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Abstract: Various data-driven models are often involved in epidemiological studies, wherein the availability of data is 
constantly increasing. Accurate and, at the same time, interpretable models are preferable from the practical 
point of view. Finding simple and compact dependences between predictors and outcome variables makes it 
easier to understand necessary interventions and preventive measures. In this study, we applied a Fuzzy Logic-
based model, which meets these requirements, to predict the coronary heart disease (CHD) progression during 
a 30-year follow-up. The Fuzzy Logic-based model was automatically designed with an ad hoc Genetic 
Algorithm using the data from the Kuopio Ischemic Heart Disease Risk Factor (KIHD) Study, a Finnish 
cohort of 2682 men who were middle-aged at baseline in 1980s. Using cross-validation, we found out that the 
sample from the KIHD study is heterogeneous and after filtering out 10% of outliers, the predictive accuracy 
increased from 65% to 73%. The generated rule bases include 19 fuzzy rules on average with maximum 7 
variables in one rule from the initial set of 638 predictor variables. The selected predictors of CHD progression 
are informative and diverse representing physical aspects, behavior, and socioeconomics. The Fuzzy Logic-
based model creates a comprehensive set of predictors that enables us to better understand the complexity of 
illnesses and their progression. Moreover, the Fuzzy Logic-based model has potential to provide tools to 
analyse and deal with heterogeneity in large cohorts. 

1 INTRODUCTION 

At the present time, epidemiological studies involve 
a huge variety of analytical tools, starting from 
traditional statistical methods and ending with 
intellectual learning algorithms used to train 
advanced data-driven models. In many medical 
applications, artificial intelligence is a booming trend, 
which is supposed to yield fruitful results (Beam and 
Kohane, 2016). Indeed, some medical diagnostic 
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systems show the high accuracy and even surpass 
human expertise (Gulshan et al., 2016). To be 
effective, these methods require the reliable and 
representative data, which allows generalizations 
based on the extracted knowledge.  

There are many available cohorts describing study 
populations, which have recently been used in the 
descriptive and predictive modeling (Song and 
Chung, 2010). A typical analysis aims either at 
investigating influence of a particular risk factor on 

360
Brester, C., Stanovov, V., Voutilainen, A., Tuomainen, T., Semenkin, E. and Kolehmainen, M.
Evolutionary Fuzzy Logic-based Model Design in Predicting Coronary Heart Disease and Its Progression.
DOI: 10.5220/0008363303600366
In Proceedings of the 11th International Joint Conference on Computational Intelligence (IJCCI 2019), pages 360-366
ISBN: 978-989-758-384-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



disease development or estimating the probability of 
having the disease in the future based on predictors 
(Virtanen et al., 2018). Although many studies 
present such analyses, their limitations should be 
disclosed. Firstly, results depend on the sample size, 
its quality, and representativeness (Yan et al., 2017). 
The information from questionnaires, which is 
included in most of cohorts, is not fully reliable due 
to subjectivity and usually contains a lot of missing 
values (Lee and Yoon, 2017). Existing trends and 
expectations also add some bias to analysis 
(Ioannidis, 2005). Secondly, no validation is 
normally applied, which puts in doubt the possibility 
of extrapolating the results obtained (Riley et al., 
2016). Moreover, in predictive modeling, it is 
generally accepted to keep only those subjects who 
were healthy when they entered the study (Vartiainen 
et al., 2016). This implies that the model cannot be 
used to predict disease progression. Therefore, more 
sophisticated ways of handling epidemiological data 
should be applied to discover genuine potentials of 
predictive data-driven models.  

In this paper, we focus on one specific cohort, the 
Kuopio Ischemic Heart Disease Risk Factor (KIHD) 
Study (Kauhanen, 2013). Our goal is to predict the 
coronary heart disease (CHD) progression within a 
30-year follow-up for healthy subjects as well as 
those having CHD at baseline. For people with no 
CHD at baseline, “progression” means either 
diagnosed CHD or an acute myocardial infarction 
(AMI) during the follow-up, for people with CHD or 
AMI at baseline, it means a new AMI. As opposed to 
traditional epidemiological studies, we test a 
statistical approach with no preliminary knowledge-
based variable selection, include subjects and 
variables with missing values, and implement cross-
validation to assess the model performance 
objectively. 

