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Abstract: This extended abstract summarises the relevant works to the keynote lecture at VISAPP 2019. The talk dis-
cusses understanding object interactions from wearable cameras, focusing on fine-grained understanding of
interactions on realistic unbalanced datasets recorded in-the-wild.

1 INTRODUCTION

Humans interact with tens of objects daily, at home
(e.g. cooking/cleaning), during working (e.g. assem-
bly/machinery) or leisure hours (e.g. playing/sports),
individually or collaboratively. The field of research,
within computer vision and machine learning, that fo-
cuses on the perception of object interactions from a
wearable cameras is commonly referred to as ‘first-
person vision’. In this extended abstract, we co-
ver novel research questions, particularly related to
the newly released largest dataset in object interacti-
ons, recorded in people’s native environments: EPIC-
Kitchens.

2 DEFINITIONS

Object interactions could be perceived from different
ordinal-person viewpoints - where ‘ordinal’ is used
to generalise between first-, second- and third-person
views. A view is referred to as a first-person view, if
the interaction is captured by a wearable sensor, worn
by the actor performing the interaction itself. Conver-
sely, a second-person view is when the interaction is
captured by a camera of a co-actor, or a recepient of
the action. Finally, a third-person view, common in
remote static cameras, is when the interaction is cap-
tured by an observer not relevant to the interaction or
the actor during that interaction.
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3 DATASETS AND EPIC-Kitchens

For years, Computer Vision has focused on capturing
videos from a third-person view, with the majority
of action recognition datasets using a remote camera
observing the action or interaction (Marszalek et al.,
2009; Kuehne et al., 2011; Caba Heilbron et al., 2015;
Carreira and Zisserman, 2017).

Increasingly, first-person vision datasets have
been recorded, capturing full body motion such as
sports (Kitani et al., 2011), social interactions (Alletto
et al., 2015; Fathi et al., 2012a; Ryoo and Matthies,
2013) and object interactions (De La Torre et al.,
2008; Fathi et al., 2012b; Pirsiavash and Ramanan,
2012; Damen et al., 2014; Georgia Tech, 2018; Si-
gurdsson et al., 2018).

In 2018, the largest dataset on wearable cameras
was released through a collaboration led by the Uni-
versity of Bristol alongside the University of Catania
and the University of Toronto - http://epic-kitchens.
github.io/. EPIC-Kitchens (Damen et al., 2018) of-
fers more than 11.5M frames, captured using a head-
mounted camera in 32 different kitchens, with over 55
hours of natural interactions from cooking to washing
the dishes (Fig 1).

4 FINE-GRAINED OBJECT
INTERACTIONS

Datasets, such as EPIC-Kitchens, can offer unique
opportunities to studying previously unexplored pro-
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Figure 1: Sample frames from EPIC-Kitchens.

blems in fine-grained object interactions. A few of
these opportunities are highlighted here.

• Overlapping Object Interactions: Defining the
temporal extent of an action is fundamentally an
ambiguous problem (Moltisanti et al., 2017; Si-
gurdsson et al., 2017). This is usually resolved
through multi-labels, i.e. allowing a time-segment
to belong to multiple classes of actions. Howe-
ver, actual understanding of interaction overlap-
ping requires an space of action labels that cap-
tures dependencies (e.g. filling a kettle requires
opening the tap). Models that capture and predict
overlapping interactions are needed for a finer-
understanding of object interactions.

• Object Interaction Completion/Incompletion:
Beyond classification and localisation, action
completion/incompletion is the problem of
identifying whether the action’s goal has been
successfully achieved, or merely attempted. This
is a novel fine-grained object interaction research
question proposed in (Heidarivincheh et al.,
2016). This work has been recently extended to
locating the moment of completion (Heidarivin-
cheh et al., 2018) - that is the moment in time
beyond which the action’s goal is believed to be
completed by a human observer.

• Skill Determination from Video: Even when an
interaction is successfully completed, further un-
derstanding of ‘how well’ the task was comple-
ted would offer knowledge beyond pure classifica-
tion. In this leading work (Doughty et al., 2018a),
a collection of video could be ordered by the skill
exhibited in each video, through deep pairwise
ranking. This method has been recently extended
to include rank-aware attention (Doughty et al.,
2018b) - that is a novel loss function capable of
attending to parts of the video that exhibit higher
skill as well as parts that demonstrate lower skill
including mistakes or hesitation.

• Anticipation and Forecasting: Predicting upco-
ming interactions has recently gathered additional

attention, triggered by the presence of first-person
datasets (Furnari et al., 2018; Rhinehart and Ki-
tani, 2017). Novel research on uncertainty in anti-
cipating actions (Furnari et al., 2018), or relating
forecasting to trajectory prediction (Rhinehart and
Kitani, 2017) have recently been proposed.

• Paired Interactions: One leading work has at-
tempted capturing both the action and its counter-
action (or reaction), both from a wearable ca-
mera (Yonetani et al., 2016). This is a very ex-
citing area of research, still under-explored.

5 CONCLUSION

Recent deep-learning research has only scratched the
surface of potentials for finer-grained understanding
of object interactions. As new hardware platforms
for first-person vision emerge (Microsoft’s Hololens,
Magic Leap, Samsung Gear, · · · ), applications of fine-
grained recognition will be endless.
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