
RDF Doctor: A Holistic Approach for Syntax Error Detection and
Correction of RDF Data

Ahmad Hemid1, Lavdim Halilaj2, Abderrahmane Khiat1 and Steffen Lohmann1

1Fraunhofer IAIS, Sankt Augustin, Germany
2Robert Bosch Corporate Research, Stuttgart, Germany

Keywords: RDF, Error Detection, Error Correction, Syntax Validation.

Abstract: Over the years, the demand for interoperability support between diverse applications has significantly in-
creased. The Resource Definition Framework (RDF), among other solutions, is utilized as a data modeling
language which allows for encoding the knowledge from various domains in a unified representation. More-
over, a vast amount of data from heterogeneous data sources are continuously published in documents using
the RDF format. Therefore, these RDF documents should be syntactically correct in order to enable software
agents performing further processing. Albeit, a number of approaches have been proposed for ensuring error-
free RDF documents, commonly they are not able to identify all syntax errors at once by failing on the first
encountered error. In this paper, we tackle the problem of simultaneous error identification, and propose RDF-
Doctor, a holistic approach for detecting and resolving syntactic errors in a semi-automatic fashion. First,
we define a comprehensive list of errors that can be detected along with customized error messages to allow
users for a better understanding of the actual errors. Next, a subset of syntactic errors is corrected automat-
ically based on matching them with predefined error messages. Finally, for a particular number of errors,
customized and meaningful messages are delivered to users to facilitate the manual corrections process. The
results from empirical evaluations provide evidence that the presented approach is able to effectively detect a
wide range of syntax errors and automatically correct a large subset of them.

1 INTRODUCTION

The growing size of data represented in RDF (Zeng
et al., 2013) requires scalable and efficient tools to
ensure the correct processing of RDF documents with
respect to syntax. Ontologies, as a one of the cases
where RDF is used as a modeling language, usu-
ally are built in a collaborative environment with the
involvement of several stakeholders. When trying
to comprehend the concrete encoding or perform a
bunch of modifications or insertions at the same time,
ontology engineers often use plain text editors (Pe-
tersen et al., 2016) where they can easily introduce a
number of syntax errors after each modification.

One fundamental pre-condition to consume on-
tologies encoded in RDF documents by different
stakeholders is that they are syntactically correct. Ex-
isting tools used for syntax checking assert that the
input is error-free. If a particular ontology has one
or more errors, these tools naturally stop parsing and
report only the first error to the user with some ad-
ditional information about the error, such as an error

message, row and column number, and where the er-
ror occurred. This process becomes tedious for engi-
neers if not all of the errors are detected at once: each
time the tool detects an error, the engineer has to cor-
rect it and reprocess the corrected ontology version.
Next, the used tool checks again for syntax errors and
reports when any other errors encountered. Moreover,
it might happen that, during the correction phase, en-
gineers introduce new errors. Therefore, this proce-
dure is time-consuming, error-prone, and tedious to
all engineers involved in the ontology development
process.

Over the years, several approaches have been pre-
sented for parsing RDF documents and finding syn-
tactic errors. Well-known tools, such as the Jena
API (McBride, 2002), the RDF4J API (RDF,), or the
N3 Parser (Verborgh,), implemented as Java-based
toolkits or as a Javascript-based parser, respectively,
are used to process RDF in N-Triple and Turtle for-
mats (or in other serialization formats). Commonly,
these tools utilize an exception handling mechanism
to catch any potential syntax error, and are able to rec-

508
Hemid, A., Halilaj, L., Khiat, A. and Lohmann, S.
RDF Doctor: A Holistic Approach for Syntax Error Detection and Correction of RDF Data.
DOI: 10.5220/0008493205080516
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 508-516
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ognize only one error at a time.
In this paper, we present RDF-Doctor, a compre-

hensive approach for error detection and correction in
RDF documents. The motivation of this work was
mainly encouraged by the tremendous RDF data gen-
eration and usage in both Turtle and N-Triples serial-
ization formats, respectively. RDF-Doctor is capable
of detecting an exhaustive number of syntactic errors
and automatically correct a subset of them. Although
those two formats are used as study cases in this re-
search, the approach can be easily extended for sup-
porting other serialization formats by specifying the
respective grammar.

