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Abstract: Many applications require to analyse large amounts of continuous flows of data produced by different data 
sources before the data is stored. Data streaming engines emerged as a solution for processing data on the fly.  
At the same time, computer architectures have evolved to systems with several interconnected CPUs and Non 
Uniform Memory Access (NUMA), where the cost of accessing memory from a core depends on how CPUs 
are interconnected. In order to get better resource utilization and adaptiveness to the load dynamic migration 
of queries must be available in data streaming engines. Moreover, data streaming applications require high 
availability so that failures do not cause service interruption and losing data. This paper presents the dynamic 
migration and fault-tolerance capabilities of UPM-CEP, a data streaming engine designed to take advantage 
of NUMA architectures. The preliminary evaluation using Intel HiBench benchmark shows the effect of the 
query migration and fault-tolerance on the system performance. 

1 INTRODUCTION 

Large companies use mainframes for running their 
application businesses. In general, the main frames 
are characterized by having a large memory and 
several cores. The mainframe usually runs the 
operational database which is part of the core 
business of companies. 

The goal of the CloudDBAppliance project1  is 
setting up a European Cloud Appliance that integrates 
three data management technologies: operational 
database, analytical engine and real-time data 
streaming on top of a many-core architecture with 
hundreds of cores and several Terabytes of RAM 
provided by Bull.  

Servers with several CPUs in a single board, many 
cores, with non-uniform memory access (NUMA) 
and 128GB or more are common these days.  

Nowadays several data streaming engines (DSE) 
are available and ready to be used such as Flink 
(Fundation, T. A. (2014)), Spark Streaming 2 , and 
Storm (Foundation, A. S. (2015)) among others. 
These data streaming engines were designed to run on 
a distributed system made of several computers 
connected through a network in a LAN in order to 
scale and process large amount of events per second. 
However, mainframes although their architecture 

                                                                                                 
1 The CloudDBAppliance Project. http://clouddb.eu 

resemble a distributed architecture they expose a 
centralized architecture with no network 
communication and large shared memory. In this 
paper we present UPM-CEP, a NUMA aware DSE 
for appliances. UPM-CEP provides a scalable 
architecture to be deployed on NUMA architectures. 
To the best of our knowledge, this is the first DSE 
with this feature. The paper describes the UPM-CEP 
migration and fault-tolerance features and 
preliminary performance results using the Intel 
HiBench benchmark. 

The rest of the paper is organized as follows. 
Section 2 introduces NUMA architectures. Section 3 
presents data streaming engines main features. The 
architecture of UPM-CEP is presented in Section 4. 
Section 5 presents the dynamic migration algorithm, 
while Section 6 presents the fault-tolerance protocol. 
The performance evaluation is shown in Section 7 
and finally, Section 8 presents the conclusions and 
future work.  

2 NUMA ARCHITECTURES  

A NUMA system consists of several connected 
CPUs, also called nodes or sockets. Each CPU has its 
own memory that can be accessed faster than the 

2 https://spark.apache.org/streaming/ 
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memory attached to other CPUs. Main vendors have 
implemented this model and connect the CPUs using 
QuickPathInterconnect (QPI, Intel) or other means, 
like HyperTransport in AMD processors. The cores 
of a CPU have its own L1 and L2 caches and share a 
L3 cache. In the case of Intel each CPU has a number 
of QPI links used to connect to other CPUs. 
Depending on the total number of CPUs the memory 
of other CPUs is reachable in a single hop or more 
hops are needed. 

For instance, the Bullion S16 consists of 16 Intel 
NUMA nodes each of them equipped with 18 cores. 
Figure 1 shows how the CPUs are connected and 
Figure 2 shows the memory distance between 
different NUMA nodes.  

The distance represents the relative latency for 
accessing the memory from one CPU to another one. 
For instance, a program in node 0 accessing data in 
its own memory has a cost of 10, while accessing the 
data in the memory attached to node 1 has a higher 
cost, 15 (50% overhead). If data is the memory of any 
of the 14 remaining nodes, the cost is 40. That is, it 
costs 4 times more than accessing local memory of 
node 0. 

