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Abstract: The goal of the research is to improve accuracy in detection of email spam using a novel recurrent neural 

network compared to logistic regression. Two groups such as Novel Recurrent Neural Network and Logistic 

regression are taken for this study. The sample size for each group is 10, and the study's parameters include 

an alpha value of 0.8 and a beta value of 0.2. About 80% is the G-power value. In terms of predicting spam 

in electronic mail, the Novel Recurrent Neural Network has the highest accuracy (97.36%), while the Logistic 

Regression comes in at 94.90%. p=0.005(p0.05), which is the statistically significant value. The Novel 

Recurrent Neural Network better than the Logistic Regression in Electronic mail spam prediction.

1 INTRODUCTION  

Spam email is unsolicited and undesired junk email 

sent in large quantities or in bulk to an indiscriminate 

recipient list (Dhinakaran et al. 2007). The adversary 

intentionally modifies the data to deceive the 

classifiers by taking advantage of the dataset shift 

vulnerability. Spam is transmitted for monetary gain. 

Botnets, or networks of compromised machines, send 

it in large quantities (Rayan 2022). Spam email is 

frequently a vulnerable effort to obtain unauthorized 

access to your system (Weiske et al. 2020). Spam 

prohibits users from making full and effective use of 

their CPU time, storage capacity, and network 

bandwidth(Jeong 2012). It becomes a major issue, 

especially when spam communications are mixed in 

with crucial business emails (Sroufe et al. 2009). 

Dealing with difficulties caused by spam email 

becomes unavoidable(Cota and Zinca 2022). 

Spammers use the web security flaw known as the 

"email vulnerability" to send out anonymous emails. 

As a result, this problem may be handled by 

employing Machine Learning approaches capable of 

detecting and filtering spam (Sultana, Yenepoya 

Institute of Technology, and Moodbidri 2020) (G. 

Ramkumar et al 2022). Recent research has 

demonstrated the vulnerability of machine learning 

algorithms to adversarial attacks, wherein minor input 

perturbations result in misclassification. There are a 

variety of classes for vulnerabilities where the attacks 

are found at the detection phase (AbdulNabi and 

Yaseen 2021) (Padma, S et al. 2022). 

In 765 scholarly articles, same method is used to 

enhance email spammer prediction. There are various 

algorithms for predicting email spam, but a few of 

them are the Novel Recurrent Neural Network and the 

supervised and unsupervised approaches to logistic 

regression (Honan and Curran 2009). Novel 

Recurrent Neural Network (RNN) is a method that is 

unsupervised. It performs a variety of tasks, including 

storing data while input is read incrementally and 

generalizing model services to input configurations 

(Williams et al. 2019). The primary purpose of a 

novel RNN is to replace unidirectional networks by 

allowing data to flow from one layer to another 

(Rajalingam 2020). The other algorithm is supervised 

and uses logistic regression. The association between 

the categorical dependent variable and the dependent 

variable is measured by logistic regression (Butt et al. 

Messages were marked and are uncertain about new 

incoming messages for the Spam detection issue. In 

this sense, a model that can determine if a 

communication is spam or not is necessary. The 

logistic regression model is employed for this, with 0 

denoting negative class that is spam message is not 

present and 1 denoting positive class indicating that 

the spam is present. (Chen and Yang 2022). 

The biggest drawback is that due to their 

propensity for overfitting, neural networks may be 

overly impacted by their training data and hence 

struggle to generalize to new, untried data. A higher 
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rate of false positives or false negatives may come 

from this. So, it seeks to use machine learning to 

increase the suggested system's accuracy. The aim is 

to use Novel Recurrent Neural Networks to predict 

Email Spam than Logistic Regression more 

accurately. 

2 MATERIALS AND METHODS 

Novel Recurrent Neural Network 

Novel Recurrent Neural Network can act as a 

Feedforward neural networks offspring. It may 

handle variable length input sequences by employing 

internal state memory (Khurana et al. 2022). As a 

result, they can be used for tasks like unsegmented, 

connected handwriting recognition and speech 

recognition (Maleh et al. 2020). The disadvantage of 

Recurrent Neural Network is it can be slow due to the 

sequential nature of the data. Novel Recurrent Neural 

Networks are turing complete in theory and can 

execute arbitrary programmes to process arbitrary 

input sequences. It refers to the class of networks with 

an infinite impulse response (Sarno et al. 2020). 

Algorithm 

Step 1. Import the required libraries and read the 

datasets of the plant images. 

Step 2. Load and split the dataset into training and 

testing of the plant disease detection. 

Step 3. The image will be preprocessed. 

Step 4. Prepare the input image to the required 

Keras format to perform features and      

transform the data. 

Step 5. Create and initialize the RNN model and 

train it with the image of the leaf. 

Step 6. Make the prediction on the training and 

testing of the datasets. 

Step 7. The model’s precision score will be 

examined and resulted in the trained graph with 

matplotlib. 

Logistic Regression 

Based on a collection of independent variables, it is 

used to forecast the categorical dependent variable 

(O'Neil and Schutt 2013). Using logistic regression, 

the result of a categorical dependent variable is 

predicted. Therefore, the output must be discrete or 

categorical. It provides the probabilistic values that 

fall between 0 and 1 (Teja and Sai Teja 2021). It can 

be Yes or No, 0 or 1, true or false, and so on. The 

method of application is the only distinction between 

linear regression and logistic regression. 