RDF-Doctor is fully operational and is currently
integrated within the VoCol platform1. VoCol (Halilaj
et al., 2016b) leverages the fundamental principles
of Git as a version control system to support on-
tology development in distributed scenarios. RDF-
Doctor can be used a standalone tool as well, and the
source code is openly available at https://github.com/
ahemaid/RDF-Doctor.

The main contributions of this work are: 1) defi-
nition of a set of grammar rules with the objective of
covering an exhaustive list of syntactic errors; 2) en-
abling the continuation of the parsing procedure after
errors occurrence; 3) identifying multiple errors in the
same line or subsequent statements; 4) automatic cor-
rection of a subset of errors; and 5) improving conflict
resolution via user-friendly messages.

This paper is organized into the following sec-
tions: Section 2 presents related work summarizing
relevant approaches for syntax checking. Section 3
provides a detailed description of our approach. Sec-
tion 4 describes a scenario for error detection and cor-
rection by RDF-Doctor. The approach is evaluated in
various scenarios in Section 5. Section 6 concludes
our work and provide an outlook for potential exten-
sions.

2 RELATED WORK

In this section, we discuss the related work to our
problem, i.e., research that has been realized in the
field of RDF syntax parsing and checking. During our
literature review, we focused on the following three
aspects: 1) parsing tools for different RDF serializa-
tions; 2) types of error messages generated after error
encountering; and 3) the error recovery.

1https://github.com/vocol/vocol

Table 1: Comparison between RDF-Doctor and other RDF
syntax checking tools.

Feature Jena ShEx.js VRP IDLab RDF
(McBride, (Tolle, (Prud’hommeaux Validator Doctor

2002) 2000) et al, 2014) IDLab, 2019
Multiple error

7 7 X 7 X
detection per scan
Error correction 7 7 7 7 X

User-friendly
X 7 X X X

error messages
Grammar based

X X X X X
approach

2.1 Parsing Tools

Several tools for validating RDF documents use
the Another RDF Parser (ARP) parser of Jena
(McBride, 2002) such as W3C RDF validation
tool (Prud’hommeaux,), Jena RDF toolkit.

These tools can commonly detect only the first er-
ror while consecutively parsing input from the start
point to the end. Therefore, ontology engineers are
struggling whilst debugging their RDF documents,
and need alternative tools that could be more help-
ful. To the best of our knowledge, only the Validating
RDF Parser (VRP) (Tolle, 2000) proposed by K. Tolle
can detect multiple errors at the same time. How-
ever, this work is limited only to RDF/XML serializa-
tion. Other tools such as ShEx.js (Prud’hommeaux
et al., 2014), Jena API (McBride, 2002), RDF Val-
idator (Myb,), N3Parser (Verborgh,), IDLab Valida-
tor (IDL,), and TurtleEditor (Petersen et al., 2016)
are fault-intolerant, therefore not able to detect multi-
ple errors simultaneously.

2.2 Types of Error Messages

Releasing user-friendly and meaningful error mes-
sages is of a great benefit to help the user to eas-
ily identify and correct the errors. Practically, pars-
ing tools under the Shape Expressions approach, like
ShEx.js (Prud’hommeaux et al., 2014), show less ex-
pressive and unfriendly error messages. On other
hand, tools which utilize an ARP-parser-dependable
approach like Jena API (McBride, 2002), RDF Val-
idator (Myb,) or an N3-parser-dependable approach,
like N3Parser (Verborgh,), IDLab Turtle Valida-
tor (IDL,) and TurtleEditor (Petersen et al., 2016)
present more expressive and user-friendly error mes-
sages including its location.

2.3 Error Recovery Approaches

Automatic error recovery is a crucial feature in on-
tology development process as well as for RDF data
reuse (Halilaj et al., 2016a). Our survey of research

RDF Doctor: A Holistic Approach for Syntax Error Detection and Correction of RDF Data

509

Figure 1: Example of a generated report for Turtle syntax validation by RDF-Doctor as an integrated component within VoCol
platform (Halilaj et al., 2016b).

papers and tools related to auto-correction of RDF
syntax errors shows that such a feature does not exist
either theoretically or practically. Several approaches
already exist in software development to help on au-
tomatic error correction. Balachandran reports about
a Review Bot tool (Balachandran, 2013) that can au-
tomatically review a source code using static analy-
sis output and correct encountered syntax errors us-
ing the parse tree. This approach is applicable in our
case. However, RDF-Doctor corrects a common sub-
set of syntax errors by matching these errors with pre-
defined error messages.

