
Speeding Up Evaluation of Structures for the Angry Birds Game

Laura Calle1, Juan-Julián Merelo-Guervós2 a, Mario Garcı́a-Valdez3 b and Antonio Mora-Garcı́a2 c

1Universidad de Málaga, Spain
2Universidad de Granada, Spain

3Instituto Tecnológico de Tijuana, Mexico

Keywords: Search-based Procedural Content Generator, Evolutionary Algorithm, Game Development, Angry Birds,
Level Generation.

Abstract: In this work, we present an original method based on evolutionary algorithms for generating basic structures
for the physics-based game Angry Birds, with the ultimate objective of creating Angry Birds levels with the
minimum number of constraints. We set out to evolve free-form structures, and this means searching in a
larger space. In this paper, we test how using a physics engine enables us to evaluate much more levels than
a game engine simulation. In order to do this, we compare the results of experiments using both types of
simulators and propose fitness functions accordingly. Results show the execution time drastically drops from
5 hours to less than 20 minutes on average.

1 INTRODUCTION

Angry Birds is a multiplatform video game created in
2009 by the Rovio Entertainment Corporation. Each
level of the game consists of a collection of structures
made out of blocks in which comic pig characters are
hiding; the player has to fire from a slingshot differ-
ent bird characters, each having different abilities and
moods. The objective of the game is to destroy all the
pigs by knocking down the structures or just hitting
them directly. The game relies on gravity to create
interesting puzzles by closely resembling the dynam-
ics of real-world structures. It has been approached
in different ways from the computational intelligence
community; in this paper we are interested in gen-
erating levels that are playable and interesting. This
has been proposed as a competition in several game-
related conferences (Stephenson et al., 2018; Khalifa,
2018), but could be also interesting from the perspec-
tive of generating levels to train or evaluate game-
playing bots, as was done by Zafar et al. in (Zafar
et al., 2019).

Search-based Procedural Content Generation
(SBPCG) is a type of a generate-and-test approach
to PCG which is usually tackled with Evolutionary

a https://orcid.org/0000-0001-8956-5304
b https://orcid.org/0000-0002-2593-1114
c https://orcid.org/0000-0003-1603-9105

Algorithms(EA) (Togelius et al., 2010). The chal-
lenges faced by SBPCG are not far from those found
in EAs; since they are search methods, they can be
a good option to implement this kind of systems. In
our case, as a first step to generate Angry Birds lev-
els, we will generate free-form self-standing struc-
tures using the Angry Birds basic blocks. The main
intention with this approach is to eventually generate
structures that can host pigs and that achieve aesthetic
quality mainly through variability and the fact that
they are not cookie-cutter repetitions of the same ba-
sic structure with some small variations; at the same
time, it becomes an interesting and challenging prob-
lem from the optimization point of view: using some
basic building blocks and a simulated gravity, to be
able to generate structures that do not collapse. That
is the main objective of this line of work.

The primary objective of this paper, however, is to
use a fitness function that is able to evaluate structures
without needing the simulator, advancing the state of
the art with respect to our previous paper (Calle et al.,
2019), where we needed to use the simulator itself to
check gravity, which incurred in much overhead, up
to several seconds.

In this paper, we will use what (Togelius et al.,
2010) calls direct fitness function, this function com-
putes a score from measurable features of the gener-
ated content. However, this fitness function is a time-
consuming task since it involves the generation of a

Calle, L., Merelo-Guervós, J., García-Valdez, M. and Mora-García, A.
Speeding Up Evaluation of Structures for the Angry Birds Game.
DOI: 10.5220/0008365502370244
In Proceedings of the 11th International Joint Conference on Computational Intelligence (IJCCI 2019), pages 237-244
ISBN: 978-989-758-384-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

237

graphic representation of the structure and the simu-
lation of the falling motion. If we have to evaluate
every single individual in the population, we will not
be able to cover enough of the free-form search space
to find a good enough solution. So we must minimize
the actual number of structures that are simulated by
applying heuristics to the data structure and assigning
it a fitness even before the simulation. Additionally,
we will try to improve the design of the fitness func-
tion so that it does not focus only on creating stable
structures, but also structures that have a better ap-
pearance and aesthetics.

This paper is organized as follows: in the next sec-
tion, we present the state of the art in this type of
level generation, as well as its relation to the prob-
lem of generating structurally sound structures. Our
proposed method for generating Angry Birds levels
is described next in Section 3. The new experiments
performed for this paper and its results are presented
next in section 4. We present our conclusions in 5.

