around the sub-pixel segments that
were found. The number of extracted features was
empirically set to ν = 6. The sub-pixel detection was
obtained using τ1 = 0.04, τ2 = 3. These values were
found empirically. The algorithm detected all twenty
four sub-pixel objects.

6 FUTURE RESEARCH

The values of ν, τ1 and τ2 were found empirically.
Naturally, the optimal values for these parameters are

Figure 2: The 35th wavelength of Fig. 1.

Figure 3: The 50th wavelength of Fig. 1.

Figure 4: Ĝ2 of Fig. 1 with squares around the detected
sub-pixel segments. The parameters that were used are: ν=
6,τ1 = 0.04, τ2 = 3.

data driven (similarly to choosing ε in (Schclar and
Averbuch, 2015)) i.e. they depends on the given
hyper-spectral image .Automatic choice of these pa-
rameter can simplify and accelerate the detection of
sub-pixel objects. A rigorous way for choosing them
is currently being investigated by the authors.

The results in section 5 were obtained using a
Gaussian kernel. However, it is shown in (Coifman
and Lafon, 2006) that any positive semi-definite ker-
nel may be used for the dimensionality reduction.
Rigorous analysis of families of kernels to facilitate
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the derivation of an optimal kernel for a given image
H is currently an open problem that should be inves-
tigated.
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