Classification issues are resolved using logistic 

regression, and regression issues are resolved using 

linear regression. The disadvantage of Logistic 

regression can be affected by irrelevant features, 

leading to a decrease in accuracy (Rajendran et al. 

2016). 

Logistic Regression Algorithm Steps 

Step 1. Design the LR Model with Predefined 

libraries.  

Step 2. Read Train Data set containing heart 

disease related to past year data. 

Step 3. Obtain the heart disease rate. 

Step 4. Train the model with data set and compute 

the prediction factor values  

Step 5. Assign test data to the model and perform 

classification 

Step 6. Compare the similarities between test and 

train data 

Step 7. Write the results of prediction values. 

Table 1: For novel recurrent neural networks and logistic 

regression algorithms, the iteration values.  

Iterations 

  Novel 

Recurrent                

Neural   

Network 

      Logistic 

regression 

1 96.20 93.60 

2 96.20 93.60 

3 96.20 93.60 

4 96.10 93.60 

5 99.30 94.50 

6 96.20 95.00 

7 99.10 95.30 

8 99.10 95.80 

9 99.20 96.60 

10 99.30 97.40 

3 RESULTS 

The statistical results obtained from this study can be 

applied to all variables. Based on the outcomes of the 

independent sample t-test and Logistic regression 

analysis, it is evident that the enhanced Novel RNN 

model has achieved the better accuracy and standard 

deviation compared to the Logistic regression model. 

The difference in accuracy between the two models 

can be attributed to the significant and interconnected 

nature of the study outcomes, which highlights the 

importance of adhering to the equality of variance 

principle in such analyses. 
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 Table 2: Comparison of the Novel Recurrent Neural 

Network (97%) method with Logistic Regression (94%) for 

10 iterations using group statistics. 

 Group Name N Mean 
Standard 

Deviation 

Standard Error 

Mean 

Accuracy 

Novel Recurrent 

Neural Network 
10 97.96 1.54 0.48 

Logistic 

Regression 
10 94.90 1.37 0.43 

 

Table 1 displays the results of the study, indicating 

that Novel RNN has a higher accuracy rate of 

97.96%, outperforming Logistic Regression model, 

which has an accuracy of 94.90%. This highlights the 

effectiveness of Novel RNN in categorizing data 

compared to the Logistic Regression model. 

Moreover, Table 2 shows that the Standard Deviation 

of the Novel Recurrent Neural Network is 1.55599, 

while the Logistic Regression model has a Standard 

Deviation of 1.86118. The independent samples T-

test was utilized to compare the performance of the 

two models, where the Mean difference was 2.511, 

and the standard error difference was 0.77856. In 

Table 3, However, the significance value was found 

to be p=0.005 (p<0.05), implying that there is a 

significant difference between the two models. Figure 

1 infers the comparison of accuracy of Novel RNN 

and Logistic Regression. 

Table 3: T-test results from independent samples reveal statistically significant value 0.005(p≤0.05), the mean difference is 

3.06000, and the difference in standard error is 0.65323. 

Independent Sample Test 

Levene’s Test for Equality of 

Variances 
T-test for Equality of Means 

 F Sig. T Df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. 

Error 

Differen

ces 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Acc

urac

y 

Equal 

Variances 

assumed 

0.002 0.962 3.225 18 0.005 2.51111 0.77856 0.87541 4.14681 

Equal 

Variances 

not 

assumed 

  3.286 17.981 0.005 2.51111 0.76415 0.90557 4.11665 

 

 

Figure 1: Novel Recurrent Neural Network and Logistic Regression are represented on the X-axis. The mean accuracy of the 

novel recurrent neural network and logistic regression is displayed on the Y-axis, Mean Efficiency of detection is ±2 SD. 
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4 DISCUSSION 

The study conducted to predict email spam using the 

Novel Recurrent Neural Network showed that the 

unsupervised approach had significantly higher 

accuracy compared to the supervised approach, with 

an accuracy rate of around 97% versus 94% for 

Logistic regression. However, it should be noted that 

Logistic regression has limitations in achieving high 

accuracy rates. On the other hand, the Novel 

Recurrent Neural Network (RNN) tends to provide 

more consistent outcomes, as evidenced by its lower 

standard deviation (Broadhurst and Trivedi 2020). 

The results of the study indicated that Novel RNN 

achieved an accuracy rate of 97% for Email spam 

prediction, which is equivalent to the findings 

presented in the paper. In contrast, the reported 

Logistic regression model had an accuracy rate of 

94% for the same task of Email spam prediction. The 

RNN, Logistic regression is a parameter used to 

predict Email spam (Wang and Katagishi 2014). 

Using Logistic regression for Email spam prediction 

will have significant concerns to pretend that this 

innovation reveals that logistic regression has the 

least accuracy of 94%.  

The disadvantage of Logistic regression is that 

increasing the value of the dataset only tends to 

achieve the necessary precision. Novel Recurrent 

Neural Network works better when combined with 

other techniques (Kigerl 2018). Irrelevant features 

can degrade the accuracy of logistic regression (Rafat 

et al. 2022). Our future innovation will concentrate on 

improving accuracy for predicting Email spam 

without any disadvantages in working mode 

(Kaddoura et al. 2022). 

5 CONCLUSION 

Finding out how successfully Novel Recurrent Neural 

Network and Logistic Regression, ave predicted 

email spam is the goal of the current study. The 

highest accuracy of 97.96% was provided by the 

RNN, compared to the Logistic regression accuracy 

of 94.90%. This shows that the performance of 

predicting the email spam is good for the Novel RNN. 
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