
Identification of User Activity Types using Issue Tracker Events

Inna Kurnosova1, Dmitrii Timofeev2,3 a and Alexander Samochadin2,3

1NeuroTech Lab, Institute of Applied Mathematics and Mechanics,
Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

2Mobile Device Management Lab, Institute of Computer Science and Technology,
Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

3Higher School of Software Engineering, Institute of Computer Science and Technology,
Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Keywords: Repository Mining, User Activity, User Modeling, Software Engineering.

Abstract: The paper studies the roles users play when contributing to open-source projects using modern code hosting
and issue tracking platforms like GITHUB. Role identification has been performed using cluster analysis
of the feature vectors generated from the events corresponding to user activity. The method was applied to
three open-source projects of different sizes. The roles of maintainers and developers (core team), casual
contributors, and watchers were identified, as well as the differences in work organization in these projects.

1 INTRODUCTION

The processes of software development highly vary
from team to team and often lack proper documenta-
tion. This situation makes it difficult for new mem-
bers to adapt to the way the team works. It also com-
plicates the estimation of time and cost for customers:
they often cannot reliably transfer the previous experi-
ence to a new company. Software industry developed
a set of practices to fight the problem. In commer-
cial setting, many companies use variations of more-
or-less standard agile processes, and developers may
successfully apply their soft skills in a new setting.
Customers may use the Capability Maturity Model
(CMM) framework to estimate risks.

At the same time, many teams don’t use certified
processes, and their approaches to software develop-
ment may vary a lot because of geographic distri-
bution of participants, the level of their involvement
into the project, or the developers background. This
informal approach to the software development pro-
cess is typlical for community-developed open-source
projects where participants work in their free time and
do not formally report to managers. Knowledge about
the properties of the project management in an open-
source project (e.g., the estimated bug report reaction
time) is beneficial for planning participation or inte-
gration of the code into a commercial project.

a https://orcid.org/0000-0003-2409-8412

Even if exact processes the team implements are
unknown, it is still possible to make predictions based
on the team’s public activity. Most developers use
some version control system, with Git being the most
popular (StackOverflow, 2018). Git hostings like
GITHUB, BITBUCKET, and GITLAB, besides the
GIT service by itself, provide issue management, bug
tracking, time tracking, pull requests, wiki, release
management, continuous integration, and similar ser-
vices. Each service assumes a specific base process
(e.g., a set of states that forms the life cycle of an is-
sue). This base process influences the procedures per-
formed by the developers who use the service. More-
over, services record all users’ actions and often pro-
vide APIs to access them.

We propose to view project management services
not only as code repositories but as repositories of
process data as well. We can use this data to get in-
sight into the team and practices. In this paper, we
utilize this approach to infer the roles of GITHUB
users in projects they participate. For that, we have
selected three active GITHUB repositories of differ-
ent sizes and aggregated user activity for one month.
Using this data, we try to answer two questions: what
roles do users play in the project, and how do they
organize the work.

Kurnosova, I., Timofeev, D. and Samochadin, A.
Identification of User Activity Types using Issue Tracker Events.
DOI: 10.5220/0008383604050411
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 405-411
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

405



2 RELATED WORK

Mining of code repositories is a widely employed re-
search method in the domain of software engineering.
The rich project management functionality of mod-
ern code hosting platforms allows researchers to study
not only the source code changes, but also the more
complex aspects, including project life cycle, user at-
tention, and communications between developers. A
short review of topics presented in GITHUB mining
papers can be found in (Cosentino et al., 2016).

There are three main research directions in the
area of repository-based user modeling:
• project ecosystem, demography, and diversity,
• team structure and interaction between users,
• user activity and their impact on the project.

