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Abstract: In this study, the parameter identification problem for linear dynamical systems is considered. The system is 

assumed to be represented as a linear differential equation in general form, so the right-hand side equation 

contains input function and its derivatives. This problem statement extends the order reduction problem, 

where we need to find the equation of the lower order to approximate the real system output observations. 

Considered problem is reduced to an optimization one. The reduced problem is complex, and we propose the 

combination of stochastic optimization algorithm and restart operator. This operator aim is to prevent the 

algorithm stagnation by starting the search over again if no remarkable solution improvement is detected or 

if algorithm searches in the area where stagnation had been detected.

1 INTRODUCTION 

In this paper, we consider parameter identification 

problem for dynamical system and its approach using 

optimization heuristic with specific operator that 

controls the search. Dynamical system parameter 

identification problems (Ramsay and Hooker, 2017) 

are complex and appears in different application 

fields (Gennemark and Wedeling, 2009). The main 

idea is to identify the parameters of the differential 

equation so its solution would fit the observation data 

the most. We assume that we know the degrees of the 

left-hand side and right-hand side equations and 

initial point of the dynamical system. The problem of 

parameter identification for the differential equation 

of the second order finds plenty of applications and is 

considered in different studies. In most of them, the 

evolution-based algorithms are applied to solve the 

reduced identification problem: genetic algorithm 

(Parmar and Prasad, 2007), big bang big crunch 

(Desai and Prasad, 2011) and cuckoo search (Narwal 

and Prasad, 2016). In this case, the considered 

approach generalizes the order reduction problem so 

that any of possible degree, both state and input 
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variables. There are also studies on identification of 

the single output dynamical system parameters, when 

the right-hand side equation is just the control 

function. That means, that considered in this study 

approach extends the class of dynamical systems by 

adding the input derivatives to the right-hand side 

equation. 

Many of optimization algorithms utilized to solve 

real world problem are stochastic. There are different 

implementations of the general idea on how the 

natural systems evolve. However, what all these 

algorithms have in common is exploration of the 

searching space and seeking for the better alternative. 

There are plenty of adaptation schemes and 

algorithms interaction schemes, which allow 

increasing searching performance. Also, there are 

plenty of problem-oriented modifications, which 

improve performance for optimization problems. 

This study focuses on pairing algorithm with 

restart operator for solving identification problem. In 

that sense, we develop a heuristic that is applicable 

for different algorithms despite of their basic idea and 

its implementation. Proposed restart heuristic 

identifies and prevents algorithm stagnation by 
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starting another search if the algorithm is trapped in a 

local optimum area or in the area that was found in 

previous runs. Stagnation happens when algorithm 

cannot get out of the local optimum area and at the 

same time cannot sufficiently improve the best 

alternative in it. Here we assume that another 

algorithm launch would at least explore the search 

space more.  

The so-called restart operator checks if any 

statistic exceeds predefined limitation. If it happens 

than the search starts over again, so, probably another 

optimum will be found. This operator improves the 

optimization algorithm performance for some 

optimization problems. It can be also applicable for 

managing the computational resources in multiple 

runs of stochastic algorithms. That approach has 

some benefits in solving time-consuming problems, 

where the exploration is critical, and the global 

optimum is hard to be found. 

To investigate the algorithm performances with 

and without the restart operator, we examine 

optimization algorithms on a set of data samples, 

produced by different dynamical systems. All 

examples are considered noiseless ones. 

2 IDENTIFICATION PROBLEM 

In this chapter, we consider the dynamical system 

identification problem. First, we discuss the 

mathematical model of the dynamical system and 

then suggest the way to calculate the objective 

function. Objective function appears when we reduce 

the problem to the unconstrained global optimization 

problem on the real vector space. 

2.1 Model 

Let the system model be described with the linear 

differential equation: 

𝑎𝑛𝑥(𝑛) + ⋯ + 𝑎0𝑥 = 𝑏𝑚𝑢(𝑚) + ⋯ + 𝑏0𝑢, (1) 

where  𝑎𝑖 ∈ 𝑅, 𝑖 = 0 … 𝑛  and 𝑏𝑖 ∈ 𝑅, 𝑖 = 0 … 𝑚  are 

the model coefficients, 𝑥 is the system state and 𝑢 is 

the system input, 𝑛 and 𝑚 are the maximum degrees 

of the system output and the system input, 

respectively. We consider systems where the output 

𝑥 is observable and the input 𝑢 is known. 

