Elaboration of a Domain Model for Migrating the Monolithic Software
Architecture of a Data Management Server into a Microservice
Architecture

Christian Zaschke®?
Fraunhofer 10SB, Karlsruhe, Germany

Keywords:

Abstract:

CSD, Coalition Shared Data, DDD, Domain-Driven Design, Domain Model, Microservice.

This paper presents the necessary steps for creating a useful domain model for the Coalition Shared Data

(CSD) domain. After describing the basic procedure of creating a domain model following the principles of
domain-driven design (DDD) some concrete results achieved and experiences gained throughout this process
are depicted. The domain model is the backbone for further development activities to migrate the monolithic
software architecture of an existing data management server into a loosely coupled one according to the princi-
ples of microservice architectures. Major challenges with the creation of such a domain model and the benefits
of loosely coupled software components in the CSD environment are outlined.

1 INTRODUCTION

Collection, analysis and processing of huge amounts
of data nowadays are crucial abilities to meet the de-
mands of a digital and globalized world. These ca-
pabilities help to gather necessary information about
people and organizations, their specific actions and
intentions, with the aim to get superior knowledge.
As a basis for making data available to the right peo-
ple at the right time with the right granularity (Za-
schke et al., 2016) a process for storing, disseminating
and maintaining data has to be defined, implemented
and established. To involve a critical mass of stake-
holders in this process, participation has to be made
possible in a beneficial, cost-efficient and sustainable
way. One way to achieve this is to establish common
standards.

One of these interoperability standards is the
NATO Standardization Agreement (STANAG) 4559
((NSO), 2018) which defines the interface of a dis-
tributed data storage for enabling data sharing be-
tween different NATO nations and their partners.

The STANAG 4559 specifies standardized inter-
faces to allow ingesting and retrieving relevant Joint
Intelligence, Surveillance and Reconnaissance (JISR)
products into a so called Coalition Shared Data (CSD)
Server. Whether data is relevant (for oneself or for
other partners) or not has to be determined by the

(2 https://orcid.org/0000-0002-6351-491X

212

Zaschke, C.

people who collect and process them. The desig-
nated JISR products follow standardized data formats
as well to make sure that CSD client systems request-
ing those products know how to interpret and process
them. CSD client systems using the STANAG 4559
interfaces are able to ingest new products and to place
specific requests on the server to get the appropriate
products in return.

As the STANAG 4559 doesn’t specify architec-
tural aspects of an implementation of the interface,
a typical STANAG 4559 implementation is built up
monolithically and, thus, closely coupled.

The paper addresses the necessary steps, chal-
lenges and benefits of a migration from a monolithic
software structure to a loosely coupled microser-
vice architecture following the principles of domain-
driven design (DDD) as a precondition for a behavior-
driven development (BDD) approach in a later phase.

2 FROM DOMAIN KNOWLEDGE
TO A DOMAIN MODEL

According to the principles of DDD, a domain model
for a specific area of application has to be developed
to solve a problem in the real world. According to
(Evans, 2015) a domain is defined as "a sphere of
knowledge, influence, or activity. The subject area
to which the user applies a program is the domain of

Elaboration of a Domain Model for Migrating the Monolithic Software Architecture of a Data Management Server into a Microservice Architecture.

DOI: 10.5220/0008319402120218

In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 212-218

ISBN: 978-989-758-382-7

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Elaboration of a Domain Model for Migrating the Monolithic Software Architecture of a Data Management Server into a Microservice

the software.”

The domain model is the basis for a software spec-
ification which could be created following a BDD ap-
proach.

The features defined in the software specification
represent the real world requirements. By implement-
ing those features the corresponding problem of the
real world is being addressed and solved appropri-
ately.

2.1 Ubiquitous Language

For the development of a domain model both domain
experts and technical experts have to be involved.
The domain experts have a comprehensive knowledge
and their own business-specific language describing
business-specific terms and concepts. Technical ex-
perts, on the other side, typically use a very technical
and highly specific language. They have great experi-
ence in the development of complex systems and are
adept at using state-of-the-art methods and technolo-
gies.