 

Figure 1: Bullion S16 Architecture. 

 

Figure 2: NUMA distances in the Bullion S16. 

Operating systems in general allocate threads on 
the CPU with lowest usage. Therefore, the threads of 
a process can be spread across several CPUs and 
therefore the performance of the application can be 
affected by remote access to the data.  Linux systems 
provide functions to bound threads to a CPU (e.g., 
libnuma) and even tools to bind a process to a CPU 
(e.g., numactl). The numactl command also allows to 
define where the memory is allocated for an 
application, for instance, on a single CPU, on a set of 
CPUs or interleaved among a set of CPUs.  

3 DATA STREAMING ENGINES  

Stream Processing (SP) is a novel paradigm for 
analysing data in real-time captured from 
heterogeneous data sources. Instead of storing the 
data and then process it, the data is processed on the 
fly, as soon as it is received, or at most a window of 
data is stored in memory. SP queries are continuous 
queries run on a (infinite) stream of events. 
Continuous queries are modeled as graphs where 
nodes are SP operators and arrows are streams of 
events. SP operators are computational boxes that 
process events received over the incoming stream and 
produce output events on the outgoing streams. SP 
operators can be either stateless (such as projection, 
filter) or stateful, depending on whether they operate 
on the current event (tuple) or on a set of events (time 
window or number of events window). Several 
implementations went out to the consumer market 
from both academy and industry (such as Borealis 
(Ahmad, 2005), Infosphere (Pu, 2001), Storm 
(Foundation, 2015), Flink (Fundation, Apache 
Flink® - Stateful Computations over Data Streams, 
2014) and StreamCloud (Gulisano, StreamCloud: An 
Elastic and Scalable Data Streaming System, 2012)). 
Storm and Flink followed a similar approach to the 
one of StreamCloud in which a continuous query runs 
in a distributed and parallel way over several 
machines, which in turn increases the system 
throughput in terms of number of tuples processed per 
second. UPM-CEP adds efficiency to this parallel-
distributed processing being able to reach higher 
throughput using less resources. It reduces the 
inefficiency of the garbage collection by 
implementing techniques such as object reutilization 
and takes advantage of the novel Non Uniform 
Memory Access (NUMA) multicore architectures by 
minimizing the time spent in context switching of SP 
threads/processes. 
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4 UPM-CEP DATA STREAMING 
ENGINE  

UPM-CEP provides a client driver for streaming 
applications, the JCEPC driver that hides from the 
applications the complexity of the underlying system. 
Applications can create and deploy continuous 
queries using the JCEPC driver as well as register to 
the source streams and subscribe to output streams of 
these queries. During the deployment of a streaming 
query the JCEPC driver takes care of splitting the 
query into sub-queries and deploys them in the CEP. 
Some of those sub-queries can be parallelized. For 
instance, the query in Figure 3 shows a data streaming 
query made out 2 input streams and 8 operators. The 
operators are either stateless (SL) or stateful (SF) 
operators. 

 

Figure 3: Data streaming query. 

UPM-CEP has several stateless and stateful 
operator implemented and users can create their own 
customized operators. The stateless operators that can 
be found are: 1) Map: that allows to select the desired 
fields from the input tuple and create an output tuple 
with those fields. 2) Filter: Only the tuples that satisfy 
a defined condition are sent through the output 
stream, the rest of tuples are discarded. 3) Demux: 
sends the input tuples to all the output streams that 
satisfies the defined conditions and 4) Union: Tuples 
that arrives to the operator from different input 
streams are sent to one output stream. 

Regarding the stateful operators two window 
oriented operators are available: 1) Aggregate: group 
all tuples that are in the time or size window taking 
into account defined functions executed over the 
fields of all the tuples. Moreover, tuples can be 
grouped into different windows if the group by 
parameter is specified. 2) Join: Correlates tuples from 
two different input stream. Two time windows are 
created, one per input stream and when the windows 
are slide tuples are joined creating one output tuple 
taking into account a specified predicate. 