2 BACKGROUND AND STATE OF
THE ART

PCG used for video game levels is relevant in inter-
national artificial intelligence competitions, such as
Super Mario Level Generation (Shaker et al., 2012),
General Video Games (Khalifa, 2018; Khalifa et al.,
2016), or recently, for Angry Birds (Stephenson et al.,
2018). This work is related to works presented in pre-
vious editions of the competition. The focus of the
latest edition (Stephenson et al., 2018) was on find-
ing entertaining levels. Fun was the main factor in
the evaluation of proposals; secondary factors were
creativity and difficulty. Six entries participated, of
which J. Yuxuan et al., were able to generate random
quotations with different components of a level; J. Xu
et al. generated levels that look like pixel images. A
third approach (by C. Kocaogullar) translated music
patterns to generate structures. The winner was Iratus
Aves, a new iteration of the work by M. Stephenson
and J. Renz (Stephenson and Renz, 2017; Stephen-
son and Renz, 2016), which follows a constructive
method. In this work, the likelihood of selecting a
certain block is given by a probability table, which
was tuned using an optimization method. Blocks are
then stacked following a tree structure.

A constructive method ensures local stability, but
not global stability, which must be evaluated once the
whole structure is completed. One problem with this
and other constructive approaches is that the variety
of structures created is going to be relatively small;
monotony leads to boredom, decreasing playability.

On the other hand, generated structures are guaran-
teed to be structurally sound, and constructive ap-
proaches are generally faster than search-based pro-
cedures.

An alternative to deal with these limitations is to
follow a Search-based approach. Thus, Lucas Fer-
reira and Claudio Toledo (Ferreira and Toledo, 2014a;
Ferreira and Toledo, 2014b) presented a solution us-
ing a Genetic Algorithm (GA) and a clone of Angry
Birds named Science Birds developed to evaluate the
levels. In this GA, levels correspond to individuals in
a population, each individual has a chromosome rep-
resented by an array of lists. Each list is a sequence
of blocks, pigs and predefined compound blocks, us-
ing an identification number. Each list is then placed
as a stack of elements in the game. A level has sev-
eral such stacks. This representation also includes the
distances between stacks. The population is initial-
ized randomly following a probability table defining
the likelihood of a certain element being placed in a
certain position within a stack. This implies that a col-
umn or stack shape is chosen beforehand, once again
ensuring stability, but decreasing playability by gen-
erating structures whose only differences are which
blocks are placed on top of which.

Levels are evaluated executing them in the sim-
ulator and checking their average stability, consider-
ing the speed of every block when erected – which
must tend to be zero when having a stable structure –.
The authors designed specialized crossover and muta-
tion operators, aiming to maintain the consistency of
newly generated solutions.

The approach proposed by Stephenson et al.
(Stephenson and Renz, 2019) is based on agents, and
is focused on offering custom experience for specific
players. This approach builds on the previous paper
(Stephenson and Renz, 2018), which tries to create
deceptive levels that are able to minimize damages to
the structure in sequences of shots. Although the fo-
cus of this paper is in another different direction, our
constructive approach to design levels could be com-
plemented with different fitness scores, such as the
ones presented in Stephenson’s papers.

However, this work proposes a different approach:
free-form evolution. If we look outside the domain of
game development and focus on structural optimiza-
tion in architecture, there are several proposals using
search-based algorithms. We can find a metaheuristic
called Cuckoo Search (Gandomi et al., 2013) which
performance was tested with structural optimization.
However, this optimization is heavily parametrized
and we are looking for the evolution of structures that
do not follow a predefined pattern. Another approach
for structure design is using Generative Grammati-

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

238

cal Encodings (Hornby and Pollack, 2001) where L-
system and its production rules are considered indi-
viduals. This method increases the number of gener-
ated patterns, but still restrains the formation of dis-
joint structures, for instance, a defensive tower before
a simple pigsty in our context.

We aim at following a realistic structure genera-
tion approach, without constraining it to a fixed form,
thus advancing the state of the art by allowing the cre-
ation of Angry Birds levels having any arrangement.
The next section will describe how we characterize
this problem and our approach to it. In our previ-
ous paper (Thors, 2019) we explored this approach
and found as one of its shortcomings the fact that the
evaluation of generated structures through the simula-
tor was lengthy and didn’t leave the algorithm enough
time to explore the search space. In this paper, we try
to tackle that problem, as well as take additional steps
to increase the complexity of generated structures.