As a first step towards a domain model, it is cru-
cial to define a common and compulsory vocabulary
- a ubiquitous language. To achieve that, all involved
stakeholders enter into intense interactions with each
other. In a continuous, iterative and collaborative pro-
cess technical and domain experts determine a collec-
tion of common terms and specify a set of features.
This creative process is called knowledge crunching.

In knowledge crunching events all stakeholders
are brainstorming all their terms, concepts and issues
of the specific domain. The domain experts have to
abstract their knowledge, whereas the technical ex-
perts have to understand and formalize the domain
knowledge. Experiences of the stakeholders in simi-
lar domains or with earlier projects could be advanta-
geous and complement the domain knowledge. Sub-
sequently, the huge amount of input is being harmo-
nized, distilled, restructured and streamlined.

The result of this process is a collection of terms
and a feature list. All terms need to be clearly defined.
The relevant features have to be described accurately.
As a result, the ubiquitous language for the domain is
defined and ready to be used by all stakeholders in the
following development and operating phases.

When talking about a domain-specific term or
concept every involved stakeholder uses the same
word for it. Likewise, each involved stakeholder
should have a clear comprehension about every de-
fined term. As a consequence, in conversations and
written texts every stakeholder has the same under-
standing of a specific term or concept. This helps
avoiding ambiguities and misinterpretations and leads

Architecture

to a clear and efficient communication and documen-
tation.

In case the team realizes that the definition or
name of a term or a concept is not useful or not correct
anymore, it needs to be revised and again collectively
defined and agreed upon. This procedure helps keep-
ing the ubiquitous language clean and up-to-date and
gives the flexibility to react on changes throughout
the whole development. The implications of a change
in the ubiquitous language and thereby in the domain
model will be examined in the next section.

2.2 Domain Model

The domain model is the pivotal point of a software
project following the principles of DDD. It describes
the interrelationship of central terms and concepts of
the determined common language and can therefore
be seen as the abstraction of the underlying domain.
According to (Evans, 2003) these terms and interrela-
tionships provide the semantics of a language that is
tailored to the domain while being precise enough for
technical development. The software specification,
forming the basis of the implementation, is build up
on the defined domain model which leads to a strong
binding between the domain model and the derived
implementation - the “crucial cord that weaves the
model into development activity and binds it with the
code” (Evans, 2003).

The elaboration of the domain model is an iter-
ative process in which the experiences and insights
gleaned throughout the project are reflected. Thus,
the domain model may be subject of change all the
time. These changes are typically based on contri-
butions from domain experts and developers. If the
software project needs, at a given moment, some kind
of conceptual or linguistic change, e.g., additional
terms, new wording of existing terms or new relations
between concepts, this change is applied at domain
model level first. This change has implications to the
software specification (e.g., the class diagram) and in
turn to the code which again emphasizes the strong
binding between model and implementation.

2.2.1 Conceptual Modeling

DDD is not a technology or a methodology - it is a
way of thinking and a set of priorities for accelerating
software projects that have to deal with complicated
domains (Landre et al., 2007).

Effective modeling as defined in (Evans, 2003) is
obtained by performing the following five activities.

e Binding the model and the implementation;

e Cultivating a language based on the model,;

213

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

e Developing a knowledge-rich model;
e Distilling the model;
e Brainstorming and experimenting.

As the implementation is strictly based on the domain
model they are “bound” with each other. The domain
model is used by the developers throughout the whole
development process. New insights and experiences
gained during the development could lead to changes
in the domain model. Whereas a change in the model
implies changes in the implementation.

The model contains terms which are part of the
ubiquitous language described in section 2.1. This
language is common to all participants involved in the
software project including domain experts and devel-
opers. Through the cultivation of a common language
base concepts become linguistically describable. In
this way, concepts could be communicated unambigu-
ously and translations between different notions and
concepts depending on the expert domains could be
prevented. The domain model is thereby used as the
backbone of the ubiquitous language.

The domain model is more than just a representa-
tion of data structures, it must contain the whole do-
main knowledge. It contains data structures and ob-
jects but also ideas, behaviors and enforced rules. To
a certain extent this so called knowledge-rich model
also contains system behavior and various knowledge
relevant for the domain and the system.

As the domain model contains all, but also only,
the relevant knowledge, relevant knowledge has to be
added continuously and knowledge that is not relevant
any more has to be removed from the model. Through
this process of adding and removing knowledge from
the model the desired domain model distills from the
total amount of domain knowledge.