Since 𝑛  and 𝑚  are the highest degrees, then 

parameter 𝑎𝑛 ≠ 0, so we can simplify (1): 

𝑥(𝑛) + ⋯ + �̃�0𝑥 = �̃�𝑚𝑢(𝑚) + ⋯ + �̃�0𝑢. (2) 

 

Now the model can be described with equation (2) 

and the model output on input 𝑢  can be found by 

solving the Cauchy problem: 

𝑥(𝑛) + ⋯ + �̃�0𝑥 = �̃�𝑚𝑢(𝑚) + ⋯ + �̃�0𝑢,

𝑥(0) = 𝑣,
 (3) 

where 𝑣 is the vector of initial values. The equation 

(2) is time invariant; by that reason, we assign initial 

time point as 0 in (3). In this research we also assume 

that 𝑣 = 0. 

We solve considered Cauchy problem (3) for 

equation (2) numerically with Runge-Kutta 

integration scheme. 

2.2 Objective Function 

Let us denote the parameters we need to identify as   

�̃� = (�̃�0, … , �̃�𝑛−1)𝑇  and �̃� = (�̃�0, … , �̃�𝑚)
𝑇

. The 

system observation data is 𝑌 = {𝑦𝑖}, 𝑖 = 1 … 𝑁  and 

observation times is 𝑇 = {𝑡𝑖}, 𝑖 = 1 … 𝑁, where 𝑁 is 

the sample size. In this study, without loss of 

generality, we assume that the observation times are 

the same as integration time points. The last means 

that the solution of (3) at time 𝑡𝑖  is 𝑦𝑖 . We also 

assume that we know the initial point 𝑣 and the input 

function 𝑢.  

Now we can reduce the identification problem to 

the optimization problem, in which we need to 

minimize the objective function: 

𝐹(�̃�, �̃�) =
∑ ‖𝑥(𝑡𝑖)−𝑦𝑖‖𝑁

𝑖=1

max(𝑌)−min (𝑌)
, (4) 

where 𝑥(𝑡) is the solution of the Cauchy problem (3) 

for given �̃�  and �̃�  parameters and the difference 

between max (𝑌) and min (𝑌) is used here for scaling 

the error. The scaling of the error statistics provides 

better interpretation of the real error between the 

solution and observation data.  

In general, objective function (4) is complex, 

multimodal and requires the global optimization 

approach to find the parameters that reach the 

extremum of function. 

We use specific fitness function for the 

evolution-based optimization algorithms: 

𝑓(�̃�, �̃�) = (1 + 𝐹(�̃�, �̃�))
−1

, 
(5) 

where function  𝑓 ∈ [0, 1] , and the greater this 

function is, the better solution is. This fitness function 

will be used in further examination of the results. 
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3 SOLVING REDUCED 

PROBLEM 

We propose applying stochastic search heuristic 

combined with restart operator for solving the 

reduced problem formulated in (4). Standard and 

common optimization heuristics were applied. 

Algorithms and details of their implementation are 

considered below. The restart operator was designed 

on the basis of (Ryzhikov et al., 2016). 

3.1 Optimization Algorithms 

As the main optimization algorithms, the real-value 

genetic algorithm, differential evolution algorithm 

and particle swarm optimization were used.  

The settings of the algorithms were the following: 

200 or 500 iterations and 100 alternatives in iteration. 

The initial population is uniformly distributed on 
[−5, 5]𝑛×𝑚. The optimization problem is considered 

as unconstrained, so there are no boundaries for the 

variables during the search. 

Real value genetic algorithms has tournament 

selection with tournament size equal to 10. We used 

2-parent uniform crossover, where each variable of 

the offspring is taken randomly from one of its 

parents, according with the scheme of uniform 

crossover in evolutionary strategies (Beyer and 

Schwefel, 2001). The mutation is implemented by the 

following scheme: 

𝑣𝑎𝑟 = {
𝑟𝑔, 𝑟𝑚 > 𝑚𝑝

𝑣𝑎𝑟
, (6) 

where 𝑣𝑎𝑟 is a variable chosen in alternative that is 

processed by the mutation operator, 𝑚𝑝 is mutation 

probability, 𝑟𝑚 is uniformly generated value on [0, 1] 
and 𝑟𝑔 is randomly generated value on [−5, 5]. 

Real value genetic algorithm is combined with 

local optimization, where for randomly chosen 10 

alternatives we chose the variable also randomly and 

make a step of 0.1 to random direction. If after this 

step we discover a better solution, we substitute the 

current one with the new one. 

Differential evolution algorithm is applied in its 

standard form (Storn and Price, 1997). The crossover 

probability is set as 0.2 and the differential weight is 

1.4. The parameter values were chosen according to 

brief investigation of the algorithm performance for 

the current problem. 