3 PROBLEM DESCRIPTION

In a previous work, we used Science Birds (Ferreira
and Toledo, 2014a) as a starting point. Developed
by Lucas Ferreira and Claudio Toledo, Science Birds
has become the main open source Angry Birds sim-
ulator. However, we needed to modify the code in
order to produce an output with the additional data
needed to automate that work. The code is available
in the GitHub repository https://github.com/Laucalle/
ScienceBirds. The additional data contains the po-
sition and the average magnitude of the velocity of
each block that remains after the simulation. One ad-
vantage is that the whole experiment can run with-
out user intervention. Another advantage is that the
amount of time spent on the simulation of each level
is minimized to some extent. Reducing the simulation
time not only increases the number of evaluations by a
certain range of time, but it is also a factor in competi-
tions, where there is a fixed time limit for participants.

To further decrease simulation time, in this paper,
we use the Box2D (https://box2d.org) physics engine.
This engine, written in C++, was initially used for the
actual Angry Birds game. By just simulating the posi-
tioning of objects in memory, we can avoid launching
the whole game, using bitmaps and screen rendering,
which adds overhead to the process of fitness evalu-
ation. Even if in this Box2D simulation we do not
have the resistance of the blocks implemented, we can
test the stability of level much more efficiently, since
there is no overhead in computing things unrelated to
Physics, such as the GUI. If we do not have block re-
sistance in a simulation, blocks will not be destroyed

when they hit each other; in that case, the fitness func-
tion should not take into account before and remain-
ing blocks.

Once we chose the simulator that is going to be
used to evaluate the fitness of a level, we must design
the fitness function. As obvious as it might seem, the
main feature of a sound level is that it is not in mo-
tion, so it seems reasonable to evaluate its complete
stillness as opposed to its speed. We must consider
every single block in doing this.

f itnessind =
1
|V |

b

∑
i=0

Vi +Pbroken · (b−|V |)

When using Science Birds, the average magnitude
of velocity is provided for each block. We note this
as V , with |V | being the cardinality of the set. The
number of blocks in an individual is b, and it can dif-
fer from the cardinality of V since we do not track
collapsed blocks. The number of broken blocks is
b− |V |, and it is multiplied by a penalization factor
since a level whose blocks break without user inter-
action would not be considered valid. Blocks can be
broken when they fall from a certain height or col-
lide with another object. We set the penalization fac-
tor Pbroken to 100 since objects in a level do not usu-
ally reach that velocity. The goal of this evaluation
is then to separate non-valid levels from potentially
good ones.

In the experiment, presented we changed this fit-
ness function to the function shown below, after ob-
serving the results for the previous experiments 4:

f itnessindV 2 = max(V)

As we said before, simulating a level is a highly
time-consuming task, much more when we simulate
the whole game, it is in the order of seconds, which
makes it almost unfeasible for our purpose. Next, we
propose a method for evaluation, in which not all lev-
els need are simulated.

Some situations can indicate that a level has a very
slim probability of being valid. For instance, a block
begins suspended in a position to far from the ground,
or there are blocks with an overlapping position. If
this is the case, then we skipped the simulation of the
level.

When having a structure where the object closest
to the ground is far above, it will likely collapse from
the impact along with all the other blocks above. For
this reason, we will not be simulating levels that have
all their blocks higher than a certain threshold. The
threshold used is 0.1 in-game units, and the penalty
applied to the distance is 10:

Speeding Up Evaluation of Structures for the Angry Birds Game

239

fdistance =

{
Pdistance ·Dlowest , if Dlowest > threshold
0, otherwise

The other factor is the number of overlapping
blocks. To determine if two convex shapes inter-
sect, we can use the separating axis theorem (Ericson,
2004) used in game development for collision detec-
tion. A level with blocks that occupy the same space
is not likely to be stable, as the Unity Engine under-
lying the simulator will solve the issue moving the
blocks until there is no collision. Unity implements
this behavior, and as it is proprietary software, it is
not possible to know or change what it does. So, a
penalty is also applied and the level is not simulated
either.

For this case it is foverlapping = Poverlapping ·
Noverlapping where the first factor is a penalty set to 10
and the second is the number of blocks overlapping
with each other.