2.4 RDF-Doctor vs. Other Tools

Table 1 summarizes this section by providing a com-
parison of RDF syntax checking tools including RDF-
Doctor. Obviously, it can be seen that RDF-Doctor is
the sole tool that provides an error correction for RDF
syntax errors, whereas others are not. Additionally,
both RDF-Doctor and VRP (Tolle, 2000) are support-
ing multiple error detection while the former currently
supports Turtle and N-Triples and is willing to support
more serializations in the future work; meanwhile, the
latter is designed to handle only RDF/XML serializa-
tion and no further development to extend the tool
can be identified. In common with other tools, RDF-
Doctor rises user-friendly error messages and has a
grammar based approach upon which its parser was
auto-generated.

3 RDF-Doctor

In this section, we present RDF-Doctor2, an approach
with the objective of the realization of a comprehen-
sive parser for syntax validation and recovery.

2All study material of RDF-Doctor as well as as stan-
dalone version including grammar rules, can be found at
https://github.com/ahemaid/RDF-Doctor.

RDF-Doctor is able to identify more than one syn-
tax error at the same time and correct a subset of
them. In addition, it provides meaningful and cus-
tomisable error messages to facilitate the manual cor-
rection. Currently, RDF-Doctor is integrated within
the VoCol platform (see Figure 1), an integrated en-
vironment that supports the development of vocabu-
laries using Version Control Systems3(Halilaj et al.,
2016b). In the following, we describe the main com-
ponents of RDF-Doctor.

3.1 ANTLR for Parser Generation

The core component inside RDF-Doctor is the
ANTLR framework. It is used to automatically gen-
erate a parser based on our developed grammar, in-
cluding predefined error production rules to match se-
quences of tokens that contains RDF syntax errors.
Due to lack of availability of grammar that defines
error production rules, we created RDF-Doctor gram-
mar based on Turtle serialization. Thus, RDF-Doctor
can parse both Turtle and N-Triple since the latter can
be considered as a special case of the former.

The ANTLR framework has several important
features: 1) a given grammar can be equipped with
error production rules and when a sequence of tokens
match such rules, the parser will fire a notification er-
ror; 2) it uses a parse tree to parse input tokens and
the view of this parse tree can be delivered as one of
the outputs to the user at the end of the parsing pro-
cess; and 3) it supports the auto-generation of parsers
in different programming languages.

3.2 Errors Detection and Recovery

Figure 2 illustrates the main steps of a typical work-
flow to detect and recover syntax errors of RDF doc-
uments. These steps are described in the following:

3https://github.com/vocol/vocol

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

510

Figure 2: RDF-Doctor workflow. The user modifies an RDF file, then sends it to RDF-Doctor for parsing. RDF-Doctor
receives the file as input however, if the file is large, RDF-Doctor splits it into multiple chunks. Next, each chunk or the
original file is parsed individually. In case of encountering any syntax error, RDF-Doctor tries to recover a subset of detected
errors, whenever the automatic error recovery feature is enabled. Finally, RDF-Doctor outputs a parse tree, an error report, a
correction report, and the RDF file after error recovery.

3.2.1 Reading RDF File

During this step, RDF-Doctor receives an RDF file
as input. In case that the file is too large (e.g., more
than 1 million triples), then it is segmented into two
or more chunks based on the number of triples. Each
chunk is parsed and processed separately from others.

3.2.2 Detecting of Syntax Errors

Next, RDF-Doctor parses a given RDF file based on
predefined rules of syntax errors. Once a rule is
matched with a sequence of input tokens, it sends a
notification error to the Error Listener module, where
a list of all encountered errors is stored. Reading of
input tokens continues until the end of the file (or
chunk) while searching for any match in order to iden-
tify potential syntax errors. We used a parse tree to
represent how the RDF-Doctor process with detecting
syntax errors. Figure 3 shows how each sub-tree of
the root node (acts as the global rule) is the main rule
containing all other rules which represent either cor-
rect or incorrect syntactic forms. Each of these rules
initiates either a sub-tree of non-terminals (grammar
rules) and terminals (lexical forms of input tokens)
nodes. Each sub-tree of non-terminals can either have
zero, one or more nodes. On the other hand, a sub-tree
of terminals can only have one or more nodes.