Ecosystem studies deal with the impact of the
developers’ personalities and team structure on the
project development process. Liao et al. (2019) mea-
sure qualitative metrics of software projects such as
numbers of forks, watchers, issues, pull requests, pull
request comments, and core developers. They define
the notion of a “healthy ecosystem” and do a quantita-
tive study of several large open-source projects from
this point of view. A series of papers by Vasilescu
et al. (2015a,b) studies the diversity of open-source
software teams, especially from the point of view of
gender. Bird and Nagappan (2012) describe the result
of developers’ geographical locations and affiliations
analysis. Robbes and Röthlisberger (2013) studied
the impact of the developer expertise on the devel-
opment time. The expertise measure uses the num-
ber of commits and their age as features. Xavier et al.
(2014) measure the popularity of GitHub users, which
they define as the number of followers. They describe
each user as a feature vector using the user role (either
reporter or assignee), the time since registration, the
number of commits, and the number of collaborating
projects as features.

The team demography and the motivation of de-
velopers directly influence the team structure and ac-
tivity. Vasilescu et al. (2015a) describe four kinds of
teams:
• fluid teams where participants are volunteers that

start and stop contributing at wish;
• teams working on commercial projects using

GITHUB infrastructure and following industrial
project management practices, including transfer-
ring developers between projects;

• academic teams involving students and re-
searchers whose participation is shaped by aca-
demic term boundaries, course deadlines, and
available funding;

• stable and usually small teams that do not change
much with time.
An essential feature of open-source projects is the

involvement of external contributors. These contrib-
utors do not belong to the core team but participate
in the development process in several ways. In par-
ticular, they create and discuss issues and contribute
patches to the code and documentation. While core
developers have direct write access to the repository,
external committers depend on the core team mem-
bers to accept their pull requests into the project. The
core team may use different practices when working
with outsiders, e.g., by differently processing the is-
sues created by team members and external contribu-
tors (Grammel et al., 2010). Some developers never
manage to get their pull requests accepted into the
project (Padhye et al., 2014), that is probably related
to their failure to comply with the project rules or code
quality standards.

More centralized work distribution, when most is-
sues are assigned to members of a small core team,
increases the issue closure rate while increasing the
number of project members decreases the long-term
issue closure rate (Jarczyk et al., 2018).

A systematic review of the online community re-
search is presented in (Malinen, 2015).

From the user activity point of view, there are two
significant aspects.
• Work area: in what parts of the project the user is

interested?
• Work roles: what operations does the user per-

form?
The task of user interests and work area detection

has been actively researched, especially from the side
of recommendation algorithms that predict, for exam-
ple, which issues or pull requests may be relevant to
the user (Jiang et al., 2017; Yu et al., 2016; Soares
et al., 2018). Another approach the detection of user
interests involves the analysis of the social graph cor-
responding to users and their interactions (Bidoki and
Sukthankar, 2019; Buntain and Golbeck, 2014).

The roles that users play in software projects are
less researched. Yu and Ramaswamy (2007) proposed
to use hierarchical clustering of feature vectors cor-
responding to users activities. They identified two
roles, core members and associate members, and an-
alyzed the interaction between these groups. Com-
mit history was used in (German, 2006) to determine
the roles of specific participants of the PostgreSQL
project. Gousios et al. (2008) introduced a metric for
measuring developers contributions using detailed ac-
tion statistics. User roles based on social interaction
may be detected using social graph mining techniques
(Buntain and Golbeck, 2014).

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

406



3 RESEARCH QUESTIONS

As we can see, user activity in software repositories
and issue tracking systems, such as GITHUB, is an
active research topic, but it is insufficiently developed
in the aspect of developer roles. In this paper, we ad-
dress the following questions.

1. What roles do developers play in the development
process?

2. Do developers differ in their working schedule?

We try to answer these questions by analyzing the
GITHUB event logs for several open-source software
projects, and define the roles as frequency distribu-
tions on the set of action types that correspond to the
user activities.