In some of the late experiments, we will substi-
tute the fdistance with the gap in the Y-axis. We then
project all blocks on the Y-axis and calculate the range
of values in the Y coordinate that are not inside the
feasible range. This gap is treated the same way as
fdistance (same penalization and threshold) so we call
it fY−axis:

fY−axis =

{
Pdistance ·PrY−axis, if PrY−axis > threshold
0, otherwise

If both fdistance and foverlapping are 0 then the level
is suitable for simulation and fitness is calculated as
f itnessind . We could consider this approach as an
overpenalization but exploring unfeasible regions en-
tails a serious overhead that we need to minimize
(Runarsson and Yao, 2003). On the other hand, lev-
els with multiple or even all blocks broken during the
simulation are not feasible either but in this case, run-
ning the simulation is necessary. In this last case, pe-
nalization does not prevent the algorithm from explor-
ing that region.

Since one of the perceived benefits of SBPCG is
the expressiveness and variability, it seems reasonable
to use a flexible representation. We will design the
GA to allow a less directed search than previous pro-
posals while keeping the representation simple.

Individuals are composed of a list of blocks; we do
not consider, TNT boxes, or pigs in this paper since
we are focused only on the generation of structures.
These building blocks have the following attributes:

• Type: there are only eight basic blocks that can be
placed in the level with different shapes and sizes;
they are represented by an integer between 0 and
7.

• Position: x and y coordinates from the centre of
the block. Values are in game units and are repre-
sented as floating point numbers.

• Rotation: rotation of the basic block in degrees.
Only four different rotation angles are considered:
0, 45, 90 or 135 degrees represented as integers
between 0 and 3.

• Material: there are three types wood, metal and
glass, which determine the durability of the block.
However, this does not affect their stability, so we
only use wood material for now.

Using this representation a gene representing a
single block will be formed by two integers (type and
position) and two floating point numbers (x and y co-
ordinates).

Individuals are a collection of genes, in the same
way a level is a collection of building blocks. The
number of blocks is variable and the order in which
they are listed is not important.

We store the fitness of the worst individual that has
been tested in-game so that the value of not tested lev-
els is always above —it is a minimization problem—
the in-game tested levels; the starting point for fitness
of such individuals is the worst in-game score.

This penalization is calculated using the distance
of the lowest block to the ground, which can be easily
obtained, and the number of blocks that overlap. This
requires a bit more of computation, so it will be stored
and set in the initialization of the individual. When a
gene is modified, the number of overlapping blocks is
recalculated for that specific change.

Considering all of the above, the chromosome ob-
ject is composed by:

• A non-fixed list of genes.

• A fitness value.

• A penalty (set to False for in-game evaluated lev-
els).

• The number of overlapping blocks (calculated).

Initialization is done randomly, with each individ-
ual having a random number of genes, which are ini-
tialized by several methods:

• Random: selects a random number for each at-
tribute of the gene.

• Non-overlapping: also selects a random number
but the gene is only added to the chromosome if it
does not overlap with an already existing gene.

• Discrete: selects a random number for type and
rotation, but the position must be multiple of the
dimensions of the smallest block (blocks will be
aligned).

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

240

• Discrete non-overlapping: it combines the second
and third initialization methods.

• Discrete with a set of pre-configured blocks: first
it includes a set of blocks, and then adds blocks
following the third method until it reaches the de-
sired number of blocks. The configurations used
are the compound blocks found in (Ferreira and
Toledo, 2014a).

Candidates for reproduction are selected using
tournaments. Two individuals are chosen from the
population and the best will be a parent in this gen-
eration. This is repeated until a certain percentage of
pairs have been reached. It is important to note that
individuals chosen are not removed from the popula-
tion and therefore they can appear several times in the
list of parents.

Once the parents have been selected, we chose
from two different methods of combination:

• Sample Crossover: gives a single individual per
parent pair. It takes all genes from both parents—
excluding genes that are repeated—and randomly
takes a number of them to create the new individ-
ual. The number of blocks is the minimum be-
tween the maximum number of blocks allowed,
the mean of the two parent individuals and the
number of distinct genes.

• Common Blocks: produces two individuals. The
common genes to both parents are passed on to
both children. The remaining genes are randomly
distributed to each child, half to one and half to
the other.

There are four different types of mutation:

• Rotation: rotation is represented as an integer (it
is discretized), so it adds or subtracts one to the
current value.