UPM-CEP partitions queries into subqueries so 
that, each subquery executes in a different node. 
Figure 4 shows how the previous query is splitted into 
four subqueries (SQ1, SQ2, SQ3 and SQ4). The 
number of subqueries of a given query is defined by 
the number of stateful operators. All consecutive 
stateless operators are grouped together in a subquery 

till a stateful operator is reached. That stateful 
operator is the first operator of the next subquery. 
This way of partitioning queries has proven to be 
efficient in distributed scenarios (Gulisano, 
StreamCloud: A Large Scale Data Streaming System, 
2010). We have applied the same design principles to 
UPM-CEP although it is not a distributed setup, the 
same principles apply minimizing the communication 
across NUMA nodes in this case and keeping the 
same semantics a centralized system will provide. 

 

Figure 4: Query partitioning. 

Subqueries can be parallelized in order to increase 
the throughput. Each instance of a subquery can run 
in a different core in the same node. Figure 5 shows 
how subqueries of the previous example could be 
parallelized. There are 3 instances of SQ1, one 
instance of SQ2, two instances of SQ3 and three 
instances of SQ4.  

 

Figure 5: Query parallelization. 

The main challenge in query-parallelization is to 
guarantee that the output of a parallel execution is the 
same as a centralized one. If we consider a sub-query 
made by only one operator, this challenge means that 
the output of a parallel operator must be the same as 
a centralized operator. On the other hand, window 
oriented operators require that all tuples that have to 
be aggregated/correlated together are processed by 
the same CEP instance. For example, if an Aggregate 
operator computing the total monthly operations of 
the bank accounts for each client is parallelized over 
three CEP Instances, it must be ensured that all tuples 
belonging to the same user account must be processed 
by the same CEP Instance in order to produce the 
correct result. 
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To guarantee the equivalence between centralized 
and parallel queries, particular attention must be 
given to the communications among sub-queries. 
Consider the scenario depicted in Figure 6 where there 
are two sub-queries, Sub-query 1 and Sub-query 2, 
with a parallelization degree of two and three, 
respectively. If Sub-query 2 does not contain any 
window oriented operator, CEP instances at Sub-
query 1 can arbitrary decide to which CEP instance of 
Sub-query 2 send their output tuples. Output tuples of 
Sub-query 1 are assigned to buckets. This assignment 
is based on the fields of the tuple. Given B distinct 
buckets, the bucket b corresponding to a tuple t is 
computed by hashing one or more fields of the tuple 
modulus B. All tuples belonging to a given bucket are 
sent to the same CEP instance of the Sub-query 2.  

 

Figure 6: Subquery Connections. 

The fields to be used in the hash function depend 
on the semantics of the window oriented operators 
defined at Sub-query 2 and the mapping among 
buckets and downstream CEP Instances depends on 
the load balancing algorithm used in the CEP. 

 Join: if the join predicate has at least one equality 
condition, it is an equi-join (EJ), otherwise it is a 
cartesian product. For downstream operators of 
type EJ, the hash function is computed over all the 
fields used in the equalities plus the optional fields 
which could appear in the group-by clause.  

 Aggregate: the fields used in the hash function are 
all the fields used in the group-by parameter. In 
this way, it is ensured that all tuples sharing the 
same values of the attributes specified in the 
group-by parameter are processed by the same 
CEP instance. 

UPM-CEP comes with this default partition strategy 
used for splitting a query into sub-queries in the 
absence of user defined split policies. According to 
this strategy a new sub-query is created anytime one 
of the following conditions is satisfied during the 
query: 

 It is a stateful operator. 
 It is an operator with more than one input stream. 

All the event oriented operators before the first 
stateful operator are part of the same sub-query. 
 

4.1 UPM-CEP Architecture 

The UPM-CEP architecture consists of two main 
components: the orchestrator and instance managers. 
Other components are the reliable registry 
(Zookeeper) and the metric server. Figure 7 depicts 
how the CEP components can be deployed in a 
scenario with several NUMA nodes or nodes. 