Particle swarm optimization algorithm is also 

applied in its standard form (Kennedy and Eberhart, 

1995), with 𝜑1 = 1.2 and  𝜑2 = 1.2. The reason for 

that choice of parameters is the same as for the 

differential evolution algorithm. 

3.2 Restart Operator 

The restart operator checks the stagnation via the 

following inequality: 

𝑏𝑒𝑠𝑡𝑖 − 𝑏𝑒𝑠𝑡𝑖−𝑤𝑟
< 𝑡𝑟, (7) 

where 𝑏𝑒𝑠𝑡𝑖 is the best fitness value ever found by the 

algorithm in the current run by the i-th 

iteration, 𝑏𝑒𝑠𝑡𝑖−𝑤𝑟
  is the best fitness value by the 𝑖 −

𝑤𝑟-th iteration, 𝑤𝑟 is a restart window size and 𝑡𝑟 is a 

threshold. So, if the difference between best fitness 

values does not change sufficiently (does not exceed 

𝑡𝑟) for the last 𝑤𝑟 iterations, it is decided to start the 

algorithm again. 

If we do the restart, we also keep the best 

alternative found by the algorithm. So if the best 

solution in another run is close to the one found 

earlier, we also do the restart. According to that, there 

is another condition to check: 

⋃ ‖𝑎 − 𝑎𝑖‖𝑎∈𝐻𝑟
< 𝑑𝑟, (8) 

where 𝐻𝑟  is the set of alternatives, which was found 

by the algorithm by the time when the restart initiated 

and 𝑎𝑖  is the best alternative found in the current 

algorithm run by the i-th iteration, 𝑑𝑟  is another 

restart operator parameter.  

4 EXAMINATION  

For examination of the algorithm performance we 

considered differential equations given in the Table 1. 

These equations were had been used to generate the 

sample on the time interval [0, 10] and then we took 

200 points out of each solution. As a control function 

we used sin(𝑡). 

Table 1: Parameters for identification problems. 

Number Parameters 

1 
�̃� = (−1, −2, −1)𝑇 

�̃� = (1,2)𝑇 

2 
�̃� = (−1, −2, −4, −1)𝑇  

�̃� = (1,2)𝑇 

3 
�̃� = (−1, −3, −4)𝑇 

�̃� = (−1,1)𝑇 
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Figure 1: Best fitness value boxplot for different settings: window size + threshold. Statistic for the algorithm without restart 

operator is on the right. Problem 1 from the Table 1 solved by real-valued genetic algorithm with 200 iterations. 

First, let us apply the real-valued genetic 

algorithms with restart operator and 200 iteration 

search to all of these problem and for the following 

restart operator parameters: 𝑑𝑟 ∈ {0.01, 0.05, 0.1} , 

𝑡𝑟 ∈ {0.1,0.05,0.01,0.005,0.001,0.0005}  and 𝑤𝑟 ∈
{10, 12,15,20}. We considered all the combinations 

of these parameters and made 40 independent 

launches of the algorithm. For the first experiment we 

take the problem number 1 from the Table 1. 

In Figure 1 one can see the boxplot of the fitness 

values of the best solutions found by algorithms for 

40 runs. In that figure, one can see the performance 

of different combinations of the restart parameters: 

window size and threshold. The box on the right 

represents the statistic for the algorithm without the 

restart operator. All the cases with restart operator 

outperform the standard algorithm, since the majority 

of the fitness values and their median value is closer 

to 1. 

All the Figures have the statistic for standard 

algorithm represented on the right. The legend or axis 

labels named NA means that the parameter is missing 

and so the statistic represents the algorithm without 

the restart operator. Boxplots are represented in their 

common way. 

In Figures 2, 3 and 4 one can see the fitness 

boxplots for various values of the restart parameters: 

window size 𝑤𝑟 , threshold 𝑡𝑟 ,  and distance  𝑑𝑟 , 

respectively.  

All the figures prove that different settings of the 

restart outperform the standard algorithm. We also 

can say that the threshold is the parameter is the most 

influencing one. 

Now let us examine the same algorithm for the 

problems 2 and 3 from the Table 1 and make the same 

tests for that problem. Boxplots that show how 

different combinations of threshold and window size 

affect the algorithm performance is given in Figure 5 

and in Figure 6.  

 

Figure 2: Fitness values boxplot for different restart 

window sizes. 

 

Figure 3: Fitness values boxplot for different restart 

threshold parameter values. 