We use a Fuzzy Logic-based model automatically 
designed with a modified genetic algorithm. 
Generally, Fuzzy Logic systems are easily 
interpretable, which makes them preferable for 
epidemiological studies. Besides, the presented 
approach has some other benefits: 1) to prevent 
overfitting, we limit the number of generated rules 
and their length; 2) the learning algorithm copes with 
missing values so that no imputation is needed; 3) no 
initial rule base is required from the domain experts, 
as the algorithm is capable of generating a meaningful 
rule base and evolving it during the heuristic search.  

The main point of the paper is neither the Fuzzy 
Logic-based model itself nor its performance, but the 
knowledge extracted about the KIHD cohort. Firstly, 
we show how heterogeneous the sample is: cross-

validation helps to reveal inconsistency between the 
training and test data (Shah et al., 2018). It might be 
explained with lots of outliers, mislabeling or absence 
of the informative predictors. Nevertheless, filtering 
out some subjects leads to the higher model 
performance and the improvement of homogeneity in 
the sample. Lastly, we analyze the generated fuzzy 
rules and the selected predictor variables, which are 
meaningful for predicting CHD and its progression.     

2 FUZZY LOGIC-BASED 
PREDICTIVE MODEL DESIGN 

The Hybrid Evolutionary Fuzzy Classification 
Algorithm (HEFCA) used in this study was originally 
presented by Stanovov et al. (2015) and further 
developed by Stanovov et al. (2016). The algorithm 
is based on an earlier study (Ishibuchi et al., 2013), 
and it implements a specific scheme to generate the 
compact and accurate fuzzy rule bases. 

The generated fuzzy logic predictive model relies 
on the fixed fuzzy terms for input variables, 
introducing four granulations into 2, 3, 4, and 5 terms 
of a triangular shape and “Don’t Care” condition 
(DC) required to simplify the rules. Figure 1 shows 
all the fuzzy terms which are used for each input 
variable at the same time. 

 

Figure 1: Fuzzy term granulation. 

The data preparation step consisted of 
transforming each input variable into the interval [0, 
1] before applying the fuzzy terms. The normalization 
was performed on the training sample and, then, 
applied to the test set. The HEFCA algorithm has 
previously been modified to handle missing values, 
so that these values are considered as “Don’t Care” 
condition during the fuzzy inference (Stanovov et al., 
2017). 

The main HEFCA steps are as follows: 
1) Sample-based initialization 
2) Selection (Tournament or Rank-based) 
3) Crossover 
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4) Mutation (3 levels) 
5) Michigan part (genetic or heuristic) 
6) Operator probability adaptation 
7) Stopping criterion check, return to step 2 (the 

number of generations left) 

The sample-based initialization used randomly 
chosen instances from the training sample to generate 
realistic rules. In this procedure, for each variable in 
the rule, one of 14 fuzzy terms, is chosen with the 
probability proportional to the membership function 
value for this particular term. After this, every term 
was replaced by “Don’t Care” condition with the 
probability of 0.9. The quality of each generated rule 
was estimated using the confidence value: 

 

ܣ൫݂݊ܥ → ൯݇	ݏݏ݈ܽܥ ൌ
∑ ఓಲሺ௫ሻೣ∈ೌೞೞ	ೖ

∑ ఓಲሺ௫ሻ

సభ

, (1)
 

where Aq is the q-th rule left part, k is the class 
number, μAq(xp) is the membership value for the input 
value xp. The class number corresponding to the 
newly generated rule was determined as the class 
having the highest confidence. The weight of each 
rule was estimated as: 

 

ܨܥ ൌ 2 ∙ ܣ൫݂݊ܥ → ൯݇	ݏݏ݈ܽܥ െ 1, (2)
 

so that the confidence of 1 is transformed to the 
weight equal to 1, and the confidence of 0.5 – to zero 
weight. If the generated rule had the confidence lower 
than 0.5, the rule was generated again until a valid 
rule is obtained. This filtering of the rules was shown 
to be highly competitive in (Ishibuchi et al., 2005). 

