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Abstract: In mathematical analysis, diverse generalizations of metric spaces like 2-Metric, D-metric, G-metric, S-

metric, b-metric, Cone metric, and N-cone metric spaces have been studied. Malviya et al. (2012) introduced 

N-cone metric spaces, a generalization of cone and S-metric spaces, exploring their properties in fixed-point 

theory. This paper extends and revises results from Wang et al. (1984) in this novel context. Theorems and 

corollaries demonstrate the uniqueness and existence of fixed points under specified conditions. These 

findings enrich the understanding of generalized metric spaces and their applications in mathematical analysis.

1 INTRODUCTION 

In the literature of Mathematical Analysis there are 

various generalization of metric spaces like as 2- 

Metric space (‘Gahler 1963, 1966’), D-metric space 

(‘Mustafa Z. and Sims B. [2003, 2006]’), G-metric 

Space (‘Dhage B.C., 1992’), S-metric Space (‘Shaban 

S. et al., 2012’), b-metric Space (‘Bakhtin, I.A., 

1989’), Cone metric space (‘Huang et al., 2007’) etc. 

In 2012, (‘Malviya et al. [accepted in FILOMAT]’) 

defined a new structure namely N-cone metric space, 

which was the generalization of cone metric space 

and S-metric space, and studied various properties 

and their applications in fixed point theory. In this 

paper we extend and modify the results of (‘Wang et 

al., 1984’) in this new setting.   

 

Definition 1.1 (Gahlers 1963, 1966). Let 𝑋 be a 

nonempty set. A generalized metric (or 2-metric) on 

𝑋 is a function d: 𝑋3 → 𝑅+ that satisfies the following 

conditions for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 

d(𝑥, 𝑦, 𝑧) ≥ 0 

d(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧 

d(x, y, z) = d(p{x, y, z}), (symmetry),where p is 

permutation function, 

d(𝑥, 𝑦, 𝑧) ≤ d(x, y, a) + d(x, a, z) + d(a, y, z) for all 

𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 

Then the function d is called a 2- metric and the pair 

(X, d) is called a 2-metric space. 

 

Definition 1.2 (Mustafa 2003, 2006). Let 𝑋 be a 

nonempty set. A 𝐺- metric on 𝑋 is a function 𝐺: 𝑋3 →

[0, ∞ ) that satisfies the following conditions for all 

𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 
𝐺(𝑥, 𝑦, 𝑧) = 0 𝑖𝑓 𝑥 = 𝑦 = 𝑧 

0 < 𝐺(𝑥, 𝑦, 𝑧) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑥 ≠ 𝑦,  
𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑥

≠ 𝑦,  
𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) … … …. 

𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧) for all 

𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 

Then the function 𝐺 is called an G- metric and the pair 

(𝑋, 𝐺) is called a 𝐺-metric space. 

 

Definition 1.3 (Sedghi, 2012). Let 𝑋 be a nonempty 

set. An 𝑆-metric on 𝑋 is a function 𝑆: 𝑋3 → [0, ∞ ) 

that satisfies the following conditions for all 

𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 
 

𝑆(𝑥, 𝑦, 𝑧) ≥ 0 
𝑆(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧 

𝑆(𝑥, 𝑦, 𝑧) ≤ 𝑆(𝑥, 𝑥, 𝑎) + 𝑆(𝑦, 𝑦, 𝑎) + 𝑆(𝑧, 𝑧, 𝑎) 

Then the function 𝑆 is called an 𝑆- metric and the pair 

(𝑋, 𝑆) is called an 𝑆-metric space 

 

Definition 1.4 (Bakhtin, 1989). Let X be a nonempty 

set and 𝑠 ≥ 1 a given real number. A 

function d : X × X→ R+ is a 𝑏-metric on X if, for 

all x, y, z ∈ X, the following conditions hold: 

(1) d(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, 

(2) d(𝑥, 𝑦) = d(𝑦, 𝑥), 

(3) d(𝑥, 𝑧) ≤  s [d(𝑥, 𝑦) +d (𝑦, 𝑧)]. 

In this case, the pair (X, 𝑑) is called a 𝑏-metric space 
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Definition 1.5 (Huang and Zhang, 2007). Let X be a 

nonempty set and E be the real Banach space. 

Suppose the mapping d:X×X→ E satisfies 

1.0 ≤ d(x, y) for all x, y ∈X and d(x, y) = 0 if and only 

if x = y; 

2. d(x, y) = d(y, x) for all x, y ∈ X; 

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈X.  

Then d is called a cone metric on X and (X, d) is called 

a cone metric space. 

