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Abstract:  Glioma is a type of brain tumor that causes mortality in many cases. Early diagnosis is an important factor. 
Typically, it is detected through MRI and then either a treatment is applied, or it is removed through surgery. 
Deep-learning techniques are becoming popular in medical applications and image-based diagnosis. 
Convolutional Neural Networks are the preferred architecture for object detection and classification in images. 
In this paper, we present a study to evaluate the efficiency of using CNNs for diagnosis aids in glioma 
detection and the improvement of the method when using a clustering method (Fuzzy C-means) for pre-
processing the input MRI dataset. Results offered an accuracy improvement from 0.77 to 0.81 when using 
Fuzzy C-Means. 

1 INTRODUCTION 

A brain tumor is an abnormal growth of brain cells. 
Tumors can be malignant or benign. Malignant 
tumors are cancer cells that grow quickly and can 
cause metastasis. These brain tumors can be primary 
(they start in the brain) or metastatic, i.e., coming 
from another part of the body (Zülch, 2013). 

Doctors diagnose these tumors after a 
neurological examination and other tests such as 
Magnetic Resonance Images (MRI), computerized 
tomography or biopsy. The treatment includes 
surgery, radiation, chemotherapy and directed 
therapy, with medicines and other substances to 
identify and attack specific cancer cells and save 
normal ones.  

There exist several kinds of primary brain tumors. 
Their names depend on the type of affected cells 
(Gavrilovic, 2005):  

a) Gliomas. These tumors start in the brain or the 
spinal cord, and they c beinclude astrocytomas, 
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ependinomas, glioblastomas, oligoastrocytomas and 
oligodendrogliomas.  
b) Meningiomas. This type of tumor arises from the 
membranes around the brain and the spinal cord 
(meninges). Most meningiomas are not cancerous.  
c) Acoustic Neuromas (Schwannomas). These are 
benign tumors that develop in the nerves that control 
balance and audition from the inner ear to the brain.  
d) Pituitary Adenomas. These are mainly benign 
tumors that grow in the hypophysis, in the base of the 
brain. They can affect the pituitary hormones and 
cause effects throughout the entire body.  
e) Medulloblastomas. These are the most frequent 
cancerous tumors in children. They develop in the 
lower back of the brain and they extend through the 
cerebrospinal fluid.  
f) Germ Cell Tumors. They can develop during 
childhood when the testicles or ovaries are formed. 
Nevertheless, sometimes these tumors affect other 
parts of the body, such as the brain.  
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g) Craniopharyngiomas. These non-cancerous 
tumors are infrequent and they develop near the 
pituitary gland.  

In this paper we focus on three tumors: glioma, 
meningiomas and pituitary tumors. 

1.1 Pituitary Tumor  

It is an abnormal growth of brain cells in the pituitary 
gland of the brain. This tumor can affect several 
hormones that are regulateing important functions of 
the body. Most pituitary tumors are benign, also 
called adenomas. They stay in the pituitary gland or 
surrounding tissues and do not disseminate to other 
parts of the body. There are several treatment options, 
such as surgery, to remove the tumor, or the use of 
medicines, to control its growth and the hormone 
levels. Figure 1 shows a coronal (left) and sagittal 
(right) MRIs.  

 

Figure 1: Pituitary tumor MRI. 

1.2 Meningeal Tumor 

It develops in the meninges, which is the tissue that 
surrounds the brain. Although technically it is not a 
brain tumor, it is included in this category because it 
compresses and presses the brain, nerves and adjacent 
vessels. Meningiomas are benign tumors and they 
rarely become malignant. The most frequent 
localization is in the convexity or base of the skull. 
They usually grow slowly, although sometimes they 
cause severe disabilities. Figure 2 shows axial (left) 
and coronal (right) MRIs with this tumor. 

1.3 Glial Tumor 

Gliomas are the most common type of primary brain 
tumor. They develop in the brain and the spinal cord, 
starting in glial cells present around the nerve cells 
(DeAngelis, 2001). 
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Malignant Astrocytoma. ABTA-2017. 

 

Figure 2: Meningioma tumor MRI. 

Glial tumors are classified depending on the glial 
cell they start and on the genetic characteristics of the 
tumor. These types are astrocytomas, ependiomomas 
and oligodendrogliomas.  

Glioma tumors are divided into 4 grades 
depending on their malignancy and aggressiveness. 
Grades I and II are benign and grades III and IV are 
malignant (DeAngelis, 2001). Glial tumors affect the 
brain function and they can cause mortality 
depending on the location and growth speed.   

Figure 3 shows a coronal MRI of the glial tumor. 

 

Figure 3: Glial tumor MRI. 