The number of rules was limited by NRmax, and 
during the initialization step, the rule base was filled 
with NRmax/2 rules. 

The fitness of each rule base was calculated as the 
linear combination of three main criteria, i.e., the 
error on the training sample with a weight of 100, the 
number of rules with a weight of 1, and the average 
rule length with a weight of 1. 

For selection, there were two different methods 
used: the linear rank selection and the tournament 
selection with a tournament size of 5. The crossover 
step used a specific operator, in which one newly 
generated offspring had the random number of rules 
from 1 to min(|S1|+|S2|, NRmax), where |Si| is the size of 
the rule base. For the new rule base, the rules either 
from the first or the second parent were chosen 
randomly. 

The mutation operator changed every term in the 
rule base to randomly chosen, including “Don’t 
Care” conditions with three probability levels: 
1/(3|S|), 1/|S|, 3/|S| corresponding to weak, average 
and strong mutations. 

In the Michigan part, the rule base was considered 
as a population of a genetic algorithm. The fitness 
value of the rule was estimated as the number of 
instances correctly classified with this specific rule. 
Three types of the Michigan part were applied: 
adding rules, deleting the worst rules, or replacing the 
worst rules with the newly generated. The number of 
rules to be added, removed or replaced was estimated 
as a rounded value of |S|/5, but the total number of 
rules was limited by NRmax. If there were two equal 
rules, only one of them received non-zero fitness, and 
the second was removed. Generating new rules was 
performed in two ways: in the first case, new rules 
were generated using the same heuristic as for 
initialization, while in the second case they were 
generated with genetic operators, namely the 
tournament selection, the uniform crossover, and the 
average mutation. 

To choose among the variants of presented 
genetic operators, the self-configuration scheme 
originally described by Semenkina and Semenkin 
(2014) was applied. The probability value was 
assigned to each operator, and initially set to 1/z, 
where z is the number of operators of a particular 
type, for example, 3 levels of mutation. The 
estimation of success of each operator type was using 
the averaged fitness values: 

 

ݐ݅ܨ݃ݒܣ ൌ
∑ ݂

ୀଵ

݊
൘ , ݅ ൌ 1,2… , (3) ,ݖ

 

where fij is the fitness the j-th offspring generated with 
the i-th operator type, and ni is the number of 
offspring generated with the i-th operator. The 
operator having the highest fitness was considered as 
the winning operator, its probability pi was increased 
byሺݖ െ 1ሻ0.5/ሺܰݖሻ  , while for other operators the 
probabilities were decreased by 0.5/ሺܰݖሻ, where N is 
the total number of generations. The probability of 
applying each operator could not be decreased lower 
than 0.05. The self-configuration procedure was 
applied to two selection types, three mutation types, 
and two types of generating new rules in the Michigan 
part, i.e., heuristic and genetic. 

3 DATA DESCRIPTION 

The KIHD population cohort study is an ongoing 
project launched in 1984 and carried out in Eastern 
Finland where the population has one of the highest 
risks of CHD (Salonen, 1988). The baseline 
examinations were performed in 1984–1989 for 2 682 
randomly chosen middle-aged men (42, 48, 54, and 
60 years) living in the city of Kuopio and the 
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surrounding area. The examinations included 
hundreds of physiological, clinical, and biochemical 
measurements as well as the information from 
questionnaires focused on physical, psychological, 
and socioeconomic aspects of health behavior.  

Although the KIHD project was mainly initiated 
to investigate risk factors of cardiovascular diseases 
(CVDs), other disorders such as cancer, diabetes, and 
dementia, have been constantly recorded too. The 
health of subjects is followed based on linkages to 
several national registers which provide the updated 
information on newly diagnosed cases of CVDs and 
other disorders yearly. 