 

Figure 7: CEP Components. 

4.1.1 Orchestrator 

The orchestrator is in charge of managing the rest of 
the elements of the CEP. There is only one instance 
of this component in a deployment. It deploys queries 
and subqueries in the instance managers and balances 
the load among different nodes running instance 
managers. 

The state of the orchestrator is kept in Zookeeper 
(Fundation, Apache ZooKeeper, 2010) so that, if 
there is a failure a new orchestrator can be run and 
take its state from Zookeeper. Active replication 
could be an alternative design however, although 
fault-tolerance is easier to implement in this case, the 
overhead of active replication of the orchestrator will 
have an impact on regular processing (when there are 
no failures). 

4.1.2 Instance Managers 

The instance manager is the component in charge of 
running queries. Each instance manager runs on a 
core of NUMA node and can run one or more 
subqueries. Instance managers are single threaded.  

Instance managers receive tuples either from 
clients (through the JCEPC driver) or from other 
instance managers.  Instance managers must be aware 
of the nature of the subquery it sends tuples. In a 
scenario in which there is no parallelism, an instance 
manger running a subquery will send all the data to 
the next subquery. These means, tuples from the first 
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subquery are sent directly to the next one, this type of 
tuple sender process is called point to point balancer. 
Figure 8 shows two subqueries SQ1 and SQ2, both are 
deployed using one instance manager. And tuples t1 
to t6 are being sent from SQ1 to SQ2 by means of the 
point to point balancer. 

 

Figure 8: Point to Point Balancer. 

However, if SQ2 is deployed in several instances, 
SQ1 has to take into consideration the type of operator 
is placed at the beginning of SQ2. If it is a stateless 
operator, tuples from the previous instance manager 
are sent in a round-robin fashion. For instance, Figure 
9 represents the aforementioned scenario. SQ2 has 
been parallelized in three different instances and the 
first operator is stateless, these means the tuples can 
be handle by any of the SQ2 instances. The round 
robin balancer sends tuples t1 to t6 as presented, tuple 
t1 is sent to the first instance, t2 is sent to the second 
instance, t3 is sent to instance number 3 and the 
process is repeated with tuples t4 to t6 beginning from 
the first instance. 

 

Figure 9: Round Robin Balancer. 

Nevertheless, if the first operator is stateful these 
means that tuples have to be handled by a specified 
instance. For that cases a route key balancer is 
required, taking into account the group by clause 
specified in the operator configuration. Tuples 
produced by SQ1 are routed to the required SQ2 

instance, Figure 10 shows how the route key balancer 
works sending tuples t1 to t6 to the different instances 
of SQ2. Tuple t6 is sent to SQ2

I, tuples t1, t2 and t4 
are sent to SQ2

II taking into account the route key and 
finally tuples t3 and t5 are sent to SQ2

III. 
To complete the types of balancer presented, the 

UPM-CEP also defines a broadcast balancer of those 

operators that requires to send the tuples to all the 
instances. Figure 11 exposes an example of how 
tuples are sent from SQ1 to all SQ2 instances. 

 

Figure 10: Route key Balancer. 

 

Figure 11: Broadcast Balancer. 

5 DYNAMIC MIGRATION 

The metric server component of the DSE stores all the 
metrics related to the performance and resource usage 
of the DSE. That is, input load, throughput and 
latency of each operator, subquery and query running 
in the system. Regarding the resource usage the DSE 
monitors CPU, memory and bandwidth consumed by 
each Instance Manager. If an Instance Manager is 
saturated, dynamic migration will try to move one of 
the subqueries running on that IM to another less 
loaded IM. 

Dynamic migration also happens when a new 
Instance Managers are provisioned to the DSE, or 
when moving sub-queries from an Instance Manager 
running on one NUMA node to another one. In the 
first case, the goal of moving a sub-query is to 
distribute the load between an overloaded Instance 
Manager and a new one. In the second case, the 
reconfiguration can move two sub-queries that are 
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exchanging data with high frequency on the same 
NUMA node in order to take advantage of the local 
memory. 