The domain model is subject to changes through-
out the development process and could be improved
through brainstorming sessions and experimentation
meetings between domain experts and developers.
The output of the massive experimentations and dis-
cussions taking place is the distilled and knowledge-
rich model - the domain model.

2.2.2 Technical Modeling

In this section the development of the domain model
is being described from a more technical perspective.

The desired output of the domain model develop-
ment process is a formalized mapping of the technical
links inside a domain.

A domain typically consists of several separable
sub-domains in which it could be broken down. In a
domain model sub-domains are represented through
packages.

214

A self-contained sub-domain is called bounded

context. Bounded contexts serve as candidates for
the derivation of microservices in a later step (Mil-
lett, 2015). In the beginning, a concrete partitioning
in bounded contexts is not known. The partitioning
has to be developed in various iterations using an ex-
ploration and experimentation approach.
A context map defines the relations between bounded
contexts by the use of shared entities, i.e. shared
models and shared objects. The context map is an
overview page and should be part of every domain
model. It provides a brief overview over all rela-
tions between all bounded contexts. From a developer
team’s perspective a context map reflects the kind
of relationship their bounded context has to another
bounded context and indicates areas where inter-team
communication is imperative (Vernon, 2013).

Domain views subdivide the model. They depict
static and dynamic aspects of the domain and visu-
alize relations between domain objects. Static as-
pects are depicted by relation views. Whereas process
views depict the dynamic aspects of the domain.

Examples for a context map, a relation view and a
process view were given in section 3.2.

3 ELABORATION OF THE CSD
SERVER DOMAIN MODEL

In this section the creation process of the CSD Server
domain model and the lived experiences will be ex-
plained.

3.1 Ubiquitous Language for the CSD
Server Domain

The development of a domain model for the CSD do-
main started - similar to the approach described in
section 2.1 - with several meetings of CSD experts
and experienced technical personal. In the first meet-
ing the general concept was presented and explained.
Because of the abstract level of detail only a few ques-
tions were asked and answered.

The second meeting started with some questions
from the developers about aspects that were not men-
tioned yet or not completely understood. After that,
the developers presented their typical approach of de-
veloping a domain model for a new domain. At this
point, both sides - the domain experts and the techni-
cal experts - had a rough idea about the other experts
knowledge and procedures.

The next two meetings served as the communica-
tion platform for developing the ubiquitous language

Elaboration of a Domain Model for Migrating the Monolithic Software Architecture of a Data Management Server into a Microservice

explained in section 2.1. Every term mentioned in
these meetings which was related to the domain was
written down by the developers and explained by the
domain experts.

During this process, even the domain experts
learned something about their own domain by clearly
defining and differentiating the considered terms.
Fine-grained differences between the interpretations
of some terms among the domain experts were re-
vealed and discussed. The various questions of the
developers trying to figure out the meaning of any
term and his relation to other terms helped them to
get used to the domain step-by-step. It also helped
the domain experts to extract and transfer their do-
main knowledge to the developers.

The knowledge got formalized by establishing
a common vocabulary in which all domain-specific
terms were listed and clearly defined. This list of
terms and their definitions was produced by the de-
velopers which also presented them to the domain ex-
perts. After the presentation all definitions were ei-
ther accepted or discussed again. After two more iter-
ations all definitions were accepted and agreed upon
from both sides. The common vocabulary - reflect-
ing the current level of knowledge - was finally es-
tablished and committed on by all persons involved.
From this moment on, every person used only these
terms defined in the common vocabulary and only ac-
cording to the common understanding.

3.2 Domain Model for the CSD Server
Domain

After defining all terms and establishing a common
understanding of the core domain, the development of
the domain model for the CSD Server domain started.
Based on their actual domain knowledge, the tech-
nical experts created a first draft version of the do-
main model. This first draft was explained to and dis-
cussed with the domain experts. The developed do-
main model was not correct and complete in all points
and in general did not exactly represent all aspects of
the domain. The further disclosure and integration of
several new and previously not completely known de-
tails by the CSD experts led to new findings for some
terms and their relations. With the feedback of the do-
main experts and the complemented and adjusted vo-
cabulary and domain knowledge the model had been
revised by the technical experts. After several de-
velopment iterations and feedback meetings in which
the domain model was gradually updated and going
through several intermediate stages, the first complete
and correct version of the domain model had been cre-
ated.