In this paper, we focus on predicting CHD and its 
progression among the KIHD participants from 
1984–1989 up to 2016 based on the baseline 
measurements. The initial amount of predictor 
variables involved in the current study is 947. An 
outcome variable takes one of two possible values, 
which is defined according to the rules introduced in 
Table 1. Generally, there are three categories of 
subjects based on the CHD diagnosis at the baseline 
examination: “no CHD”, “CHD”, and “unknown”, 
which means that this information is missing. For the 
first “no CHD” group, progression corresponds to 
two possible situations: progression up to CHD and 
progression up to AMI (including death). For the 
second “CHD” group, progression means a new AMI 
(also including death). The third “unknown” group 
includes only subjects with incidents of AMI during 
the follow-up, which also means progression. The 
rest of this group has been excluded from modelling 
since we cannot be sure about the development of 
CHD for these subjects (the last line in Table 1). All 
other cases have “no progression” labels.   

Table 1: CHD development and corresponding labels. 

Baseline status  
(CHD diagnosed by 

a doctor) 

Diagnosis or event 
during the follow-up 

Label (outcome 
variable) 

no CHD CHD and/or AMI progression 

no CHD 
neither CHD nor 

AMI 
no progression 

CHD AMI progression 

CHD CHD no progression 

unknown 
(information is 

missing) 
AMI progression 

unknown 
(information is 

missing) 
CHD ? 

 

Due to inconsistency we excluded 1) subjects who 
had neither CHD nor AMI during the follow-up but 
died from other CVDs or as a result of any non-CVD 
reason as well as 2) subjects who self-reported a 
previous myocardial infarct at the baseline 
examination but had no diagnosed CHD. After these 
manipulations, we had 1402 subjects in the sample.    

Moreover, we excluded subjects with more than 
25% of missing values in the vector of predictors and 
variables with more than 10% of missing values. 
Eventually, we ended up with 1369 subjects (551 “no 
progression” and 818 “progression”) and 683 
variables in the sample. 

4 EXPERIMENTAL RESULTS 

In all the modeling experiments executed, the 
following parameters of HEFCA were used: the 
population size was 100, the number of generations 
was 500, and the maximum number of rules was 40.  

The first set of experiments using 5-fold cross-
validation led to the results presented in Table 2. 

Table 2: Fuzzy Logic model performance and the number 
of rules generated for every fold. 

Fold 
Accuracy on the 

training data
Accuracy on 
the test data 

The number 
of rules

1 0.742 0.672 16 

2 0.736 0.664 17 

3 0.726 0.667 20 

4 0.720 0.611 19 

5 0.721 0.641 22 

Average 0.729 0.651 18.8 

 

Compared to other statistical approaches utilizing 
the KIHD cohort (Brester et al., 2018a), the training 
accuracy was relatively high, whereas the test 
accuracy was much lower, which may also be 
observed in the convergence graphs presented in 
Figure 2.  

During the first 100 generations a clear decreasing 
trend was observed for both training and test sets, 
however, after this the decrease of the training error 
did not lead to any improvements on the test set, 
which may have several reasons, including overfitting 
and sample heterogeneity. The latter has been 
previously tested using other methods, and it was 
established that the sample has numerous outliers, 
i.e., instances which are significantly different from 
those presented in the sample (Brester et al., 2018b).  
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Figure 2: The number of wrong predictions on training and 
test samples during each run (fold) of cross-validation. 

For sample filtering, the entire available dataset 
(training and test examples together) was used to 
perform training within 25 independent runs of 
HEFCA, and for each subject we recorded if it was 
classified correctly (getting the score of 1), 
incorrectly (score = 0) or not classified, i.e., not 
described by any rule (score = -1). After these 
independent runs, subjects were sorted by the total 
scores, which are presented in a graphical form in 
Figure 3. 

 

 

Figure 3: Scores of outlier candidates. 