We defined a migration protocol for the DSE: 
State Transfer. To explain the migration protocol, we 
will use the query depicted in Figure 12. In the figure 
there is a query Q with three sub-queries named 
SQ_A, SQ_B and SQ_C. SQ_A and SQ_C are 
deployed with 2 instances each and SQ_B is deployed 
using 3 instances. Each sub-query is deployed in its 
own Instance Manager. C and R represent 
respectively the client application sending tuples and 
the receiver application waiting for the query results. 
Moreover let us assume that we want migrate SQ_B2 

from IM4 to IM8.  
The completion time for the State Transfer 

protocol depends on the state size, that is, the number 
of tuples kept in the window structures at the time the 
reconfiguration is issued.  
State Transfer Protocol: 

1. The protocol starts deploying a new Instance of 
SQ_B (SQ_B2NEW) in the Instance Manager IM8. 

2. Then, the upstreaming sub-queries,SQ_A1 and 
SQ_A2 are informed that the sub-query SQ_B2will 
be moved from IM4 to IM8. As a result of this 
action, the IMs running SQ_A1 and SQ_A2 flush 
their output streamss, and turn in a reconfiguration 
mode where they start buffering all new output 
tuples with destination SQ_B2. 

3. IM4 takes a snapshot of the state (if any) of SQ_B2 

and transfers it to the new instance SQ_B2NEW 

running in IM8. 
4. Once the state is transferred, SQ_A1 and SQ_A2 

first send to SQ_B2NEW all the tuples stored in the 
meanwhile in the buffers and then turn themselves 
back in the normal operation mode. 

6 FAULT-TOLERANCE 

The simplest solution to provide high availability in a 
datacentre is simply to deploy the DSE in another 
appliance (backup) and resume the processing of 
tuples in that appliance if the active one fails 
(primary). A replication manager is needed for 
detecting the failure of the primary appliance. The 
replication manager also sends the queries to be 
deployed to the backup. These queries are registered 
in the backup during regular processing. When the 
primary fails in a primary-backup scenario in a data 
centre, the backup will redeploy all the queries and 
resume the processing. 

This solution is valid if some tuples can be lost 
and this does not affect the application. However, if 
no tuple should be missed then, either an active 
replication approach is followed or some check 
pointing mechanisms must be in place. In that case 
some mechanisms are needed to store the tuples so 
that they can be replayed in case of a failure. If tuples 
are replayed, two semantics are possible: at least once 
or exactly once. That is, tuples are processed exactly 
once (there are no duplicates in case of failures) or 
there can be duplicates (at least once). The exactly 
once policy is more expensive as it needs to register 
every outcome. The DSE currently implements at 
least once semantics by implementing active 
replication. That is, all events are sent to the two 
appliances, and both of them process all events. The 
sinks that receive the outcome of the data streaming 
engine will receive output events from the two 
appliances and filters them in order to avoid sending 
duplicates to the client during regular processing. 
When a failure happens, one of the appliances will 
stop sending output events. At that point the sink will 
receive events from one appliance and send these 
results to the client.  In this scenario there will be no 
duplicate outcomes (exactly once guarantee). 

7 PERFORMANCE EVALUATION 

UPM-CEP performance has been measured using the 
Intel HiBench benchmark (Intel, 2017). This 
benchmark allows to evaluate different big data 
frameworks and contains 19 different workloads that 
are distributed in: micro, machine learning, sql, 
graph, websearch and streaming. Specifically, we 
focus on the streaming workloads: 1) Identity: This 
workload reads input tuples and produces the same 
tuples without any modification. A map operator is 
defined with the same input and output fields. 2) 
Repartition: Modifies the parallelism level and 
distributes the load in a round robin fashion. It defines 
a map operation that copies the input to the output. 