4 DATA DESCRIPTION

We studied events which occurred during approxi-
mately a month from three GITHUB repositories:

• acl-anthology1 (R1): a research community initia-
tive of maintaining an open publication archive,

• coc.nvim2 (R2): an auto-completion engine for
Vim editor, selected as a random active open-
source project,

• react3 (R3): a large-scale open-source project
driven by a corporate team.

Table 1 shows the statistics of repository activity.
In this study, we try to classify users concerning

their activity in the project. We analyze the stream
of events users produce by interacting with GITHUB
services:

• watching and forking the repository;

• opening, closing, reopening, and commenting is-
sues and pull requests;

• pushing commits to the repository.

All these events have been obtained using
GITHUB API. Although users may participate in sev-
eral projects, we restrict our analysis to studying user
activity in a single project, and we study each of the
three projects independently.

As we want to identify what role each user plays
in the project, we use the project association type as
a feature. GITHUB Insights service supports the fol-
lowing association types.

1https://github.com/acl-org/acl-anthology
2https://github.com/neoclide/coc.nvim
3https://github.com/facebook/react

Table 1: Repository activity statistics.

R1 R2 R3
User count 34 577 2317
Label count 6 8 29
Event count 700 1081 3431
Comments created 384 206 717

Issues
Opened 37 49 74
Closed 23 48 45
Reopened 0 4 2

Issue lifetime
Min 68m 167s 99s
Max 191d 33d 528d
Average 34d 3d 23d
Median 5d 8h 11h

Pull requests
Opened 33 20 79
Closed 32 20 94
Reopened 0 0 0

Pull request lifetime
Min 83m 22s 65s
Max 22d 5d 537d
Average 2d 11h 48d
Median 107m 29m 14h

• Collaborator: the user has been invited to collab-
orate on the repository.

• Contributor: the user has previously committed to
the repository.

• First-time Contributor: the user has not previ-
ously committed to the repository.

• First-timer: the user has never committed to
GITHUB.

• Member: the user is a member of the organization
that owns the repository.

• Owner: the user owns the repository.

• None: the user is not associated with the reposi-
tory.

The users of the selected projects are collaborator,
contributor, member, or have no association with the
corresponding project.

We suppose that the people associated with a
repository fall into two main categories: project de-
velopers and project users. Developers usually write
code, fix bugs, and provide user support. Users
mostly report bugs, but they may fork repositories and
create pull requests as well.

Identification of User Activity Types using Issue Tracker Events

407



5 USER ACTIVITY ANALYSIS

We identify user activity types using the following
method.

1. Convert the sequence of user-related events into a
feature vector.

2. Cluster the set of vectors to detect similar users.

3. Analyze the vectors of each cluster to describe the
corresponding activity.

The activity of each user can be described in sev-
eral ways. We chose four feature sets. All these fea-
tures use the notion of the activity period, i.e., the
time span when the user produces events (activity
phase), following by the period without events (in-
activity phase). In the common commercial develop-
ment setting, the inactivity phase corresponds to the
developer’s free time. We can expect that voluntary
development efforts would be less regular, as devel-
opers often work in their spare time.

1. Operational features: minimum and maximum
number of operations for a period of activity, to-
tal operations count, operation frequency per pe-
riod. These features are measured for each opera-
tion type.

2. Activity features: the length and number of activ-
ity periods and the relative length of activity and
inactivity phases.

3. Work focus features: the distribution of events by
issue labels, e.g., bug or enhancement.

4. Role model features:

• the project association type;
• the number of created issues, closed issues,

own closed issues, reopened issues;
• the number of comments, comments to own is-

sues;
• the number of issues assigned,
• the number of issues where the user has been a

reviewer,
• the number of commits;
• the number of wiki pages created or updated;
• the number of release operations;
• the number of push operations;
• the number of created or deleted branches and

tags.

In order to analyze the data, we run k-means clus-
tering on each of the four sets of vectors. The number
of clusters was estimated using the average distance
from each point to the centroid of the corresponding
cluster. We have chosen to use 4 or 5 clusters depend-
ing on the repository and the feature set.