For adults with the more aggressive glioblastoma 
(astrocytoma), treated with concurrent temozolomide 
and radiation therapy, the median survival is about 
14.6 months with a two-year median survival rate of 
27%; five-year survival is 10%. However, there are 
case reports of patients surviving for 10-20 years.1 

Magnetic Resonance Imaging (MRI) is the 
diagnosis test used to detect these tumors. MRI is a 
technolgy that generates detailed 3D anatomic images 
without the need of hazardous radiation. It is 
frequently used for disease detection, diagnosis and 
treatement monitoring. Its technology stimulates and 
detects proton direction changes in rotation axes 
present in the water of the tissues. MRI uses powerful 
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magnets that change these protons orientations. MRI 
sensors detect these protons energy changes and 
produce gray-level images taking into account the 
latency and amount of energy that protons, from 
different tissues, need to return to their initial states 
(Ogawa, 1990). The lower the latency, the brighter 
the tissue appearas in the image. 

In this paper, we present a viability study for 
diagnosis aid in glioma tumor detection using deep-
learning based on two convolutional neural networks. 
We used a public available MRI dataset together with 
a pre-processing technique, called Fuzzy C-means, in 
order to compare the classification accuracies of the 
CNNs with or without the pre-processing technique.  

The rest of the paper is structured as follows: 
Ssection 2 presents the used dataset and the pre-
processing technique selected for this study, section 3 
presents two CNN architectures, Fuzzy C-Means and 
their results, and section 4 presents the conclusions. 

2 MRI DATASET CLUSTERING 
WITH FAST AND ROBUST FCM 

The used dataset (Cheng, 2016) is available at 
Figshare. It consists of a collection of 3064 MRI 
images from 233 different patients. These images are 
labeled with three types of brain cancer: meningioma, 
glioma and pituitary tumor. Images are T1-CE MRI 
and include coronal, sagittal and axial planes. From 
these images, there are 1426 that include a glial tumor 
(from 89 patients), 708 that include meningioma 
(from 82 patients) and 930 that include a pituitary 
tumor (62 patients). Some images are 512x512 pixels 
and others are 256x256. Therefore, all of them were 
resized to 256x256. Figure 4 shows sample images. 

Clustering is a data association technique when 
the data share particular characteristics. 
Mathematically, it consists in finding a point in an N-
dimensional space that could represent the 
characteristics of a set of data defined in that space. 
Clustering algorithms are widely used in data mining. 
The most popular ones are K-NN, K-means, and 
Fuzzy C-means (FCM) (Bezdek, 1984). The latter 
allows associating each data to all the clusters defined 
in the same N-dimensional space. Therefore, each 
data could be associated to several clusters. This is 
known as a fuzzy association of clusters. These 
algorithms define a grouping criterion based on a 
fuzzy partition used to express the objective function. 

 
 
 

 

Figure 4: From left to right: axial, coronal & sagittal MRI. 
Top: Meningeal tumor. Middle: Glial tumor. Bottom: 
Pituitary tumor. 

The Fast and Robust Fuzzy C-Means (FRFCM) 
improves in time and results the Fuzzy C-Means 
(Bhide, 2012). In this method, the membership 
relationship is improved by applying a morphologic 
reconstruction and a filter from the membership 
partition matrix. 

Figure 5: From left to right: axial, coronal and sagittal 
colored MRI images before Fuzzy C-means. 

The most complex part of any clustering 
algorithm is to determine the number of clusters 
beforehand. The Fuzzy Partition Coefficient (FPC) is 
a measure used to determine the optimal number of 
clusters for a fixed set of data. This FPC is defined in 
the range from 0 to 1. Although this coefficient is 
typically used to minimize the number of clusters, in 
our case, we aim to find an adequate number of 
clusters that will serve to improve the discrimination 
of the tumor by selected CNNs. In this study, this FPC 
was used to determine the optimal number of clusters 
between 2 and 10 for our set of data. Several MRIs 
were processed with this clustering measure in order 
to determine the best number of clusters. After that, 
the MRI dataset was processed with the Fuzzy 
algorithm to obtain clustered images, which will 
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represent the training, validation and test dataset for 
our deep-learning architecture. 

 

Figure 6: FPC for axial (top), coronal (mid) & sagittal 
(bottom) planes for 2-10 clusters. 

The aim of obtaining this modified dataset was to 
evaluate whether the accuracy of the Deep-learning 
architecture can be improved by including the 
segmentation process. This pre-processing 
implementation was performed with the use of Jupiter 
Notebooks and Python. 