• Type: similarly to rotation mutation.

• Position X: a real value between 0 and 1—
excluding 0—is added or subtracted from the
value of the position X.

• Position Y: same as position X mutation, for posi-
tion Y.

They are all applied to random members of the
population.

The new generation is produced following an eli-
tist strategy. Best individuals in both the old popula-
tion and their offspring pass on to the next generation,
maintaining the size of the population.

The information that describes a level can be
too complex to have a binary representation as pure
genetic algorithms suggest, so the framework used
should be flexible enough to support complex data

structures. This prevented us from using other frame-
works and therefore a new framework was imple-
mented. The source code is open source and can be
found again in GitHub at https://github.com/Laucalle/
AngryBirdsLevelGenerator.

In order to assess the proposed methods and verify
if they meet our objective, we performed a series of
experiments presented in the next.

4 EXPERIMENTS AND RESULTS

We set out to evolve free-form structures, and this
means searching in a larger space. In this experi-
ment, we test how using a Physics engine enables us
to evaluate much more levels than a game engine sim-
ulation. In order to do this, we compare the results
of experiments with both simulators. Tables 1 and 2
show an overview of the results, including former and
present experiments. Experiments E1 to E4 were im-
plemented using a game engine simulator while E5
and E6 a physics engine. The results of experiments
1 to 4 were presented in (Thors, 2019); the need to
speed up evaluation prompted us to move the evalu-
ation of the physics of the structure to the program
itself, thus avoiding the overhead incurred in entering
the simulator.

4.1 Removing Game and Penalizing
Gaps in Y-axis

The main problem with the previous experiments
(E1-E4) was the time needed to load the Science
Birds simulation environment so that levels could be
actually run, which needed several seconds for load-
ing and obtaining results. So the main objective of
this experiment was to find a way to get rid of the in-
game simulation. In order to do that, we will use the
Box2D (Catto, 2011) Physics engine we mentioned
earlier.

Since game physics do not usually resemble real
world physics we adjusted the parameters so this sim-
ulation and the game behave in the same way. As we
can see in table 1 the execution time drastically drops
from 5 hours (in experiment 4) to around 6 minutes
on average, even when running more generations in
the process. This achieves our first objective, which
was to speed up execution so that we could perform
a more thorough exploration of the space of Angry
Birds structures.

This opened the way for performing more oper-
ations on the individuals. In this case we chose to
penalize not only the distance to the ground but also
the gaps in the Y-axis, which will make objects drop

Speeding Up Evaluation of Structures for the Angry Birds Game

241

Table 1: Summary of the execution of the last generation in 15-20 runs for each experiment. 40 runs for E5 and E6. G:
number of generations, E: experiment number.

Time(h) σ G σ

E1 0.89 (0.59) 100.0 (0)
E2 1.002 (1,97) 155.087 (240.56)
E3 1.76 (0.6) 76.625 (42.3)
E4 5.03 (1.46) 365.929 (158.09)
E5 0.099 (0.1) 121.2 (96.89)
E6 0.788 (0.124) 1000.0 (0)

Table 2: Summary of the results of the last generation in 15-20 runs for experiments 1 to 4, 40 runs for E5 and E6.

Best σ Avg σ Worst σ

E1 61.334 (133.02) 383.701 (106.14) 510.515 (133.04)
E2 110.66 (142.21) 327.547 (238.33) 367.895 (260.83)
E3 0.0015 (0.003) 0.54 (0.24) 0.828 (0.34)
E4 0.0018 (0.003) 0.203 (0.068) 0.2997 (0.1)
E5 1.249 (1.257) 1.276 (1.231) 1.288 (1.219)
E6 1.031 (0.853) 1.27 (0.834) 1.328 (0.819)

Figure 1: One of the solutions from 4.1.

and maybe break. This will encourage individuals to
grow vertically by giving a better score to those with
contiguous vertical blocks and not only horizontally
like in previous experiments. This changes the fitness
function, so we will have to compare by the actual
obtained structure, one of which is shown in Figure 1.

In general, this penalization of gaps creates a
faster path to stable structures. Still, this path leads to
mostly flat structures with some block placed higher,
but still in unstable positions, which are structurally
solid, but not interesting.