As an example, Figure 1 represents the results of
cluster analysis obtained for the R1 repository. In or-
der to make the image, vectors have been translated
into two-dimensional space using the PCA transform.
We can see that most users belong to a single cluster,
while other clusters are small groups of size 1 to 3.
This is indeed a common case that holds for all the
projects we studied.

For large clusters, the points have been clustered
one more time to detect more subtle differences be-
tween users. We use cluster centroids as an “activity
portrait” of the typical user of each class.

Figure 1: Example of clusters for the R1 repository.

The three projects we have selected may differ not
only in size but also in the level of volunteered vs.
full-time work. To classify main contributors from
this point of view, we computed the time distribution
of the commits during a day. The developers are ge-
ographically distributed, so we have to know the time
zone corresponding to the location of each contribu-
tor. GITHUB API only provides UTC timestamps for
events, so in this part of the study we restricted our-
selves to a subset of all events that can be obtained
from commit logs, as Git stores timestamps with time
zone information. As a consequence, this part of the
study deals with maintainers and active developers
who directly push changes to the repository.

6 RESULTS

The R1 repository is a small project. Its domain al-
lows users to produce focused contributions, i.e., to
fix a single bibliography record, or implement a script

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

408



for a specific task.
This observation was confirmed by clusters dis-

covered in operational features. The largest cluster of
size 31 corresponds to the majority of contributors,
and each of them makes small contributions by com-
menting issues or, to a lesser extent, by creating pull
requests. The three other users form a core team and
can be viewed as maintainers. Their activity is dif-
ferent enough to put each vector in its own cluster:
one user mostly deals with issues while the other two
users are more active in modifying the repository con-
tent. These users also differ in the number of opera-
tions.

The distinction between core developers and ca-
sual contributors is also reflected in activity features.
The activity of core developers is more regular and
has periodic patterns. The work focus clusters demon-
strated that most users in the R1 project do not use
labels or assign only correction label to their is-
sues, while core developers classify tasks in a much
more detailed way. Clustering of role model features
showed that some casual contributors perform sub-
stantial work, but the tasks are only assigned to the
core team members.

As a result, R1 seems to be a project with a homo-
geneous community and a small core team. External
contributions are actively accepted.

R2 is a typical open-source project. Its community
is by order of magnitude larger, than R1’s one.

Operational features analysis identified two indi-
vidual users whose activity patterns significantly dif-
fers from the rest of the community. One of these
users, the repository owner, leads the project. This
user closes issues, applies push requests, and makes
releases. During the study time span, no other user
pushed code and made release except the repository
owner. The second special user is the Greenkeeper
bot4 that automates the update of dependencies.

Other users contribute to the project in several
ways, that were identified by further clustering:
• mostly create and discuss issues;

• mostly contribute code and create pull requests;

• maintain the wiki.
Although R2 has a much larger community, it is

managed in a more centralized way with the lesser
delegation of responsibilities to other community
members. At the same time, the community actively
contributes to the project.

R3 is a large and widely used software project.
During this study time span, 2317 users have con-
tributed.

The following are the most interesting clusters.

4https://github.com/apps/greenkeeper

• Watchers: users that started watching or forked
the repository. Some users in this group have also
created or commented issues but did not make any
pull requests during the study period.

• Casual contributors: users that participated in is-
sue discussions and created pull requests.

• Active contributors: users whose activity pattern
is similar to casual contributors, but who are much
more productive (i.e., the pull request frequency
in this group is 10x larger).

• Maintainers: users that actively work on the
project, manage branches, and apply pull requests
contributed by others.

We may suppose that maintainers and active con-
tributors form the small core team (in our study clus-
ters consisted of 4 persons each). About 25% of all
users are casual contributors, and the rest do not ac-
tively participate in the project.

