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Abstract: Emotion recognition from speech signals is an important field in its own right as well as a mainstay of many
multimodal sentiment analysis systems. The latter may as well include a broad spectrum of modalities which
are strongly associated with consciously or subconsciously communicating human emotional state such as
visual cues, gestures, body postures, gait, or facial expressions. Typically, emotion discovery from speech
signals not only requires considerably less computational complexity than other modalities, but also at the
same time in the overwhelming majority of studies the inclusion of speech modality increases the accuracy
of the overall emotion estimation process. The principal algorithmic cornerstones of emotion estimation from
speech signals are Hidden Markov Models, time series modeling, cepstrum processing, and deep learning
methodologies, the latter two being prime examples of higher order data processing. Additionally, the most
known datasets which serve as emotion recognition benchmarks are described.

1 INTRODUCTION

Emotion discovery from speech offers a unique tool
for estimating with considerable accuracy human af-
fective state with remarkably low computationally
complexity, especially when compared with the task
of human activity discovery based on video. Affective
states reveal the subjective understanding of an indi-
vidual of an external stimulus or condition and, more-
over, may well serve as intention indications, since
emotions are the true driving force behind many hu-
man actions or reactions. Additionally, affective state
estimation plays an important role in cognitive sci-
ences (Cowie et al., 2001) and affective computing
(Picard, 2003)(Tao and Tan, 2005).

The primary objective of this conference paper is
the identification of the main research pylons in the
field of emotion discovery from speech, to illustrate
the differences between them, and to present some of
the main scientific literature works underlying each
such pylon. Moreover, as a secondary objective, some
of the most popular online multimodal datasets which
include speech are presented.

The remainder of this work is structured as fol-
lows. The recent scientific literature is briefly re-
viewed in section 2. The primary methodological
frameworks for affective state estimation are pre-
sented in section 3. In section 4 the major public

datasets concerning emotion recognition from speech
are described, whereas in section 5 future research di-
rections are explored. Finally, in table 1 the nnotation
of this conference paper is summarized.

Table 1: Paper Notation.

Symbol Meaning
4
= Equality by definition
{s1, . . . ,sn} Set with elements s1, . . . ,sn
card(S) Set cardinality∣∣X
(
e jω
)∣∣ Magnitude of X

(
e jω
)

F [x(t)] Fourier transform of x(t)
F −1

[
X
(
e jω
)]

Inverse FT of X
(
e jω
)

〈x1 (t) | x2 (t)〉 Inner product of x1 (t) and x2 (t)

2 PREVIOUS WORK

Emotion recognition has taken many forms in scien-
tific literature, both as part of the broader humanis-
tic data mining field but also on its own right (Kwon
et al., 2003). Many engineering approaches for emo-
tion discovery follow a black box approach and rely
on observing emotional traits in such as in facial ex-
pressions as in (Goldman and Sripada, 2005)(Haxby
et al., 2002). Moreover, multifactor facial analysis
with tensor classification (Vasilescu and Terzopoulos,
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2002)(Tian et al., 2012) or tensor subspace (Cai et al.,
2005)(Cichocki et al., 2015) algorithms have been ex-
plored. Inclusion of more traits has led to bimodal
(De Silva and Ng, 2000) and multimodal (Busso et al.,
2004)(Kim et al., 2004) emotion estimators based on
various physiological signs.

Alternatively, a plethora of white box approaches
have been also proposed. Patterns in ECG (Agrafioti
et al., 2012) or EEG waveforms (Mohammadi et al.,
2017)(Murugappan et al., 2010) have been used to de-
duce affective states. This can be also achieved indi-
rectly with the BCI proposed in (Mathe and Spyrou,
2016) as part of an IoT ecosystem.

Concerning human activity and creation, art and
especially music have close ties with the underlying
affective states (Li and Ogihara, 2004). Emotion dis-
covery in music is the focus of (Busso et al., 2009).
The affective reults of music are explored in (Kim
and André, 2008), (Lin et al., 2010), and (Yang et al.,
2008) which proposes affective categorical regression
with arousal and valence as input variables. The ef-
fects of acoustic features such as jitter and shimmer
are evaluated in (Li et al., 2007) and (Jin et al., 2015).
Finally, (Elfenbein and Ambady, 2002) is a meta-
analysis of the connection between affective states
and music based on cultural factors.