4.2 Changing the Evaluation Function

Observing results from the previous experiment we
realized that what evolution found was that laying
many blocks on the ground was enough to get a high
fitness: the average speed, which was minimized dur-
ing evolution, was then obviously low and it will place
unstable blocks to cover gaps in Y-axis. In order to
correct this behaviour we changed the fitness function

Figure 2: One of the solutions from 4.2. Blue blocks are
composed of ice, while brownish blocks and poles are com-
posed of wood. In Angry Birds, blocks differ in flexibility,
weight but also fragility.

to take into account the fastest moving object instead
of the average:

f itnessindV 2 = max(V)

Additionally, we initialized levels including one of a
list of pre-configured blocks in addition to the random
initialization used until now.

This makes the fitness value depends on just one
gene, although it can be a different one each time,
since the fastest moving element might vary with mu-
tation. The improvement of solutions to find accept-
able ones slowed down again, with a different fitness
function we cannot compare the fitness value with the
rest of the experiments.

Table 1 shows that this again increases the time
needed to carry out the simulation. It also changes
the fitness landscape. Looking at Table 2, what we
can compare mainly is the σ and difference between
best, average and worst; fitness scores are not directly
comparable since they introduce a new term. What

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

242

Figure 3: Another solution for E64.2. Despite some initial
movement, this eventually stood still.

we see is that the variability of solutions is decreased
with respect to the previous experiment, showing that
this change increases the robustness of the algorithm,
but also its exploration capability, since the difference
between the best, worst and average is bigger than in
the previous experiment. Figures 2 and labelf:e6:2
also shows how this fitness generates structures that
are stable but also have some interesting appearance,
including space that could be occupied by pigs below
the tables. At the same time, this also shows some
limitations of this approach, including the fact that
three tables are stacked one on top of each other, that
there are maybe too many poles supporting them, and
that there are small blocks scattered here and there.

The results here show that evolution is able to gen-
erate structures that do not collapse and also have
some appearance that could be interesting. However,
constraining evolution in particular ways might lead
to non-interesting structures or a local minimum in
the evolutionary landscape. Also, generated struc-
tures might be sub-optimal in the sense that they
might contain too many elements that do not really
contribute to the structure. It would be complicated
to codify this into a constraint, but it could be taken
into account in a post-processing of the structure us-
ing some greedy algorithm.

On the other hand, this last experiment fulfills, at
least partially, the objectives of this paper: being able
to find diverse, aesthetically pleasing structures fast,
without compromising, in advance, with a specific
building pattern.

5 CONCLUSIONS AND FUTURE
WORK

This paper was developed with the main objective of
speeding up the implementation of a system for gener-
ating free form Angry Birds levels; previously, we im-
plemented an EA that optimized stability of generated

structures, an objective that was achieved in a pre-
vious paper. However, there were several problems
with these structures generated initially: since their
main optimization criterion was stability, they were
mostly blocks lying on the floor; this was a local min-
imum and it was difficult to escape for that; addition-
ally we needed to submit the structure to the simulator
and obtain information (such as block speed) from it
in order to evaluate those structures that couldn’t be
eliminated due to constraints. In this paper we tried
to move in two different directions: incorporating a
Physics engine to the main evolutionary algorithm to
minimize the need to use the Science Birds simulator,
and also try and incorporate better criteria of structure
evaluation so that they build up the kind of structures
we are used to in Angry Birds.

That is why, besides incorporating the Physics en-
gine, which sped up evaluation considerable and al-
lowed us to explore a bigger space, we took height
into account in fitness, so that higher structures were
more varied and also more aesthetically pleasing.

The main challenges ahead lie in the inherent
multi-objective nature of this problem. The fact that
the structures need to be varied can be taken into
account by the very nature of the generation prob-
lem and need not be included into fitness; this fit-
ness should, however, consider aesthetics. Aesthet-
ics is part constraint (for instance, symmetry could
considered as such constraint), but also a score that
we would need to maximize. What this score could
be applied to a structure is not, a priori, straightfor-
ward. Adding to this requisite, the level should be
challenging to the user, so that it should include a cer-
tain amount of protection for the hosted pigs, which
would make it, as hinted, a multi-objective problem.
A multi-objective problem multiplies the size of the
search space, so additional speeding up techniques
should probably have to be taken into account.

If we pay attention at the stages of evolution in
this work, there is also room for improvement in the
genetic operators. For example, the initialization pro-
duces a small amount of valid individuals which sug-
gested that an elitist strategy for selection would work
best. However, new experiments will help to better
balance exploration and exploitation. An interesting
addition would be to add building operators that pile
blocks on structures that are already stable.