Architecture

3.2.1 Context Map

An extract of the CSD domain model showing the
context map for the so called Catalogue Entry Stor-
age is illustrated in Figure 2 (please see Appendix).

The context map of the Catalogue Entry Storage
shows its three sub-domains represented as the pack-
ages FileManagement, CatalogueManagement and
DataModel. The package FileManagement consists
of the bounded context File. The CatalogueManage-
ment package consists of the bounded contexts Cata-
logue and CatalogueQuery. The package DataModel
contains the bounded context DataModel.

The context map defines the relations between
the mentioned bounded contexts by displaying their
shared entities. For example, the bounded con-
text File uses the shared object FileFormat and the
bounded context CatalogueQuery uses the shared ob-
ject CatalogueEntry.

3.2.2 Relation View

The relations between the bounded contexts and the
shared objects are described in relation views in fur-
ther detail. Figure 1 depicts the relations between the
shared objects File and FileFormat in the bounded
context DataModel.

@ has » EI

v has
| accordingto | - |
Data — FlleFEvrmat
i
1
| describes
1
 —
<< bounded context >>
DataModel

Figure 1: The relation view describing the File.

The relation view shows that the File has an Id and
Data. The Data is according to a FileFormat. The
DataModel describes the FileFormat. In this way, re-
lation views help to understand the relationships be-
tween different domain model entities in connection
with the bounded contexts they belong to.

3.2.3 Process View

Process views are used to model processes in the do-
main. Processes could for example be part of business
workflows within the domain or technical processes
taking place between systems. Figure 3 (please see

215

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

Appendix) visualizes the interaction between a Client,
the CatalogueEntry, the Catalogue and the FileMan-
agement.

The Client could ingest one or more files by pro-
viding a Fileld and the File itself. The File is provided
using an upload mechanism. The FileManagement
stores the File and makes it available for distribution.
This step is optional and could also be executed sev-
eral times if there is more than one file to be provided.

The next mandatory step is the creation of the Cat-
alogEntry. This step is again initiated by the Client
and validated by the CatalogueEntry.

After the creation of the CatalogueEntry the
Client initiates the storage of the CatalogueEntry.
The Catalogue distributes the CatalogueEntry and af-
terwards notifies all subscribers about the new Cata-
logueEntry.

4 CHALLENGES AND BENEFITS
OF USING A MICROSERVICE
ARCHITECTURE IN THE CSD
DOMAIN

Restructuring an existing system is in many cases a
system design decision as a result of a cost-benefit
analysis in favor of the potential benefits. But that
does not mean that there are only few problems to be
solved. Restructuring the architecture of an existing
system in an efficient way does not only need a clear
vision of the target structure but also a good knowl-
edge of the existing architecture. A new structure has
to be designed by technical experts who are experi-
enced in the development of the desired structure. But
the technical experts also have to understand the do-
main the system is being used at.

In case of the data management server considered
in this paper, the underlying standard that is being im-
plemented by that server is very complex and ambigu-
ous. As a consequence, it is not sufficient only to un-
derstand this standard but it is also necessary to get
a common understanding of how some aspect of the
ambiguous parts of the standard should be interpreted
in this context. Even the domain experts have to argue
about details and finally need to agree - in consulta-
tion with the technical experts - to a common inter-
pretation of the relevant aspects for the development
of the new structure.

After designing the desired target architecture a
migration path has to be elaborated. Because the re-
structuring process needs a certain amount of time in
which the software still has to be used, maintained
and developed further, in some cases a gradual alter-

216

ation approach with several intermediate stages is be-
ing applied. All of these intermediate stages have to
be planned and need to be aligned with the general
development plan of the software.

As described in section 3.2 the elaboration of a
domain model is an iterative and very communica-
tive process. It is a good way for technical experts
involved to get to know the domain as a whole and
also in detail. Moreover, it is a chance for the do-
main experts to learn how to formalize their domain
knowledge and to identify and eliminate ambiguities
in their own domain knowledge. The established do-
main model helps all involved persons to get used to
a potentially complex domain as easy as possible and
with the usage of an unambiguous common vocabu-
lary. Thus, even the design and development process
itself generates a valuable output, e.g., the list of terms
along with their definitions and the domain model, for
further design and development tasks.