Affective states can also play a central role in on-
line social network analysis and specifically in in-
formation diffusion and digital influence. Applying
a modified version of the methodology proposed in
(Drakopoulos et al., 2017b) for an extension of term-
document matrix to a term-keyword-document third
order tensor, (Drakopoulos et al., 2017a) formulates
higher order influence metrics which can be easily
extended to include affective information. The same
methodology can be applied to assess the compact-
ness of spatio-linguistic online communities as dis-
covered in (Drakopoulos et al., 2019) or to communi-
ties defined by multiple interaction paths (Drakopou-
los, 2016).

The primary emotions according to the ground-
breaking theory developed by Plutchik, as stated
among others in (Plutchik et al., 1979), (Plutchik,
1980), and (Plutchik, 2001), are joy, trust, expecta-
tion, fear, sadness, disgust, anger, and surprise (Wall-
bott and Scherer, 1986). Based on this theory, sec-
ondary and tertiary emotions can be derived by su-
perimposing the above primary emotions in various
scales (Lane et al., 1996). For instance, under this
model love is derived as the composition of joy and
trust. Moreover, it should also be noted that, even
though it is not an emotion per se, the netural state
is a valid emotional state. Note that in other contexts
other emotions may well form the basis for research
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Figure 1: Emotion wheel (from (Plutchik, 2001)).

(Kohler et al., 2000). One such prominent case is ed-
ucation, where pride, remorse, boredom, or guilt are
sought to be invoked or detectted during teaching ac-
tivity (Jerritta et al., 2011)(Spyrou et al., 2018).

3 EMOTION RECOGNITION
FROM SPEECH

3.1 HIDDEN MARKOV MODELS

Hidden Markov Models (HMMs) are almost synony-
mous with speech processing and they come in two
flavors, depending on the amount of observable in-
formation known to the researcher (El Ayadi et al.,
2011). Let us S denote the state set and n = card(S)
be its cardinality:

S 4= {s1, . . . ,sn} (1)

Additionally, for each state si ∈ S let Si be the set of
each possible outbound transitions from si in one step:

Si
4
=
{

si→ s j,s j ∈ S
}
, 1 ≤ i ≤ n (2)

Finally, let P contain the individual transition proba-
bilities as:

P 4
=
{

prob
{

si→ s j
}
,∀si,s j ∈ S

}
(3)

The two variants of HMMs are:
• S and Si are known and the elements of P must be

estimated, usually by statistical methods includ-
ing classical or Bayesian estimation.

• S, and by extension Si, are unknown. The car-
dinality card(S) may be have to be estimated as
well, depending on the problem. In this case the
sets S, Si, and P must be estimated only from the
output symbols. Typically this is achieved with
mutual information or other divergence metrics
(Bahl et al., 1986).
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• S, and by extension Si, are unknown. The car-
dinality card(S) may be have to be estimated as
well, depending on the problem. In this case the
sets S, Si, and P must be estimated only from the
output symbols. Typically this is achieved with
mutual information or other divergence metrics
(Bahl et al., 1986).

In (Schuller et al., 2003) two methodologies for
estimating the parameters of an HMM corresponding
to six basic emotional states are presented. The first
is a mixture of Gaussians model whose local maxima
are functions of said states weighted by the the proba-
bilities of a number of features including pitch-related
statistics such as its location and its maximum abso-
lute deviation in the voice sample. The second way is
based on embedding local emotional distributions and
computing their maximum using the same set of fea-
tures. Gaussian mixture models are also considered
in (Li et al., 2013a), but in conjunction with restricted
Boltzmann models. For a versatile and persisent data
structure which can represent HMMs with a variable
number of states see (Kontopoulos and Drakopoulos,
2014).

HMMs act as classifiers among the archetypal
emotions of anger, disgust, fear, joy, sadness, and sur-
prise in (Nwe et al., 2003), where speech signals are
decomposed in its short time log frequency power co-
efficients. The selection of these particular features
leads to improved accuracy compared to representa-
tions based on fundamental frequency, the ratio be-
tween silence and speech, and energy contour.