A sub-tree produces a syntax error, if all of its ter-
minals (cf. Figure 3) formulate an error production
rule based on the predefined grammar. Hence, both
second and fourth sub-trees from left-to-right in Fig-
ure 3 with terminals in red color are rules with a se-

Figure 3: Detection of syntax errors while traversing the
parse tree. The root node is the head of the first rule in
the grammar and the head of the parse tree. All the chil-
dren of the root are either non-terminal nodes represented
by “NT” followed by a number of terminal ones shown by
“T” succeeded. An error is detected on a non-terminal node
when all of its terminals represent a sequence of tokens for a
statement which includes a syntax error. Red terminals rep-
resent error-inclusive statements and green ones represent
error-free statements.

quence of tokens producing syntax errors. Meanwhile
other sub-trees: first, third, and fifth with terminals in
green color contain correct syntactic forms.

3.2.3 Healing a Subset of Syntax Errors

The syntax error recovery currently focuses on a cer-
tain type of errors which has a predefined solution for
each error in order to be recovered. Examples of such
errors are: missing a dot at the end of a triple, miss-
ing a semi-colon after multiple predicates sharing the
same subject, or missing a comma after multiple ob-
jects having the same subject and predicate.

RDF Doctor: A Holistic Approach for Syntax Error Detection and Correction of RDF Data

511

Algorithm 1: The pseudo-code of RDF-Doctor.
Data: inputText, correctSyntaxRules, incorrectSyntaxRules,

CorrectionIsSelected
Result: foundSyntaxErrors and recoveredSyntaxErrors

1 foundSyntaxErrors = [];
2 recoveredSyntaxErrors = [];
3 syntaxRules← correctSyntaxRules+ incorrectSyntaxRules;
4 while token in inputText && inputText 6= EOF do
5 currentTokens += inputText[token];
6 ruleToBeMatched = getLexicalForm(currentTokens);
7 if syntaxRules contains ruleToBeMatched then
8 if incorrectSyntaxRules contains ruleToBeMatched then
9 foundSyntaxErrors.push(currentTokens);

10 if isCorrectionSyntaxErrorSelected then
11 if canErrorBeRecovered(ruleToBeMatched) then
12 if recoverSyntaxError(currentTokens) then
13 recoveredSyntaxErrors.push(currentTokens);
14 foundSyntaxErrors.pop(currentTokens);

15 currentTokens← ””;
16 ruleToBeMatched← ””;
17 end
18 return foundSyntaxErrors, recoveredSyntaxErrors;

3.2.4 Producing of the Output

During this step, RDF-Doctor returns as output a file
containing information about errors already recovered
as well as those ones which are not corrected along
with a user-friendly description. Commonly, errors
that are not recovered by RDF-Doctor without a user
intervention are those errors with several solutions.
For example, a literal with multiple language tags like
”me”@en@de which shows a string with two lan-
guage tags where one solution might be a removal of
one of them but the intention of the user is unknown
in these cases. In addition, there exist errors with un-
defined or unknown recovery solution, e.g. missing
a user-defined prefix declaration for a certain local
namespace which cannot be guessed since it is only
known by the user.

Algorithm 1 presents the abstract behaviour of
RDF-Doctor. It initializes with the syntaxRules vari-
able which combines both correct syntax rules and
incorrect ones. The main while loop carries on until
reaching the end of the current file or chunk. The rule-
ToBeMatched variable encloses one rule from either
correct or incorrect production rules formed by the
supplied tokens whereas the currentTokens variable
stores a sequence of given tokens to check to which
rule they belong to. Since a crucial step is to identify
syntax errors, ruleToBeMatched is evaluated to check
if its content matches with the incorrectSyntaxRules.
In case of matching, the content of currentTokens is
considered as a syntax error, and the parser sends a
notification error to any method subscribed to Error
Listener module, in order to further process the col-
lected errors. The algorithm continues with the auto-
matic correction in case it is activated where the Error
Correction Module traverses the entire list of identi-
fied errors and based on the error message, it assesses
if a particular error can be corrected or needs user in-
tervention. At the end of the correction phase, a report

containing the corrected errors will be delivered to the
user.