 

Definition 1.6 (Malviya N., Fisher, 2003). Let 𝑋 be a 

nonempty set. An 𝑁-cone metric on 𝑋 is a 

function 𝑁: 𝑋3 → 𝐸 , that satisfies the following 

conditions for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 

𝑁(𝑥, 𝑦, 𝑧) ≥ 0 
𝑁(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧 

𝑁(𝑥, 𝑦, 𝑧) ≤ 𝑁(𝑥, 𝑥, 𝑎) + 𝑁(𝑦, 𝑦, 𝑎) + 𝑁(𝑧, 𝑧, 𝑎) 

Then the function 𝑁 is called an 𝑁-cone metric and 

the pair (𝑋, 𝑁) is called an 𝑁-cone metric space. 

2 MAIN RESULTS  

Definition 2.1. Let 𝑋 be a nonempty set, E is the real 

Banach space and s ≥ 1 be a given real 

number. An 𝑁𝑏-cone metric on 𝑋 is a 

function 𝑁𝑏: 𝑋3 → 𝐸 , that satisfies the following 

conditions for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋. 
𝑁𝑏(𝑥, 𝑦, 𝑧) ≥ 0 

𝑁𝑏(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧 
𝑁𝑏(𝑥, 𝑦, 𝑧) ≤ 𝑠[𝑁𝑏(𝑥, 𝑥, 𝑎) + 𝑁𝑏(𝑦, 𝑦, 𝑎)

+ 𝑁𝑏(𝑧, 𝑧, 𝑎)] 
Then the function 𝑁𝑏 is called an 𝑁𝑏-cone metric and 

the pair (𝑋, 𝑁𝑏) is called an 𝑁𝑏-cone metric space. 

 

Definition 2.2. If (𝑋, 𝑁𝑏) is an 𝑁𝑏-cone metric space, 

then it is called symmetric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, we 

have 𝑁𝑏(𝑥, 𝑥, 𝑦) = 𝑁𝑏(𝑦, 𝑦, 𝑥). 

 

Definition 2.3. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric 

space. Let {𝑥𝑛} be a sequence in 𝑋 and 𝑥 ∈ 𝑋. If for 

every 𝑐 ∈ 𝐸 with 0 ≪ 𝑐 there is 𝑁 such that for 

all 𝑛 > 𝑁, 𝑁𝑏(𝑥𝑛 , 𝑥𝑛 , 𝑥) ≪ 𝑐, then {𝑥𝑛} is said to be 

convergent, {𝑥𝑛} converges to 𝑥 and 𝑥 is the limit of 

{𝑥𝑛}. We denote this by 𝑥𝑛 → 𝑥 as (𝑛 → ∞). 

 

Lemma 1. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric space 

and 𝑃 be a normal cone with normal constant 𝑘. Let 

{𝑥𝑛} be a sequence in 𝑋. If {𝑥𝑛} converges to 𝑥 and 

{𝑥𝑛} also convergesto 𝑦 then 𝑥 = 𝑦. That is the limit 

of {𝑥𝑛}, if exists is unique. 

 

Definition 2.4. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric 

space and {𝑥𝑛} be a sequence in 𝑋 . If for any 𝑐 ∈ 𝐸 

with 0 ≪ 𝑐 there is 𝑁 such that for all𝑚, 𝑛 >
𝑁, 𝑁𝑏(𝑥𝑛 , 𝑥𝑛, 𝑥𝑚) ≪ 𝑐, then{𝑥𝑛} is called a Cauchy 

sequence in 𝑋. 

Definition 2.5. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric 

space. If every Cauchy sequence in 𝑋 is convergent in 

𝑋, then 𝑋 is called a complete 𝑁𝑏-cone metric space. 

 

Lemma 2. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric space 

and {𝑥𝑛} be a sequence in 𝑋. If {𝑥𝑛} converges to 𝑥, 

then {𝑥𝑛} is a Cauchy sequence. 

 

Definition 2.6. Let (𝑋, 𝑁𝑏) and (𝑋′, 𝑁𝑏
′) be 𝑁𝑏-cone 

metric spaces. Then a function 𝑓: 𝑋 → 𝑋  ′is said to be 

continuous at a point 𝑥 ∈ 𝑋 if and only if it is 

sequentially continuous at 𝑥, that is whenever {𝑥𝑛} is 

convergent to 𝑥 we have {𝑓𝑥𝑛} is convergent to𝑓(𝑥). 

 

Lemma 3. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric space 

and 𝑃 be a normal cone with normal constant 𝑘. Let 
{𝑥𝑛} and {𝑦𝑛} be two sequences in 𝑋 and suppose that 

𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦 as 𝑛 → ∞. Then 𝑁𝑏(𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛) →
𝑁𝑏(𝑥, 𝑥, 𝑦) as 𝑛 → ∞. 
 