3.2 Deep Learning

Neural networks of different configurations acting as
affective classifiers have been proposed. For instance,
(Kobayashi and Hara, 1992) considers feedforward
neural networks, (Sprengelmeyer et al., 1998) and
(Adolphs, 2002) explore the connection of emotion
recognition through different human neural substrates
based on findings from neurophysiological disorders,
and (Nicholson et al., 2000) considers a neural net-
work trained by phoneme balanced words to distin-
guish between eight emotional states. Estimating
emotion from speech is also the goal of the neural
network architecture proposed in (Bhatti et al., 2004).
This is extended to deep neural networks with mul-
tiple hidden layers and a combination of activation
functions in (Stuhlsatz et al., 2011). Multimodal ar-
chitectures based on facial expressions and speech are
the focus of (Ioannou et al., 2005) and (Kahou et al.,
2013). Moreover, (Lin and Wei, 2005) suggests us-
ing a Support Vector Machine (SVM) over HMM in
order to increase the accuracy of recognizing basic

emotional states from speech signals. SVMs are also
considered in the context of a smart home ecosystem
where distributed IoT processing can assess the affec-
tive state of its inhabitants and adapt accordingly (Pan
et al., 2012).

Extreme learning machines (ELMs) proposed
among others in (Han et al., 2014) have a simple ar-
chitecture comprising of one single long hidden layer
of neurons with non-linear activation functions. This
allows for closed form expressions connecting ELM
input and output to be constructed (Huang et al.,
2006), which in turn leads to an easy and controllable
training process. Specifically:
• The k-th input neuron forwards the k-th compo-

nent xk of the current training vector.
• The i-th hidden neuron receives w0

k,ixk, sums each
such stimulus and then subtracts threshold βi, and
drives the result to its non-linear activation func-
tion ψ(·).

• The j-th output neuron y j repeats this process
with its own synaptic weights w1

i, j, non-linear acti-
vation function ϕ(·), and threshold β j to generate:

y j
4
=ϕ

(
∑
i→ j

w1
i, jψ

(
∑
k→i

w0
k,ixk−βi

)
−β j

)
(4)

3.3 Signal Processing

Signal processing of a speech signal either in its origi-
nal time domain waveform x(t) or in a number of var-
ious transformations can yield important information
regarding the speaker emotional state. Regarding time
domain, a statistical method for distinguishing be-
tween joy, anger, sadness, fear, and neutral emotional
state based on speech signal characteristics such as
maximum pitch and maximum absolute pitch diver-
gence is presented in (Petrushin, 2000).

In (Wu et al., 2011) an elaborate filter bank based
on modulations and Hilbert envelope is proposed in
order to extract from speech auditory-inspired long-
term spectro-temporal features which contains vital
temporal and spectral acoustic information, without
resorting to short-term features. The study of cep-
strum x̃(t), and in particular of its MFCC coefficients,
of the speech signal x(t) appears in many works. Re-
call that:

x̃(t) 4=
∣∣∣F −1

[
ln |F [x(t)]|2

]∣∣∣
2

(5)

The amplitude of the coefficients of the discrete co-
sine transform of x̃(t) are the cepstral or MFCC coef-
ficients of x(t).

Power cepstrum coefficients are used in (Sato and
Obuchi, 2007) instead of prosodic features in order to
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express the speech signal in scales which are closer
to that of human audio perception. Specifically, pho-
netic features, expressed in the form of cepstral co-
efficients increase classification accuracy over over
an utterance. Along a similar line of reasoning, in
(Dumouchel et al., 2009) the cepstral coefficients of
Gaussian mixture models are used in order to discern
between basic emotions.