3.3 Categories of RDF Syntax Errors

A significant part of this work is the ability to identify
syntax errors which should be known in advance in
order to be defined.

We divide types of syntax errors into multiple cat-
egories as shown in Appendix Table 4. These cate-
gories are taken from (Tur, 2013) with some modifi-
cation to become more expressive. The table shows
each category with one error sample and an error po-
sition where the actual syntax error is located. This
facilitated the definition of the grammar rules as well
as the investigation of which of them can be automat-
ically corrected.

4 APPLICATION SCENARIO

In this section, we present an application scenario that
illustrates the detection and correction of a syntax er-
ror with RDF-Doctor. The scenario starts with a Tur-
tle example which has no syntax errors. Then, a syn-
tax error is introduced to show the process of handling
it with RDF-Doctor.

Listing 1: RDF example in Turtle serialization format.
@prefix rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs : <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ex : <http://example.org/> .
@prefix zoo : <http://example.org/zoo/> .

ex : dog1 rdf : t y p e ex : an i ma l .
ex : c a t 1 rdf : t y p e ex : c a t ;

rdfs : l a b e l “Lusi”@en .
ex : c a t rdfs : s u b C l a s s O f ex : an ima l .
zoo : h o s t rdfs : r a n g e ex : an ima l .
ex : zoo1 zoo : h o s t ex : c a t 2 .

Listing 1 shows a Turtle example without syn-
tax errors. The first four lines are Prefix declarations
whereas the following are a couple of triples. For that
reason, our grammar is initialized with the topmost
node start which describes the coming rules by zero
or more statement(s). In addition, each statement
is either a directive or a triple as it is represented in
Listing 2.

Listing 2: Starting rules in the grammar file.
start
: statement* EOF
;

statement

4https://github.com/ahemaid/RDF-Doctor/blob/master/
List of Errors.pdf

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

512

Figure 4: A view of parse tree for listing 1. is illustrated. It
shows the sub-trees of the parent node start in the parse
tree. Those nodes written in black are non-terminals or
heads of the grammar rules. The remaining nodes are ter-
minals or matched patterns of input tokens.

: directive
| triples ‘.’
;

To shed light on the generated parse tree for List-
ing 1, Figure 4 demonstrates a view of the parse tree
for the first 3 lines after prefixes: lines 5, 6, and 7, as
well as EndOfFile (EOF) sequence. Line 5 matches
triple with only one subject ex:dog1, but lines 6, and
7 match triple with multiple predicates and objects
and share the same subject ex:cat1, same is applied
on the parse tree.

After showing a part of the grammar rules and
views of the parse tree, a real use case is presented in
the following. The use case shows an error production
rule that matches a syntax error pattern for detecting
and resolving it.
Missing a Dot at the End of a Triple: In the Turtle
syntax, a triple must end with a dot. In Listing 3, the
head rule, i.e., a statement, can either be a directive
or a triple both ending with a dot. Equally important,
the last line which shows that triples without a dot
can also be a sub-goal of this rule. This sub-goal is
considered as a normal path in a parse tree, but once
the parser detects it, a notification is sent to the Error
Listener module with an error message “Missing a ’.’
at the end of a directive prefix and/or triple”.

Once such an error is saved by the Error Listener
module, the role of Error Detection module is fin-
ished. The next phase starts in the Error Correction
module to correct the error. Since the list of syntax
errors is shared with Error Correction module, it it-
erates all of these errors messages. If one of these
messages in the error list matches, then it applies a
predefined function to recover the error. For instance,
the function addDot(lineNumber, columnNumber) is
applied, since it matches the same error message and
similarly, in the case of “Missing ’.’ at the end of
Prefix directive” message. The task of this function

Table 2: Evaluation summary of RDF-Doctor for both cor-
rect and incorrect syntactic forms. “Detected” for “Correct
Syntax” means that RDF-Doctor recognizes them as cor-
rect syntactic forms, whereas not correctly recognized ones
are classified as “Undetected”. Similarly, “Detected” for
“Incorrect/Bad Syntax” refers to recognized syntactic forms
as incorrect forms with releasing corresponding error mes-
sages, meanwhile “Undetected” specifies incorrect syntac-
tic forms which are not recognized and might generate false
positives.