From Figure 3 it can be observed that most of the 
sample, around 800 subjects, is relatively easy to 
classify, i.e. they are having scores of 20 and more. 
However, other 600 subjects have much lower scores, 

which means that these subjects are either never 
classified using the generated rule base or have very 
small chance to be classified. Moreover, some 
subjects had negative scores, which mean that they 
were not even covered with fuzzy rules in many 
cases. 

Based on these observations and the knowledge 
about the sample structure, the next set of 
experiments was performed using three variants of 
sample filtering: deleting 5%, 10% or 15% of 
instances with the lowest scores (Figure 3). 

Table 3: Training and test accuracies for three filtered 
samples averaged over 5 folds. 

Percentage 
of removed 

cases 

Accuracy on 
the training 

data 

Accuracy on 
the test data 

The 
number 
of rules 

5%  0.763 0.686 20.2 

10%  0.796 0.731 17.2 

15%  0.852 0.766 19 
 

Removing outliers significantly improved the 
classification quality of rule bases designed by 
HEFCA, for both training and test samples (Table 3). 
Also, the training and test errors now had similar 
decreasing trends (Figure 4). 

 

 

Figure 4: The number of wrong predictions on training and 
test samples during each run (fold) of cross-validation, 10% 
outliers removed. 
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Figure 5: Examples of the rules generated by HEFCA. Each rule is separated with dashed borders. Rules of blue color 
corresponds to “no progression” predictions; rules of red color represent “progression” predictions. 

Additionally, we analyzed the most frequently 
used rules, which were generated in the experiment 
after filtering out 10% of the sample (Figure 5). Ten 
rules were randomly selected from different folds of 
cross-validation. There are some rules including only 
one variable, which usually has clear relevance to the 
output variable, e.g., cardiovascular disease before 
baseline or maximal oxygen uptake. So, the binary 
variable “cardiovascular disease before baseline” 
took 1 if a subject had CVD before the baseline 
examination and 0 otherwise. Looking at its term 
shape, we see that the value of 0 has the lowest 
membership, consequently, the rule is not applied in 
such cases, whereas the value of 1 has the highest 
membership and leads to the “CHD progression” 
prediction. On the contrary, only low values of the 
“maximal oxygen uptake” variable have the high 
membership and correspond to the “CHD 
progression” prediction. A similar analysis could be 
done for other variables to understand their 
relationship with the outcome.    

Longer rules combine predictors from different 
categories: behavioral characteristics, medication, 
diet, results of some exercises and tests, even 
socioeconomic variables. The most frequently used 
predictor variables are age; blood pressure, oxygen 
uptake, electrocardiogram in exercises; smoking and 
drinking; diseases in the past. 

Interestingly, having a similar term shape, the 
same predictors might be included in several rules, 
which correspond to different outcome values. This 

implies that in combination with different risk factors 
their influence on the outcome may vary.  

5 CONCLUSIONS 

This article introduced the results of the data-driven 
predictive modeling, where the Fuzzy Logic-based 
model was used to predict CHD and its progression 
for the subjects from the KIHD study. The specially 
modified genetic algorithm was applied to generate 
the fuzzy rule base from 683 predictors, which were 
available after data preprocessing. As opposed to 
traditional epidemiological studies, we did not 
exclude subjects with CHD diagnosed at the baseline 
examination but predicted its progression, which in 
fact is more reasonable from the practical point of 
view. 

The experimental results showed heterogeneity of 
the KIHD sample: filtering out 10% of the data led to 
the higher consistency between training and test sets 
in the cross-validation procedure and the accuracy 
improvement from 65% to 73%. The other important 
result was that the variables, which were selected for 
predicting CHD and its progression, were diverse but 
still informative, and them created a comprehensive 
and predictable set. 

As a next step, we are planning to expand the 
KIHD sample using genetical variables and perform 
similar modeling experiments as presented in this 
paper. Also, other cohorts should be involved to 
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investigate advantages of Fuzzy Logic-based models 
for epidemiological studies more thoroughly.   
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