The study of these three projects of different size
and popularity allows making several remarks about
the structure of open-source projects.

Users related to the project subdivide into three
groups.

• The core team that does most of the work. It is
further split into maintainers, who are responsible
for the entire project, and developers who solve
specific tasks.

• Casual contributors that provide code and feed-
back.

• Watchers who sometimes participate in discus-
sions but are not otherwise involved. It seems
that more well-known projects should have more
watchers.

These roles can be identified by analyzing user ac-
tivity. The feature clustering approach allows to group
users that implement similar processes. We can also
detect subtler differences by further splitting the clus-
ters. These features, especially operational features,
may be used to classify users.

The time distribution of the user activity for each
project is presented in Figure 2. The majority of con-
tributions to the R3 project have been done during
the regular working hours, that agrees well with the
role of Facebook in the development of React. Some
maintainers of the R2 projects actively work in the
morning and evening, so we may suggest that they
contribute to the project during their spare time. The
time distribution of commits to the R1 projects is bi-
modal: a significant number of commits have been
produced in the evening. The more detailed analy-
sis of personal contributors shows that at least three
R1 contributors use several Git identities for commits,

Identification of User Activity Types using Issue Tracker Events

409



that probably correspond to them making commits us-
ing different computers (e.g., office and home), or
pushing code using the Git program and GITHUB
user interface. This approach to the project mainte-
nance seems to agree with the academic nature of the
project itself.

Figure 2: Time distribution of commits.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we addressed the understudied prob-
lem of modeling the user roles in the context of mod-
ern code hosting and issue tracking platforms like
GITHUB.

Using the clusters of feature vectors extracted
from user activity log, we identified three primary
user roles: core team (that further splits into main-
tainers and developers), casual (or external) contribu-
tors and watchers. Although these classes are rather

predictable, their discovery from activity logs shows
that GITHUB provides enough event data to distin-
guish between classes of working processes imple-
mented by users. The time distribution of commits
performed by individual project contributors during a
day, as well as overall time distribution of commits,
is a valuable feature that provides information about
the level of involvement and the working schedule of
developers.

There are three research directions we are now
pursuing based on this study.

What are the processes associated with the user
roles? GITHUB implements a typical contribution
process: a user wanting to contribute forks the project,
makes changes and creates the pull request that may
be accepted by the project team. At the same time,
many aspects may differ from project to project, i.e.,
how are pull requests discussed, who decides to ac-
cept the pull request, and so on. Other aspects of
the project management, like the issue life cycle, are
defined by the team itself. The understanding of the
processes would lead to better planning and more ef-
ficient project management.

How do the user roles evolve? This study and
other published research deal with the static view of
user roles. Nevertheless, users change their roles at
least in two ways. First, an active casual contributor
may enter the core team, or a maintainer may retire.
A better understanding of factors that enable or disal-
low the role change may help projects to acquire new
active participants. The other interesting aspect is the
participation of a user in several projects. Do the user
play the same role in all of them, or there are differ-
ent roles for each project? This research topic is con-
nected to the study of project management processes,
as the role change may be influenced by the change of
process.

ACKNOWLEDGMENTS

This research is a part of the joint project by Intelin
LLC (Moscow, Russia) and Peter the Great St. Peters-
burg Polytechnic University (St. Petersburg, Russia).
This work is financially supported by the Ministry
of Education and Science of the Russian Federation
(state contract 03.G25.31.0247 from 28.04.2017).

REFERENCES

Bidoki, N. H. and Sukthankar, G. (2019). Network se-
mantic segmentation with application to github. arXiv
preprint arXiv:1902.05220.

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

410



Bird, C. and Nagappan, N. (2012). Who? where? what?
examining distributed development in two large open
source projects. In 2012 9th IEEE Working Confer-
ence on Mining Software Repositories (MSR), pages
237–246. IEEE.