File Content Detected Undetected Total
Correct Syntax 185 25 210
Incorrect Syntax 53 12 65

Total 238 37 275

is to reach the line which misses the dot, identify the
line number and column number, then finally auto-
matically correct the error by adding a dot at the end
of the given triple.

Listing 3: Grammar rules for detecting of syntax error of
missing dot at the end of a triple.
statement
: directive
| triples
| triples {notifyErrorListeners("Missing ‘.’

at the end of a triple")} ;

5 EXPERIMENTAL STUDY

Three different experiments were conducted to check
for effectiveness and efficiency of RDF-Doctor.

5.1 Experiment I

The target of this experiment is to measure the ef-
ficiency of RDF-Doctor while testing with the W3C
Turtle Test Suite.

5.1.1 Procedure and Measure

We used the Test Suite recommended by W3 Consor-
tium (W3C) in (Tur, 2013). The total number of files
of the given suite is 275, which we divided into two
parts: 1) files that are syntactically correct; and 2) files
that are syntactically incorrect. The first subset con-
tains 210 files, whereas the second one contains 65
files. We computed Precision, Recall, and Accuracy
values using equations (1), (2), and (3), accordingly.

Precision =
tp

tp + fp
; tp = number of true positives

fp = number of false positives

(1)

Recall =
tp

tp + fn
; tp = number of true positives

fn = number of false negatives

(2)

RDF Doctor: A Holistic Approach for Syntax Error Detection and Correction of RDF Data

513

Table 3: Evaluation of RDF-Doctor for detection of incor-
rect syntactic forms in the Turtle Test Suite (Tur, 2013).

Classification of Error Types Detected Undetected Total
Bad String Escape 0 4 4
Bad Keywords 5 0 5
Bad Language Tag 2 0 2
Bad Local Namespace in Prefixed IRI 2 3 5
Bad Prefix Label in Prefixed IRI 2 0 2
Bad Syntax from N3 Notation 11 1 12
Bad Prefix Label in Directives 2 0 2
Bad Number as a Literal 5 0 5
Bad Directive 4 0 4
Bad String 6 1 7
Bad Structure 12 0 12
Bad IRI 2 3 5

Total 53 12 65

Accuracy =
tp + tn

tp + tn + fp + fn
;

tp = number of true positives
tn = number of true negatives
fp = number of false positives
fn = number of false negatives

(3)

5.1.2 Result and Discussion

As we can observe from results given in Table 2, the
majority of syntactically correct files i.e. 88% are cat-
egorized correctly (as free of errors) while the remain-
ing 12% is considered syntactically incorrect. On the
other hand, when dealing with incorrect syntax, re-
sults show that 81.5% of files which include incorrect
syntax are detected and the appropriate error message
is given, whereas the rest 18.5%, are not recognized as
errors, thus no error message is given. In terms of Pre-
cision, Recall, and F-measure, RDF-Doctor reaches a
Precision of 0.82, Recall equals to 0.68, and Accuracy
equals to 0.78.

Table 3 shows evaluation results with respect to
the above-mentioned input. In order to evaluate the
automatic error correction feature of RDF-Doctor, we
used the results of this experiment. The outcome
shows that 5 types of errors can be faultlessly cor-
rected: 1) using of ‘A’ as a predicate instead of ‘a’;
2) missing a colon in prefix or base declarations; 3)
missing a dot at the end of a triple; 4) adding more
than one dot at the end of the triple; and 5) ending a
triple with a semi-colon instead of a dot, correspond-
ingly.

5.2 Experiment II

The objective of this experiment is to simulate a sce-
nario where an ontology engineer develops an ontol-
ogy for a particular domain using a plain text editor.
The engineer may introduce a number of syntactic
errors, which he/she has to identify and correct be-

Figure 5: Distribution of syntax errors. The number and
types of syntax errors between brackets for an interval of
eight instances of time. A Poisson Distribution and a Uni-
form Distribution generate a number of errors per instance
of time and types of errors as listed in Appendix Table, re-
spectively. For example, at the 5th instance, three error of
different types are introduced, i.e., [3,15,25].

Figure 6: Error detection when syntax errors are randomly
distributed. For each instance of time, a number of er-
rors which are detected or not detected by RDF-Doctor are
shown.

fore being able to share his/her contribution with other
team members.