 

Figure 12: Example query for the migration protocol. 
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The query is deployed several times. Tuples are sent 
to the different instances of the query in a round robin 
fashion. 3) Stateful wordcount: counts the number 
word. This workload requires several operators, first 
of all a map operator picks only the word from the 
input tuple; an aggregate operator with a number of 
tuples window and a group by condition based on the 
word is added. This query tests the route key balancer. 
4) Fixed Window: This workload tests the 
performance of the time window operator group by a 
field.  

This streaming workload has been implemented 
to be executed in four different streaming frameworks 
such as Flink, Storm, Spark and Gearpump. We have 
implemented same workloads for the UPM-CEP. In 
this evaluation we use the Fixed Window query, 
which aggregates the connections to a server from 
each IP address during a period of time. After this 
time expires, a tuple with the timestamp of the first 
and last connection from that IP address and the 
number of connections during that period is 
produced. 

 

 Figure 13: HiBench Fixed Window Topology. 

This query, represented in  Figure 13, is 
implemented as a map operator that selects the IP 
address and the connection time (timestamp) from 
incoming tuples. Then, an aggregate operator with a 
time window of 30 seconds per IP is defined. When 
the window is triggered a tuple is emitted with the 
timestamp of the first tuple in the window and the 
number of tuples. To finalize a map operator, add an 
extra field to the tuple with the timestamp at this 
moment. The code below corresponds to the 
aggregate function. 

AggregateOperatorConfig aggregator = new 

AggregateOperatorConfig("aggregator", 

PROJECTOR_STREAM, AGGR_STREAM);         

aggregator.setWindow(OperatorEnums.WindowTyp

e.TIME, wsize, wadv); 

aggregator.addGroupByField("ip"); 

aggregator.addIntegerFunctionMapping("counter", 

OperatorEnums.Function.COUNT, "ip");            

aggregator.addLongFunctionMapping("startts", 

OperatorEnums.Function.LAST_VAL, 

ParameterStore.TIMESTAMP_USER_FIELDNAM

E); 

            aggregator.addStringFunctionMapping("ip", 

OperatorEnums.Function.LAST_VAL, "ip"); 

 query.addOperator(aggregator ); 

The goal of the evaluation is to show the performance 
during load balancing and when failures occur.  

For the replication protocol we show the 
throughput and latency of subquery 2, the one starting 
with the aggregate operator before the failure, while 
the migration happens and after the system is 
reconfigured. Figure 14 shows those values before the 
migration happens. At that point 10,000 tuples are 
received by this subquery. The response time is 0.04 
ms. 

 

Figure 14: Subquery migration, Load and response time 
before the migration. 

Then, the query is migrated to another node. 
Figure 15 shows the load and response time after the 
query is migrated. It takes around 20 seconds to 
transfer the state and start processing tuples again.  

 

Figure 15: Query migration. 

For the evaluation of the fault-tolerance protocol we 
present the behaviour of the data source and the data 
sink. The data source is in charge of duplicating the 
tuples and sending them to both nodes. The data sink 
receives the output tuples from the two nodes and 
outputs a single one. The first time a tuple arrives 
from one of the nodes, it outputs that tuple and keeps 
it in memory till the duplicate arrives or a failure 
happens. In the former case the tuple is eliminated, 
while in the latter case, the tuples are directly send to 
the client. 
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Figure 16: Data Source. 

Figure 16 shows that the data source receives 10 
000 tuples and sends 20 000 tuples while there are two 
replicas, then a failure happens and it only sends the 
tuples to the available replica. 

Figure 17 shows the number of tuples the data 
sink receives while the two replicas are running (680 
tuples), when the failure happens one of the replicas 
stops sending tuples and therefore, the data sink 
receives 340 tuples per second. In both the former 
case it filters duplicates and sends half of the tuples. 
While in the latter case it sends the same amount of 
tuples but, there is no filtering. 

 

Figure 17: Data sink. 

8 CONCLUSIONS 

In this paper we have presented the migration and 
fault-tolerance protocols of UPM-CEP and their 
performance running the HiBench benchmark.   

As future work we plan to implement other fault-
tolerance protocols providing more relaxed 
semantics. 
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