
Using a Skip-gram Architecture for Model Contextualization in

CARS

Dimitris Poulopoulos and Athina Kalampogia
QIVOS, Athens, Greece

Keywords: Context-aware Recommender Systems, Proximity Marketing, Deep Learning.

Abstract: In this paper, we describe how a major retailer’s recommender system contextualizes the information that is

passed to it, to provide real-time in-store recommendations, at a high level. We specifically focus on the data

pre-processing ideas that were necessary for the model to learn. The paper describes the ideas and reasoning

behind crucial data transformations, and then illustrates a learning model inspired by the work done in Natural

Language Processing.

1 INTRODUCTION

IKEA is the world's largest furniture retailer, with a

presence in over 45 countries. Every day, thousands

of customers roam the stores' exhibitions, considering

new purchases for their homes or workplaces. In this

work, we present how the recommender system that

was developed for the Greek branch of the

organization, contextualizes the information that

receives as input, and helps the customers discover

new, interesting products in real-time. For example,

if a customer navigates through the living room

section of the exhibition, the system should push

recommendations for products that are in close

proximity to the customer. Our approach should

cover the following challenging requirements:

 Real-time: Recommendations should arrive in

real-time, in less than 30 seconds, while the

ideal goal is under 10 seconds. This

requirement derives from the fact that

customers that pass a specific location rarely

return to pick up a late recommended product.

Thus, the time requirement drives us to either

scale up complex solutions or turn to more

straightforward techniques.

 Proximity: IKEA exhibitions define a precise

path that every customer follows. For example,

the customer passes through the living room

sector, then enters the bathroom region, and

finally, ends up exploring kitchen products.

Thus, customers should be able to quickly

match what they already have in their basket

with products from the same category.

 Up-selling: One of the requirements is to detect

similar products to what a customer has already

in the basket, and recommend those that,

although a bit pricier, present an opportunity

due to some in-store special offer, or a stock

policy.

Common recommendation systems employ

traditional matrix factorization techniques to offer

personalized content to the users. In our work, we also

consider the context in which a purchase was made,

using dynamic and fully observable factors that

deployed sensors in-store provide to the system. Our

method is based on the work done in Natural

Language Processing using deep learning, and it can

be thought of both as contextual pre-filtering and

contextual modelling (Adomavicius et al. 2011).

Moreover, in contrast to the much more

researched matrix factorization methods [2, 3],

especially those that feed on explicit datasets, little

work has been done on recommender systems using

deep learning. However, we seem to get into a

paradigm shift. Neural networks are utilized to

recommend news (Oh et al. 2014), citations

(Vázquez-Barquero et al. 1992), and review ratings

(Tang et al. 2015), while YouTube recently converted

its method to follow the deep learning trend in the

organization (Covington, Adams, and Sargin 2016).

Moreover, the standard technique in recommender

systems is collaborative filtering, and it has been

recently developed as a deep neural network (Wang,

Poulopoulos, D. and Kalampogia, A.
Using a Skip-gram Architecture for Model Contextualization in CARS.
DOI: 10.5220/0008256304430446
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 443-446
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

443

Wang, and Yeung 2014) and autoencoders (Sedhain

et al. 2015).

Our system is built on TensorFlow (Xu et al.

2016), an open sourced version of Google Brain

(Dean and Corrado 2012). Our model learns

approximately 3 million parameters and is trained

over millions of customer transactions.

This work is concerned with the first part of

IKEA's recommender, namely the one that captures

the context and generates lists of candidate products.

It is structured as follows: We present a brief, bird's

eye view of the system in Section 2. Section 3

describes the reasoning and process behind data pre-

processing. Finally, Section 4 illustrates the

inspiration and architecture of the model.

2 SYSTEM OVERVIEW

Figure 1 depicts a high-level overview of the IKEA

recommender system. It consists of two discrete

components; the data pre-processing unit and the

component responsible for producing

recommendations. The customer shopping cart and

location are also sketched, as two other sources of

input.

Figure 1: IKEA skip gram context-aware recommender

conceptual diagram. Data are retrieved by the operational

database and fed to the neural network through the data pre-

processing unit. In real-time the customer's location and

shopping cart are fed as extra input to the model.