5.2.1 Procedure

In this experiment, we assume that the ontology en-
gineer contributing to the DBpedia ontology by per-
forming several modifications, e.g. insert, edit or
delete during a period of eight instances of time, i.e.,
each hour. The Poisson and Uniform Distribution are
used to simulate the number and the type of errors
occurred in each instance of time, respectively. The
average number of syntax errors per instance of time
is represented by λ parameter. For example, λ = 5,
means that an average number of five syntax errors
occur per hour. The Uniform Distribution is used to
randomly select the error types from a comprehensive
list of errors given in Appendix Table5. Moreover, the
exact location for injecting syntax errors within the
RDF file is realized using the Uniform Distribution
where a random line number is generated. The error

5https://github.com/ahemaid/RDF-Doctor/blob/master/
List of Errors.pdf

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

514

is successfully applied if the randomly selected loca-
tion is appropriate for the error type; otherwise, one
of the lines from its neighborhood are selected. If the
error is related to the header (the top of the file where
directives are normally located), then the injection is
applied in the header of the file.

5.2.2 Result and Discussion

Experimental results illustrated in Figure 5 show that
RDF-Doctor in a majority of the cases is able to cor-
rectly recognize syntax errors. More specifically, Fig-
ure 6 shows that in half of the time instances, apart
from one syntax error which is not recognized, all of
them are identified. In time instance number 5, all
errors are detected. However, there are cases where
more than one error is not recognized, such as time
instance number 7 with five undetected syntax errors.
The reason behind this, is that most the of randomly
inserted errors are those known as unrecognized er-
rors by RDF-Doctor during that time instance. A so-
lution for such an issue can be achieved by developing
additional mechanisms that detect nested and conflict-
ing rules.

5.3 Experiment III

In this experiment, we checked the effect on the be-
haviour and the performance of our approach when-
ever the number of errors increases and the size of the
ontologies is changed, to simulate real-world scenar-
ios where ontologies continue growing over the time.

5.3.1 Procedure

We used two types of ontologies; small and medium-
sized. The Friend of a Friend Vocabulary (FOAF) is
used as a small ontology with a total number of 631
triples. As a medium-size ontology, we used the DB-
pedia version 2016-10 with a total number of 30,790
triples. In both ontologies, three different numbers of
syntax errors are introduced i.e., 10, 30, 61. These
syntax errors are randomly injected using the same
way as in the previous experiment where the Uniform
Distribution is utilized. Additionally, to avoid any im-
pact on the current overload of the processor during
the execution time, we ran our experiment five times
for each case and calculated the average processing
time.

5.3.2 Result and Discussion

Figure 7 illustrates the performance with respect to
the number of errors and the ontology size. After in-
troducing 10 syntax errors, 9 out of 10 are detected

and one is not detected for both FOAF and DBpedia
ontology, respectively. In the second case, 25 out of
30 injected errors are detected in FOAF whereas in
DBpedia 26 out of 30. Finally, from a total number
of 61 injected errors, 6 in FOAF and 11 in DBpedia
are not detected. In all the cases, for each error that is
detected, an expressive message is given to facilitate
resolving procedure.

Figure 7: Impact of the number of errors and the size on
RDF-Doctor. FOAF and DBpedia ontologies are used to
evaluate RDF-Doctor, 10foaf, 30foaf, allfoaf are modes of
FOAF ontology, including with 10, 30, 61 random syntax
errors, respectively; same is applicable for DBpedia. De-
tected errors are the errors which were properly identified
by RDF-Doctor matched error messages released, while un-
detected errors are those which were not correctly recog-
nized.

Figure 8: Performance evaluation when a number of errors
and ontology size is changed, individually. Performance is
calculated with respect to the required processing time, i.e.,
in milliseconds (ms) in both cases: 1) 10, 30, and 61 in-
jected syntax errors; 2) FOAF ontology with 631 triples and
DBpedia ontology, with 30,790 triples.