Another approach is the wavelet transform which
reveals information about x(t) in multiple time scales,
potentially discovering more patterns than thse of the
classical Fourier transform (Daubechies, 1990)(An-
tonini et al., 1992). The central idea of the wavelet
transform is to use a family of basis functions indexed
by location µ0 and scale σ0 parameters. Although
there is a plethora of wavelet basis such as the Morlet,
the log-Gabor, or the Haar families, perhaps the most
common example is the Gaussian kernel family:

g(t;µ0,σ0)
4
=

1
σ0
√

2π
exp

(
− (t−µ0)

2

2σ2
0

)
(6)

The projection of x(t) to various members of the
wavelet basis family yields the wavelet coefficients:

wµ0,σ0
4
= 〈x(t) | g(t;µ0,σ0)〉

=
∫

Ω

x(t) g(t;µ0,σ0)dt (7)

Wavelet transform is combined with cepstral co-
efficients and the subbabd based cepstral parameter in
(Kishore and Satish, 2013) for affective state estima-
tion. Furthermore, multimodal emotion recognition
from video and speech through wavelets is described
in (Go et al., 2003), with the note that the addition of
speech to video increases classification accuracy.

4 DATASETS

4.1 Audio Datasets

• Perhaps the most well known English dataset is
the Toronto Emotional Speech Set (Dupuis and
Pichora-Fuller, 2010) which contains audio only
data collected at Northwestern University accord-
ing to the Auditory Test Protocol no. 6 of the same
university. Two professional female actresses, one
of 26 and one of 64 years old, born and raised in
Toronto area uttered 2800 words corresponding to
seven basic emotional states.

• RAVDESS (Livingstone et al., 2012) is also a
popular dataset consisting of 7356 files, each of
which has been evaluated 247 times by an equal

number of North American volunteers in terms
of sentimental validity and intensity. Moreover,
72 additional participants evaluated the same data
based on a test-retest methodology. Both the be-
havior of each individual evaluator and the evalu-
ations themselves were remarkably consistent.

• The Emo-Soundscapes collection (Fan et al.,
2017) contains two benchmark protocols as well
as 613 sound clips coming from a combination of
600 music files from www.freesound.org. Along
with the original files there are 1213 music ex-
cerpts under the Creative Commons license. Each
such excerpt lasts six seconds and its induced
emotional intensity was evaluated through crowd-
sourcing by 1182 people from 74 countries around
the globe.

• The Speech Under Simulated and Actual Stress
(SUSAS) (Hansen and Bou-Ghazale, 1997) was
created by University of Colorado-Boulder and
the US Air Force Research Laboratory. SUSAS
contains more than 16000 emotionally charged
sentences spoken under various stress levels from
32 speakers (13 men and 19 women) of ages be-
tween 22 and 76. Moreover, SUSAS includes
large files with communications from four Apache
helicopter pilots with the control tower along
with their transcripts from the Linguistic Data
Consortium under the name SUSAS Transcripts
(LDC99T33).

Emotionally charged speech datasets are available
for a number of other languages as well, most of
which belong to the Indo-European language family.
Such datasets allow researchers to exclude linguistic
or cultural factors from the discovery process, focus-
ing only on the emotional content.

• The FAU Aibo emotion corpus (Batliner et al.,
2008) has been created from the use of Aibo, a
Sony pet robot, from 51 German children aged be-
tween 10 and 13 years old. This corpus contains
spontaneous and emotionally charged commands
which have been collected and broken down to
elementary parts based on syntax and prosody,
which in turn are manually assigned one out of
11 possible emotional labels from five evaluators.

• A second dataset is BAUM-1 (Zhalehpour et al.,
2016) made up of short video clips, each approx-
imately four minutes long. In each such clip Ger-
man male professional actors utter sentences cor-
responding to a plethora of emotional states in-
cluding joy, anger, sadness, disgust, fear, surprise,
confusion, disdain, and annoyance as well as the
neutral state.
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• A smaller German dataset is the Berlin database
of emotional speech (Burkhardt et al., 2005)
which contains 500 samples of speech uttered by
ten professional actors. Each such sample can rep-
resent six emotional states.

• The RML emotion dataset (Wang and Guan,
2008) from Ryerson Multimedia Lab consists of
720 audio-visual clips, each lasting from 3 to 6
seconds and with a single emotional charge out of
six possible basic emotional states. These are at
least ten video clips for anger, disgust, fear, joy,
sadness, and surprise. In order for the eight vol-
unteers to utter sentences which genuinely contain
a given emotion, they were asked to recall an indi-
cent from their own lives which caused that emo-
tion. Moreover, they are native speakers of either
English, Mandarin Chinese, Farsi, Italian, Urdu,
or Panjabi.