Buntain, C. and Golbeck, J. (2014). Identifying social roles
in reddit using network structure. In Proceedings of
the 23rd international conference on world wide web,
pages 615–620. ACM.

Cosentino, V., Izquierdo, J. L. C., and Cabot, J. (2016).
Findings from github: methods, datasets and limita-
tions. In 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR), pages 137–
141. IEEE.

German, D. M. (2006). A study of the contributors of post-
gresql. In MSR, volume 6, pages 163–164.

Gousios, G., Kalliamvakou, E., and Spinellis, D. (2008).
Measuring developer contribution from software
repository data. In Proceedings of the 2008 interna-
tional working conference on Mining software reposi-
tories, pages 129–132. ACM.

Grammel, L., Schackmann, H., Schröter, A., Treude, C.,
and Storey, M.-A. (2010). Attracting the community’s
many eyes: an exploration of user involvement in is-
sue tracking. In Human Aspects of Software Engineer-
ing, page 3. ACM.

Jarczyk, O., Jaroszewicz, S., Wierzbicki, A., Pawlak, K.,
and Jankowski-Lorek, M. (2018). Surgical teams on
github: Modeling performance of github project de-
velopment processes. Information and Software Tech-
nology, 100:32–46.

Jiang, J., Yang, Y., He, J., Blanc, X., and Zhang, L. (2017).
Who should comment on this pull request? analyzing
attributes for more accurate commenter recommenda-
tion in pull-based development. Information and Soft-
ware Technology, 84:48–62.

Liao, Z., Yi, M., Wang, Y., Liu, S., Liu, H., Zhang, Y., and
Zhou, Y. (2019). Healthy or not: A way to predict
ecosystem health in github. Symmetry, 11(2):144.

Malinen, S. (2015). Understanding user participation in
online communities: A systematic literature review
of empirical studies. Computers in human behavior,
46:228–238.

Padhye, R., Mani, S., and Sinha, V. S. (2014). A study of ex-
ternal community contribution to open-source projects
on github. In Proceedings of the 11th Working Con-
ference on Mining Software Repositories, pages 332–
335. ACM.

Robbes, R. and Röthlisberger, D. (2013). Using developer
interaction data to compare expertise metrics. In Pro-
ceedings of the 10th Working Conference on Mining
Software Repositories, pages 297–300. IEEE Press.

Soares, D. M., de Lima Júnior, M. L., Plastino, A., and
Murta, L. (2018). What factors influence the reviewer
assignment to pull requests? Information and Soft-
ware Technology, 98:32–43.

StackOverflow (2018). Stack Overflow developer survey re-
sults 2018. https://insights.stackoverflow.com/survey/
2018.

Vasilescu, B., Filkov, V., and Serebrenik, A. (2015a). Per-
ceptions of diversity on github: A user survey. In Pro-
ceedings of the Eighth International Workshop on Co-
operative and Human Aspects of Software Engineer-
ing, pages 50–56. IEEE Press.

Vasilescu, B., Posnett, D., Ray, B., van den Brand, M. G.,
Serebrenik, A., Devanbu, P., and Filkov, V. (2015b).
Gender and tenure diversity in github teams. In Pro-
ceedings of the 33rd annual ACM conference on hu-
man factors in computing systems, pages 3789–3798.
ACM.

Xavier, J., Macedo, A., and de Almeida Maia, M. (2014).
Understanding the popularity of reporters and as-
signees in the github. In SEKE, pages 484–489.

Yu, L. and Ramaswamy, S. (2007). Mining cvs repositories
to understand open-source project developer roles. In
Fourth International Workshop on Mining Software
Repositories (MSR’07: ICSE Workshops 2007), pages
8–8. IEEE.

Yu, Y., Wang, H., Yin, G., and Wang, T. (2016). Reviewer
recommendation for pull-requests in github: What can
we learn from code review and bug assignment? In-
formation and Software Technology, 74:204–218.

Identification of User Activity Types using Issue Tracker Events

411