The performance of RDF-Doctor is reported in
Figure 8. It summarizes the impact of both, the num-
ber of errors and the ontology size. As we can ob-
serve, the numbers of errors has a limited influence
on the performance, i.e., the processing time is similar
in either FOAF or DBpedia while changing the num-
ber of errors. Additionally, the increasing number of
syntax errors has a slightly oscillatory effect on the
processing time. This is due to the different system

RDF Doctor: A Holistic Approach for Syntax Error Detection and Correction of RDF Data

515

behavior when dealing with false positive errors since
RDF-Doctor needs to recover until it finds a matched
grammar rule formed from input tokens which their
number frequently varies. On the other hand, the size
of ontologies has a high impact on the overall per-
formance, i.e, processing DBpedia consumes about
29000ms on average; whereas, FOAF is parsed in
about 2000ms. In conclusion, approximately more
than 90% of injected syntax errors are detected, as
shown in Figure 7.

6 CONCLUSION

This paper presents RDF-Doctor, an approach for
fault-tolerant error detection and automatic error re-
covery for RDF data. To enable a comprehensive er-
ror detection, a set of grammar rules covering an ex-
haustive list of syntactic errors occurring commonly
in RDF data are predefined. The ANTLR framework
is used to generate the parser based on the given gram-
mar. For each detected error, RDF-Doctor provides a
friendly and precise error message helping users to
easily locate and correct them. Furthermore, using
an internal mechanism for automatic error correction,
RDF-Doctor is able to recover a subset of syntax er-
rors without user intervention. We performed three
different empirical evaluations to asses the effective-
ness and efficiency of RDF-Doctor in various scenar-
ios. The achieved results provide evidence that the
effectiveness of RDF-Doctor is higher for each error
already defined in the grammar. On the other hand,
the efficiency is not impacted by the number and the
type of errors, but from the size of the ontology, which
is expended since an increasing number of triples to
be parsed RDF-Doctor consumes more time.

As future work, we aim to improve syntax error
detection of RDF data by extending the rules to cover
a wide range of different tokens. We plan also to
evaluate the scalability of RDF-Doctor by increasing
number of errors. Furthermore, a rule-based approach
must be defined to handle conflicts of syntax error
rules. Finally, a comprehensive error recovery can be
achieved by employing supervised learning methods
allowing RDF-Doctor to learn from training data and
be more effective and precise in the error correction.

ACKNOWLEDGEMENTS

This work has been supported by the German Fed-
eral Ministry of Education and Research (BMBF)
in the context of the projects “LUCID” (grant no.
01IS14019C) and “Industrial Data Space Plus” (grant

no. 01IS17031). It has also been supported by the
Fraunhofer Cluster of Excellence “Cognitive Internet
Technologies” (CCIT).

REFERENCES

IDLab Turtle Validator .
Programming with RDF4J.
RDF Validator and Converter .
(2013). Turtle Test Suite. W3c test suite, World Wide Web

Consortium (W3C).
Balachandran, V. (2013). Fix-it: An extensible code auto-

fix component in review bot. pages 167–172.
Halilaj, L., Grangel-González, I., Coskun, G., Lohmann, S.,

and Auer, S. (2016a). Git4voc: Collaborative vocabu-
lary development based on git. International Journal
of Semantic Computing, 10(02):167–191.

Halilaj, L., Petersen, N., Grangel-González, I., Lange, C.,
Auer, S., Coskun, G., and Lohmann, S. (2016b). Vo-
Col: An Integrated Environment to Support Version-
Controlled Vocabulary Development, pages 303–319.
Springer International Publishing, Cham.

McBride, B. (2002). Jena: A semantic web toolkit. IEEE
Internet Computing, 6(6):55–59.

Petersen, N., Coskun, G., and Lange, C. (2016). Turtleedi-
tor: An ontology-aware web-editor for collaborative
ontology development. In 2016 IEEE Tenth Inter-
national Conference on Semantic Computing (ICSC),
pages 183–186.

Prud’hommeaux, E. RDF Validation Service.
Prud’hommeaux, E., Labra Gayo, J. E., and Solbrig, H.

(2014). Shape expressions: an rdf validation and
transformation language. In Proceedings of the 10th
International Conference on Semantic Systems, pages
32–40. ACM.

Tolle, K. (2000). Analyzing and Parsing RDF. Master’s
thesis.

Verborgh, R. Lightning-fast rdf in JavaScript. Blog post.
Zeng, K., Yang, J., Wang, H., Shao, B., and Wang, Z.

(2013). A distributed graph engine for web scale rdf
data. Proc. VLDB Endow., 6(4):265–276.

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

516