Initially, we feed the customer's historical data,

stored in the database, in the pre-processing unit. The

unit must shape them in a form that the neural

network accepts. Moreover, it logically transforms

the data so the network can discover intricate patterns

behind customers' purchases and behaviour (more on

this in Section 3).

The training of the algorithm is done periodically,

offline. In real-time, we feed the customer's location

and shopping cart into the model. By the time a

customer adds something to the shopping cart, or

moves to a new in-store location, the system produces

candidate items. The primary job of the algorithm,

that is in the scope of this paper, is to create a list of

items, that might be of interest to the user and are

located nearby. During the next step a ranking

algorithm sorts these candidate items to create

personalized recommendations. This will be

addressed in a following publication.

The candidate generation algorithm is inspired by

the work done in language models (Collobert and

Weston 2008; Mikolov et al. 2006, 2013),. Its job is

to find the correlations between the items that

customers choose together, as well as the reasoning

behind these purchases (e.g., same color, brand, style,

etc.). In Section 4, we present the model architecture

and logic in detail. During training, we make use of

offline metrics like precision, recall, and ranking loss,

but the real value of a recommender is not only to

predict the held out data in a test set, but also to

discover new items that might be of interest to the

customers, even if they were unaware of their

existence. Thus, we can only draw a safe conclusion

using specifically designed A/B tests in production.

3 DATA PRE-PROCESSING

To take advantage of the work done in language

models, and especially the word2vec notion

(Goldberg and Levy 2014), we need to transform the

products in a way that they can be viewed as words in

a document. This transformation would permit us to

learn informative distributed vector representations,

for each product, in a high dimensional embedding

space. To achieve this, we need a data pre-processing

component. We cannot convey this as feature

engineering because the features that fed into the

algorithm are still raw product IDs.

We view the customers' purchases on a specific

visit, i.e., on a unique date, as a set of purchased

products 𝑃, whose elements are taken from a set of

items 𝐼, which encloses every product. If we assume

a set 𝐶, that contains every product category, we can

filter the set 𝑃 into distinct product categories, thus

creating subsets𝑃𝑐 , such as 𝑃𝑐 ⊆ 𝑃 , that consists of

what each customer bought on a specific date,

grouped by product category. We treat the resulting

sequences of transactions, i.e., the elements of 𝑃𝑐, as

"purchase sentences", where each product 𝑖 ∈ 𝐼 is a

"word" composing the "sentence". This way we can

compose "chapters" for each category, that in the end

concatenate into a "book" or "document" to train our

model. Figure 2 depicts the process.

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

444

Figure 2: Data pre-processing procedure. Customers'

transactions are split on purchase date and product category

to form sequences of transactions within a specific product

category. These sequences are viewed as "purchase

sentences", with which we can create a so-called "purchase

book".

For instance, consider a customer who enters the

store and purchases products from three different

product categories; kitchen accessories, bedroom

furniture and children toys. We split the customer's

transactions by product category and get three

sequences of continuous events, one for each

category. If we do this for every customer, on each

date, we can create those "purchase chapters" we

need for each category. Finally, we concatenate those

chapters to build the resulting "book" or "document",

that serves as the input to our model.

The intuition behind splitting on transaction date,

as well as unique customers and product categories,

is because the same user can enter the store and

purchase a sink and its accessories from the kitchen

department in one visit, and kitchen furniture in a

second visit. Although the customer makes these

transactions within the same product category, we

treat them as different events, because furniture

products can have different correlations than kitchen

hydraulics.

4 MODEL OVERVIEW

Inspired by the work done in Natural Language

Processing, and especially the ideas concentrating

around the word2vec model architecture, we employ

a similar network engineering to learn a distributed

representation for each product, in a high dimensional

embedding space. The idea is that given the "book"

we generated in the data pre-processing phase, we

exploit the capabilities of a skip-gram model, trying

to predict the items that complete a "purchase

sentence", given one item that exists in a random

position inside this sequence.

Figure 3 depicts the model architecture. Given an

item in position 𝑡0, we try to predict its surrounding

items. During this process, we learn a high

dimensional vector representation for this item, in the

Embedding layer of the network. At serving time, we

throw away the prediction layer keeping the learned

embeddings. The model generates the candidate items

by taking the top-n closest items to the product that a

customer added to the shopping cart.