ACKNOWLEDGEMENTS

This paper has been supported in part by Deep-
Bio (TIN2017-85727-C4-2-P) from the Ministerio de
Economı́a y Competitividad in Spain.

Speeding Up Evaluation of Structures for the Angry Birds Game

243

REFERENCES

Calle, L., Merelo Guervós, J. J., Garcı́a, A. M., and Garcı́a
Valdez, J. M. (2019). Free form evolution for angry
birds level generation. In Kaufmann, P. and Castillo,
P. A., editors, Applications of Evolutionary Compu-
tation - 22nd International Conference, EvoApplica-
tions 2019, Held as Part of EvoStar 2019, Leipzig,
Germany, April 24-26, 2019, Proceedings, volume
11454 of Lecture Notes in Computer Science, pages
125–140. Springer.

Catto, E. (2011). Box2D: A 2D Physics engine for games.
Ericson, C. (2004). Real-time collision detection. CRC

Press.
Ferreira, L. and Toledo, C. (2014a). A search-based ap-

proach for generating angry birds levels. In Computa-
tional intelligence and games (cig), 2014 ieee confer-
ence on, pages 1–8. IEEE.

Ferreira, L. N. and Toledo, C. F. M. (2014b). A search-
based approach for generating angry birds levels.
2014 IEEE Conference on Computational Intelligence
and Games, pages 1–8.

Gandomi, A. H., Yang, X.-S., and Alavi, A. H. (2013).
Cuckoo search algorithm: a metaheuristic approach
to solve structural optimization problems. Engineer-
ing with computers, 29(1):17–35.

Hornby, G. S. and Pollack, J. B. (2001). The advantages
of generative grammatical encodings for physical de-
sign. In Evolutionary Computation, 2001. Proceed-
ings of the 2001 Congress on, volume 1, pages 600–
607. IEEE.

Khalifa, A. (2018). The general videogame ai
competition - level generation track. https:
//github.com/GAIGResearch/gvgai/wiki/Tracks-
Description\#level-generation-track. Accessed:
2018-11-05.

Khalifa, A., Perez-Liebana, D., Lucas, S. M., and Togelius,
J. (2016). General video game level generation. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2016, GECCO ’16, pages 253–259,
New York, NY, USA. ACM.

Runarsson, T. P. and Yao, X. (2003). Evolutionary search
and constraint violations. In Evolutionary Computa-
tion, 2003. CEC’03. The 2003 Congress on, volume 2,
pages 1414–1419. IEEE.

Shaker, N., Togelius, J., and Yannakakis, G. (2012). Mario
ai championship - level generation track. http://www.
marioai.org/LevelGeneration. Accessed: 2018-11-05.

Stephenson, M. and Renz, J. (2016). Procedural generation
of complex stable structures for angry birds levels. In
Computational Intelligence and Games (CIG), 2016
IEEE Conference on, pages 1–8. IEEE.

Stephenson, M. and Renz, J. (2017). Generating varied, sta-
ble and solvable levels for angry birds style physics
games. In Computational Intelligence and Games
(CIG), 2017 IEEE Conference on, pages 288–295.
IEEE.

Stephenson, M. and Renz, J. (2018). Deceptive angry birds:
towards smarter game-playing agents. In FDG.

Stephenson, M. and Renz, J. (2019). Agent-based adaptive
level generation for dynamic difficulty adjustment in
angry birds. arXiv preprint arXiv:1902.02518.

Stephenson, M., Renz, J., Ferreira, L., and Togelius,
J. (2018). 3rd angry birds level generation com-
petition. https://project.dke.maastrichtuniversity.nl/
cig2018/competitions/\#angrybirds. Accessed: 2018-
11-05.

Thors, A. U. (2019). A real title. In Real Proceedings, pages
125–140.

Togelius, J., Yannakakis, G. N., Stanley, K. O., and Browne,
C. (2010). Search-based procedural content genera-
tion. In European Conference on the Applications of
Evolutionary Computation, pages 141–150. Springer.

Zafar, A., Hassan, S., et al. (2019). Corpus for angry birds
level generation. In 2019 2nd International Confer-
ence on Computing, Mathematics and Engineering
Technologies (iCoMET), pages 1–4. IEEE.

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

244