In order to determine the best number of clusters, 
the FPC was calculated for each kind of plane from 
the MRI dataset. In our case, the lower the index, the 
better the number of clusters for the Fuzzy C-Means 

colormap images conversion. Figure 5 shows colored 
MRIs before applying the Fuzzy C-means. 

Figure 6 shows the results of calculating the FPC 
for the three-plane images shown in Figure 5. As can 
be seen, 7 clusters is the best choice for the axial 
plane, 9 for coronal, and 10 for sagittal. In this study, 
9 clusters were selected, since, on average, the use of 
these 9 clusters has the lowest FPC value. The whole 
MRI dataset was processed with Fuzzy C-means to be 
used to train the selected CNN architecture.  

3 CONVOLUTIONAL NEURAL 
NETWORKS 

CNNs were successfully used for the first time in 
1998 (LeCun, 1989), although they gained interest 
after the impressive results obtained in the ImageNet 
competition in 2012 (Russakovsky, 2015). The name 
of the CNN architecture used in that competition was 
AlexNet (Krizhevsky, 2012), where a set of around 1 
million images that represented around 1 thousand 
different classes, was reduced by this CNN to almost 
half the error rate with respect to the previous winner 
algorithm. A typical CNN architecture is composed 
of several layers of convolution operations, pooling, 
activation and classification (fully connected). The 
convolutional layers produce characteristic maps by 
applying a convolution function to the input image. 
The pooling layer is used to reduce the size of the 
output of the convolution layer by using MaxPooling 
or AveragePooling. This output represents the input 
of the next convolutional layer. Typically, a 
convolutional layer can be finalized through an 
activation function. The most common ones are the 
Rectified Linear Units (ReLU) (Nair, 2010) and 
Leaky ReLU (Xu, 2015). A ReLU transforms any 
negative data into zero, and it keeps the positive 
values with no change. The classification layer 
produces series of predictions over the output classes. 
These predictions are connected to a Loss function, 
which is used during back-propagation (LeCun, 
1989) training to determine how good the selected 
weights are for the architecture. These weights are 
also known as architecture parameters and they are 
fixed after the training phase. The Loss function 
measures how close is the prediction of the CNN with 
current modified weights with respect to the ground 
truth used for training. 

Before the training procedure, the dataset must be 
divided into three parts, and each part must 
correspond to completely different patients to ensure 
that there will be no relationships between data of 
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these three parts, which are called training, validation 
and test. The training part is used by the back-
propagation training algorithm, as explained in the 
next section. The validation part is also used during 
training after each iteration, once the weights are 
fixed to check the goodness of the calculated weights. 
The last part of the dataset (test) is used once the 
weights calculation is finished and the training 
procedure is finished and validated. This test is used 
to calculate and offer the final accuracy values of the 
CNN. 

The training process starts with a set of random 
weights for all the convolutional layers and the fully 
connected layers. After each training iteration, the 
architecture is validated with validation MRI samples 
from the dataset. Then, the loss function is calculated. 
This process is automatic and shows iteratively the 
accuracy (prediction classes output) and loss function 
values. The number of iterations depends on the 
complexity of the architecture, the number of output 
classes and the size of the dataset.  

In this study, we used two different CNN 
architectures for Glial tumor MRI classification: 
LeNet-5 and GoogleNet. 

3.1 LeNet-5 

 

Figure 7: LeNet-5 CNN architecture diagram and layer 
characteristics: 2 convolutional layers and 2 fully connected 
layers, with 10 output classes. 

Figure 7 shows the architecture of the LeNet-5 
architecture proposed by (LeCun, 1998). It was 
developed and trained for handwritten digits 
prediction, and consisted of 7 levels, which 
comprised Conv layers, Pooling and fully connected 
classifiers with SoftMax functions. The training 
dataset used (called MNIST) is composed of 60k 
images of handwritten digits, of which 10k were used 

to test the architecture. The images size was 32x32 
pixels in gray level with digits between 0 and 9.  

This CNN is a basic start point widely used in 
many applications. It is available as a tutorial in deep-
learning tools such as Caffe (Jia, 2014). The 
architecture can be adapted and modified to other 
datasets by modifying the input image sizes, kernel 
sizes, number of convolutions per layer, adding new 
convolutional layers or changing the number of 
output classes. Table 1 presents the CNN architecture 
characteristics. LeNet-5 was adapted for our MRI 
dataset sizes to 256x256 and output classes.  

Table 1: LeNet modified architecture for MRI Glial tumor. 