From a more technical view a loosely coupled
software architecture following the principles of mi-
croservice architectures helps to efficiently maintain
and quickly adapt and roll out new versions of spe-
cific parts of the software. This is a major advantage
for a system that is constantly evolving but typically
only step-by-step and only in specific, isolated parts
of the software (the bounded contexts). While imple-
menting, testing and deploying the different parts of a
system separately the overall effort for software engi-
neering is significantly reduced.

An important assumption to do so is that the in-
terfaces between the bounded contexts are fixed and
don’t change over time.

A system consisting of such loosely coupled ser-
vices that interact with each other over fixed inter-
faces provides a good basis for an implementation fol-
lowing a microservice approach.

S CONCLUSION

The paper introduced the best practices for the devel-
opment of the domain model for a specific domain.

It started with a brief motivation why interoper-
ability is the key issue in the CSD domain and intro-
duces the goal of migrating an existing data manage-
ment server using a domain-driven design approach.

Then the typical best practice approach of work-
ing out an ubiquitous language as a basis for the cre-
ation of a domain model was presented. Afterwards,
the development of a domain model was described on
a conceptual level on one hand and on a more techni-
cal level on the other hand.

Elaboration of a Domain Model for Migrating the Monolithic Software Architecture of a Data Management Server into a Microservice

To provide some practical experiences the con-
crete approach of elaborating a domain model for the
CSD domain was described. The concrete approach
also followed the typical steps of first creating a ubig-
uitous language for the CSD domain followed by the
development of several different diagrams that also
serve as examples for the previously defined design
artifacts.

As a last major topic the challenges and benefits of
the usage of microservices in the CSD domain were
pointed out.

REFERENCES

Evans, E. (2003). Domain-Driven Design — Tackling Com-
plexity in the Heart of Software. Addison-Wesley.

Evans, E. (2015). Domain-Driven Design Reference — Def-
initions and Pattern Summaries. Dog Ear Publishing.

Landre, E., Wesenberg, H., and Olmheim, J. (2007). Agile
enterprise software development using domain-driven
design and test first.

Millett, Scott with Tune, N. (2015). Patterns, Principles,
and Practices of Domain-Driven Design. John Wiley
& Sons, Inc.

(NSO), N. S. O. (2018). STANAG 4559 Edition 4.

Vernon, V. (2013). Implementing Domain-Driven Design.
Addison-Wesley.

Zaschke, C., Essendorfer, B., and Kerth, C. (2016). Interop-
erability of heterogeneous distributed systems. In Sen-
sors, and Command, Control, Communications, and
Intelligence (C31) Technologies for Homeland Secu-
rity, Defense, and Law Enforcement Applications XV,
volume 9825, page 98250Q. International Society for
Optics and Photonics.

Architecture

217

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

APPENDIX

—

—

<< shared>>

<< shared>>

—

<< shared>>
<< package >> frlelr_e__ﬂ ___________ << package >>
1 . 1
FileManagement : File ! CatalogueManagement

I 1

i 1uses

1 1

<< bounded context >> | uses uses H << bounded context >>
. -, ———- L i 4 ——————————
File | ' Catalogue

| 'share
i
|

—

<< bounded context >>

I
|
I
I
I
I
|
|
I I
<< package >> Fllngrmat ! CatalogueEntry CatalogueQuery
DataModel : i 3 :
| | i i
' ! i | uses
<< bounded context >> share ' ! e edeemaoo2
DataModel ': i
' 4
1
. << shared>>

1 CatalogueEntryEntityGraph

Figure 2: An extract of the CSD domain model showing the context map for the Catalogue Entry Storage.

Client

CatalogueEntry Catalogue FileManagement

opt, loop J [fles fo upload]

v

store()

Z| distribute()

: B
1 1
1 1
1 1
1 1
ingestFile (Fileld,File) i i
' '
1 1
1 1
1 1
1 1
1 1
1 1

createCatalogueEntry()

validate() :
€ m oo |

storeCatalogueEntry()

distribute()

notifyAll(CatalogueEntry)

U P (R

Figure 3: The process view describing the ingest process.

218