Figure 3: IKEA skip gram recommender model. Inspired by

the work done in NLP, we try to predict the items that are

in the same context as the item we feed as input to the neural

network. At serving time, we throw away the prediction

layer keeping the learned item embeddings. The candidate

generation problem is then reduced to a simple k-nearest

neighbours question.

While experimenting with different variants of the

architecture, we found that adding more hidden layers

assisted with integrating different item features into

the model. Although it did not help much with the

model accuracy by itself, it provided a way of passing

more item features to the model, such as the item's

age, brand, pricing level, etc., which helps to discover

better candidates. Other aspects of data pre-

processing in language models, such as the notion of

stop words and sub-sampling, did not help us in this

case, and they were skipped. Moreover, we did not

use the idea of windows or padding to consider only

a small, random number of surrounding items in a

sentence, as we consider all items in the sentence of

equal importance.

ACKNOWLEDGEMENTS

This work has received funding from the European

Union’s Horizon 2020 research and innovation

programme under grant agreement number 732051,

CloudDBAppliance project.

Using a Skip-gram Architecture for Model Contextualization in CARS

445

REFERENCES

Adomavicius, Gediminas, Bamshad Mobasher, Francesco

Ricci, and Alex Tuzhilin. 2011. “Context-Aware

Recommender Systems.” : 67–80.

Collobert, Ronan, and Jason Weston. 2008. “A Unified

Architecture for Natural Language Processing: Deep

Neural Networks with Multitask Learning.”

http://wordnet.princeton.edu.

Covington, Paul, Jay Adams, and Emre Sargin. 2016.

“Deep Neural Networks for YouTube

Recommendations.” In Proceedings of the 10th ACM

Conference on Recommender Systems - RecSys ’16,.

Dean, Jeffrey, and Greg S. Corrado. 2012. “Large Scale

Distributed Deep Networks Jeffrey.” Cambridge

University Press: 1–9.

Goldberg, Yoav, and Omer Levy. 2014. “Word2vec

Explained: Deriving Mikolov et Al.’s Negative-

Sampling Word-Embedding Method.” (2): 1–5.

http://arxiv.org/abs/1402.3722.

Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009.

“Matrix Factorization Techniques for Recommender

Systems.Pdf.” : 42–49.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2006. “Distributed Representations of Words and

Phrases and Their Compositionality.” CrossRef Listing

of Deleted DOIs 1: 1–9.

Mikolov, Tomas, Chen, Kai

Corrado, Greg Dean, Jeffrey, 2013. “Efficient Estimation

of Word Representations in Vector Space.” : 1–12.

http://arxiv.org/abs/1301.3781.

Oh, Kyo Joong, Won Jo Lee, Chae Gyun Lim, and Ho Jin

Choi. 2014. “Personalized News Recommendation

Using Classified Keywords to Capture User

Preference.” International Conference on Advanced

Communication Technology, ICACT: 1283–87.

Sedhain, Suvash, Aditya Krishna Menon, Scott Sanner, and

Lexing Xie. 2015. “AutoRec: Autoencoders Meet

Collaborative Filtering.” Www-2015: 111–12.

Su, Xiaoyuan, and Taghi M. Khoshgoftaar. 2009. “A

Survey of Collaborative Filtering Techniques.”

Advances in Artificial Intelligence 2009(Section 3): 1–

19.

Tang, Duyu, Bing Qin, Ting Liu, and Yuekui Yang. 2015.

“User Modeling with Neural Network for Review

Rating Prediction.” IJCAI International Joint

Conference on Artificial Intelligence 2015-

January(Ijcai): 1340–46.

Vázquez-Barquero, J. L. et al. 1992. “A Neural

Probabilistic Model for Context Based Citation

Recommendation.” Psychological Medicine 22(2):

495–502.

Wang, Hao, Naiyan Wang, and Dit-Yan Yeung. 2014.

“Collaborative Deep Learning for Recommender

Systems.” http://arxiv.org/abs/1409.2944.

Xu, Tianyin et al. 2016. “TensorFlow: A System for Large-

Scale Machine Learning.” Proceedings of the 12th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’16): 619.

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

446