4.2 Multimodal Datasets

In contrast to audio-only datasets, multimodal ones
allow the separate examination of how isolated
modalities like speech, text, facial expressions, gait,
or body posture or a combination thereof are involved
in emotion discovery.

• CREMA-D (Cao et al., 2014) relies on the hu-
man trait of communicating emotional state thr-
ough voice and facial expression. To this end, the
dataset consists of video clips with speech and fa-
cial expressions covering the spectrum of basic
emotions, namely joy, sadness, anger, fear, dis-
gust, and neutral state from 91 actors of various
nationalities. Each such clip is independently la-
beled regarding the emotion and its intensity thr-
ough crowdsourcing by 2443 evaluators based on
either one of the modalities or both. According to
these evaluations, the neutral state was the easiest
to identify, followed by joy, anger, disgust, fear,
and sadness.

• The British Surrey Audio-Visual Expressed Emo-
tion (SAVEE) dataset (Jackson and Haq, 2014)
contains 480 video clips of four British male ac-
tors in seven emotional states. The sentences cor-
responding to these states were selected from the
TIMIT corpus so that each state is equally repre-
sented. Ten human evaluators estimated the state
to create the ground truth for classification algo-
rithms.

• The Interactive Emotional Dyadic Motion Cap-
ture (IEMOCAP) (Busso et al., 2008) is a mul-
timodal dataset maintained by USC SAIL Lab
based on approximately twelve hours in total of

audio-visual clips enriched with text from multi-
ple authors. In each such clip is recorded a meet-
ing between two actors, who can either act based
on a script or can improvise in order to induce spe-
cific emotional reactions. The IEMOCAP clips
have also been annotated by multiple reviewers
in terms of a quadruple containing an emotional
state, valence, activation, and dominance.

• The Oulou-CASIA NIR and VIS facial expression
database (Li et al., 2013b) is made up of high reso-
lution images of expressions corresponding to six
emotional states from 80 actors. Said images were
obtained from two imaging systems, one operat-
ing in the visible light spectrum (VIS) and one
in the near infrared spectrum (NIR). Three typ-
ical lighting settings were used, namely normal
office lighting, weak lighting coming only from
computer monitors, and no lighting.

• eNTERFACE ‘05 (Martin et al., 2006) is an
audio-visual dataset, where emotional content can
be found in the audio modality, the visual modal-
ity, or both, depending on the case. This allows
the benchmarking of machine learning algorithms
which rely on either one or both modalities. Ad-
ditionally, eNTERFACE includes the assumptions
underlying its functionality, the challenges during
its implementations, and how these were eventu-
ally addressed.

• Finally, the MSP-Improv corpus (Busso et al.,
2017) contains audio-visual recordings of two-
person improvisations out of a pool of twelve pro-
fessional actors. These were specifically designed
to cause genuine emotional reactions, on the con-
dition that speech and facial expressions convey
different emotions. In this way the factors in-
volved in emotion recognition, a cognitive func-
tion known as recombination which relies on all
senses and is central to the creation of the final
stimulus.

5 CONCLUSIONS

The focus of this conference paper is twofold. First,
the basic methodological schemes from emotion dis-
covery are enumerated. Second, the most popular
audio-only and multimodal datasets which contain
emotional states or estimations thereof are presented.
The latter serve as benchmarks for evaluating the al-
gorithmic performance of emotion estimation tech-
niques, primarily in terms of accuracy and scalability.

Regarding emotion discovery, the advent of deep
learning algorithms is promising in the sense that
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not only such algorithms can efficiently handle 6V
datasets, but also they can extract non-trivial knowl-
edge from them, with the latter being considerably
more concise and structured compated to the original
datasets. Moreover, cross-domain knowledge transfer
methodologies can be used to augment the knowledge
body of a given domain with external elements. Fi-
nally, ontologies or knowledge graphs allow the gen-
eration of formal theorems from ground truth with
reasoners such as Owlready for Python or the seman-
tic engine of Neo4j.
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