Figure 5 we can see some settings, which make 

algorithm not as efficient as its standard 

implementation. The situation shown in Figure 6 is 

worse. For problem 3 the standard algorithm 

outperforms most of the algorithms with the restart 

operator. But here we can see the trend: algorithms 

with restart with small window size are not worse 

than the original algorithm. 
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Figure 4: Fitness values boxplot for different distances. 

The further investigation would be based on 

solving problem 1 from the Table 1. First of all, let us 

check what if we increase the number of objective 

function calculations to 500. To make the results 

clearer here we use the window size equal 15, 

distance to 0.01 and vary only the thresholds. The 

similar boxplots are presented on the Figure 7. 

Starting from here we will consider the following 

values for the restart threshold: 𝑡𝑟 ∈
{0.005,0.001,0.0005,0.0001,0.00005}. 

Increasing the computational resources for the 

original algorithm caused an increase of its 

performance, so it became much closer to the 

algorithms with restart and even outperformed some 

of its settings. But if we look at the Figure 1, we will 

see that algorithms with smaller resources have the 

same efficiency. 

What if we use the half of the computational 

resources for hybridization of the real-valued genetic 

algorithm with a local search? The boxplots are given 

in Figure 8, where it is shown that combination of the 

local search and restart increased the overall 

efficiency. 

The further investigation will be provided for 

differential evolution algorithm and particle swarm 

optimization for solving problem 1 with 500 

iterations. For these algorithms we consider windows 

equals 15 and 75. The similar boxplots for differential 

evolution are given in Figure 9 and Figure 10. 

 

 

Figure 5: Best fitness value boxplot for different settings: window size + threshold. Statistic for the algorithm without restart 

operator is on the right. Problem 2 from the Table 1 solved by real-valued genetic algorithm with 200 iterations. 

 

Figure 6: Best fitness value boxplot for different settings: window size + threshold. Statistic for the algorithm without restart 

operator is on the right. Problem 3 from the Table 1 solved by real-valued genetic algorithm with 200 iterations. 
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Figure 7: Fitness values statistics for different restart 

parameters. Problem 1 from the Table 1 solved by real-

valued genetic algorithm with 500 iterations. 

 

Figure 8: Fitness values statistics for different restart 

parameters. Problem 1 from the Table 1 solved by real-

valued genetic algorithm with local search. 

 

Figure 9: Fitness values statistics for different restart 

parameters. Problem 1 from the Table 1 solved by 

differential evolution, window size is 15. 

Figure 9 shows that restart does not improve the 

performance of the differential evolution algorithm 

for solving the considered problem. One can also see 

that the differential evolution performance is much 

lower than the real-value genetic algorithm’s one.  

 

 

Figure 10: Fitness values statistics for different restart 

parameters. Problem 1 from the Table 1 solved by 

differential evolution, window size is 75. 

Figure 10 shows that increasing the window size 

make the algorithm behaviour closer to the original 

algorithm, as it was expected. According to Figure 10 

and Figure 3 there are problems for which restart 

operator does not improving the performance of the 

differential equation parameters search. 

Let us do the same experiments for the particle 

swarm optimization algorithm. The boxplot diagrams 

for window size equal 15 and 75 are given in Figure 

11 and Figure 12, respectively. 

 

Figure 11: Fitness values statistics for different restart 

parameters. Problem 1 from the Table 1 solved by particle 

swarm optimization, window size is 15. 

Figure 11 shows that particle swarm optimization 

algorithm is outperformed by the real-valued genetic 

algorithm and differential evolution. But at the same 

time, we can see that restart sufficiently improved its 

performance and the maximum fitness value is even 

close to 1. 

Increasing the window size has the same effect as 

for the differential evolution. Restart performance is 

getting closer to the original algorithm’s one. 
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Figure 12: Fitness values statistics for different restart 

parameters. Problem 1 from the Table 1 solved by particle 

swarm optimization, window size is 75. 

5 CONCLUSIONS 

In this study we considered parameter identification 

problem for the linear dynamical models. This 

problem differs from the other parameter 

identification problems because it is assumed that the 

right-hand side equation contains input function and 

its derivatives.  

The considered problem is complex and 

multimodal and requires a specific approach. This is 

proven by the low efficiency of particle swarm 

optimization and differential evolution algorithms 

applied to this problem. 

In this work, an operator is proposed that can 

improve the algorithms’ performance preventing its 

stagnation. But this operator has different effect on 

different optimization algorithms: it improved the 

genetic algorithm and particle swarm optimization 

algorithm but decayed the differential evolution 

performance. We can also conclude that the restart 

operator is parameter sensitive. 

The goal of the further research is to explore other 

heuristics to improve the algorithms efficiency in 

solving linear dynamical system parameter 

identification problem. 
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