Parameter Value 
Input image size 256x256 
C1 (K size, K #) 3x3 and 6 units 
S2 (pooling size) 2 
C3 (K size, K#) 3x3 and 16 units 
S4 (pooling size) 2 

F5 (inner-product ReLU size) 120 
F6 (inner-product ReLU size) 84  

Output classes 3 (meninge, 
glioma, pituitary) 

After training, for the testing phase of the CNN, 
the accuracy of this network for the dataset without 
Fuzzy C-means was 76.81% with a loss of 3.42%. 
Figure 8 shows the evolution of the accuracy and loss 
values for both train and validation during 1000 
iterations of the training process. 

3.2 GoogleNet / Inception V1 

This net was successfully used in similar medical 
applications previously, e.g., in (Havaei, 2015) for 
brain tumor segmentation and classification (Deepak, 
2019). GoogleNet (Szegedy, 2015) won in 2014 the 
ILSVRC ImageNet contest (Russakovsky, 2015). It 
was the first time an architecture offered the optimal 
convolution sizes by using different sizes and 
combining them in a block. Several blocks are 
connected along the architecture to provide the deep 
to the net. It achieved a top-5 error rate of 6.67%, 
which is very close to human level performance. The 
network used a CNN inspired by LeNet, although it 
implemented a novel element called the “inception 
module”. It used batch normalization, image 
distortions and RMSprop. This module is based on 
several very small convolutions in order to drastically 
reduce the number of parameters. Their architecture 
consisted of a 22-layer deep CNN, but with a reduced 
number of parameters: from 60 million (AlexNet) to 
4 million. The architecture diagram is shown in 
Figure 9. 
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Figure 8: LeNet accuracy, loss and confusion matrix for the 
three output classes: M (meninge), G (glial), P (pituitary). 

RMSprop (Ruder, 2017) is an adaptive learning 
rate method whose popularity has increased in recent 
years, while also getting some criticism (Wilson, 
2017). There are two ways to introduce RMSprop. On 
the one hand, it can be considered as the adaptation of 
the Rprop (Igel, 2000) algorithm for mini-batch 
learning. It was the initial motivation for developing 
this algorithm. Another way is to look at its 
similarities with Adagrad (Duchi, 2011) and view 
RMSprop as a way to deal with its radically 
diminishing learning rates. Rprop uses the sign of the 
gradient and adapts the step size individually for each 
weight. Adagrad adds element-wise scaling of the 
gradient based on the historical sum of squares in 

each dimension. The learning rate is adapted by 
dividing it by that sum of squares. 

  
 

Figure 9: GoogleNet architecture. 

 

 
 

Figure 10: GoogleNet accuracy, loss and confusion matrix 
for the three output classes: M (meninge), G (glial), P 
(pituitary). 

Each block of the net is composed of 4 parallel 
routes. From left to right, the first three paths are 
convolutions of 1x1, 3x3 and 5x5 kernels. These 
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extract information from the input features at 
different sizes. The two paths in the middle 
implement 1x1 convolutions to reduce the number of 
input channels for the next convolutions, which 
reduces the complexity of the model. The fourth path 
uses a MaxPooling followed by a 1x1 convolution. 
Then, each of these paths apply lately transformation 
to obtain coincidences int the outputs. Finally, the 
four outputs are concatenated to offer the output of 
the block. After training, for the test phase of the 
CNN, the accuracy of this network for the dataset 
without Fuzzy C-means was 77.3% with a loss of 
2.65%. Figure 10 shows the evolution of the accuracy 
and loss values for both training and validation during 
1000 iterations of the training process. 

3.3 Introducing Fuzzy C-Means 

In order to test whether the use of Fuzzy C-means 
improves the accuracy of glial tumor detection from 
MRI datasets, we repeated the LeNet-5 training with 
the pre-processed dataset using Fuzzy C-means with 
9 clusters.  

The accuracy results obtained were 80.87% with 
a loss of 2.71%. Figure 11 shows the confusion 
matrix, which demonstrates the efficiency of the 
proposed architecture. 

 

 

Figure 11: LeNet-5 with Fuzzy C-means pre-processed 
MRI dataset Confusion matrix for the three output classes: 
M (meninge), G (glial), P (pituitary). 

4 CONCLUSIONS 

This work presents a deep-learning study applied to 
glial tumor detection over MRI for diagnosis aid. It 
presents the analysis of two convolutional neural 
network architectures: LeNet-5 and GoogleNet. In 
order to improve the classification accuracy, the 
dataset was pre-processed using the Fuzzy C-means 

(FCM) clustering method to apply a colormap over a 
fixed number of clusters. The best number of clusters 
was obtained over the Fuzzy Partition Coefficient 
(FPC) for the three different planes of images in the 
MRI original dataset: axial, coronal and sagittal. The 
obtained results justify the use of FCM for this 
application, improving the accuracy of the 
classification from 76.81% to 80.87%. 
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