Remark 1. If 𝑥𝑛 → 𝑥 in an 𝑁𝑏-cone metric space in 

𝑋 then every subsequence of {𝑥𝑛} converges to 𝑥 in 

𝑋. 
 

Proposition 1. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric 

space and 𝑃 be a cone in a real Banach space 𝐸. If 

𝑢 ≤ 𝑣, 𝑣 ≪ 𝑤 then 𝑢 ≪ 𝑤. 

 

Lemma 4. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric space, 𝑃 

be an 𝑁𝑏-cone in a real Banach space 𝐸 and 

𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘 > 0. If 𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦, 𝑧𝑛 → 𝑧 and 

𝑝𝑛 → 𝑝 in 𝑋 and 

𝑘𝑎 ≤ 𝑘1𝑁𝑏(𝑥𝑛 , 𝑥𝑛 , 𝑥) + 𝑘2𝑁𝑏(𝑦𝑛, 𝑦𝑛 , 𝑦)
+ 𝑘3𝑁𝑏(𝑧𝑛, 𝑧𝑛 , 𝑧)
+ 𝑘4𝑁𝑏(𝑝𝑛, 𝑝𝑛 , 𝑝) …            (1.1.1) 

then 𝑎 = 0. 
 

Expansive Map: We define expansive map in 𝑁𝑏-

cone metric space as follows 

 

Definition 2.7. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric 

space. A map 𝑓: 𝑋 → 𝑋 is said to be an expansive 

mapping if there exists a constant 𝐿 > 1 such that 

𝑁𝑏(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≥ 𝐿𝑁𝑏(𝑥, 𝑥, 𝑦)for all 𝑥, 𝑦 ∈ 𝑋. 
 

Example 1. Let (𝑋, 𝑁𝑏) be an 𝑁𝑏-cone metric space. 

Define a self map 𝑓: 𝑋 → 𝑋 by 𝑓𝑥 = 𝛽𝑥 where 𝛽 >
1, for all 𝑥 ∈ 𝑋. Clearly 𝑓 is an expansive map in 𝑋. 
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Theorem 1. Let (𝑋, 𝑁𝑏) be a complete symmetric 𝑁𝑏-

cone metric space with respect to a cone 𝑃 contained 

in a real Banach space 𝐸. Let 𝑓and 𝑔 be two surjective 

continuous self map of 𝑋 satisfying. 

𝑁𝑏(𝑓𝑥, 𝑓𝑥, 𝑔𝑦) + 𝑘[𝑁𝑏(𝑥, 𝑥, 𝑔𝑦) + 𝑁𝑏(𝑦, 𝑦, 𝑓𝑥)]
≥ 𝑎𝑁𝑏(𝑥, 𝑥, 𝑓𝑥) + 𝑏𝑁𝑏(𝑦, 𝑦, 𝑔𝑦)
+ 𝑐𝑁𝑏(𝑥, 𝑥, 𝑦)(1.1.1) 

for every 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦 where 𝑎, 𝑏, 𝑐, 𝑘 ≥ 0, 3𝑠𝑘 +
1 < 𝑐. Then 𝑓 and 𝑔 have a unique common fixed 

point in 𝑋. 

 

Proof: We define a sequence {𝑥𝑛} as follows for 𝑛 =
0,1,2,3, … 

   𝑥2𝑛 = 𝑓𝑥2𝑛+1, 𝑥2𝑛+1 = 𝑔𝑥2𝑛+2                  (1.1.2) 

If 𝑥2𝑛 = 𝑥2𝑛+1 = 𝑥2𝑛+2 for some 𝑛 then we see that 

𝑥2𝑛 is a fixed point of 𝑓 and 𝑔. Therefore, we suppose 

that no two consecutive terms of sequence {𝑥𝑛} are 

equal. 

Now we put 𝑥 = 𝑥2𝑛+1 and 𝑦 = 𝑥2𝑛+2 in (1.1.1) we 

get 

𝑁𝑏(𝑓𝑥𝑛+1, 𝑓𝑥2𝑛+1, 𝑔𝑥2𝑛+2) +
𝑘[𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑔𝑥2𝑛+2) +
𝑁𝑏(𝑥2𝑛+2, 𝑥2𝑛+2, 𝑓𝑥2𝑛+1)] ≥
𝑎𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑓𝑥2𝑛+1) 

+𝑏𝑁𝑏(𝑥2𝑛+2, 𝑥2𝑛+2, 𝑔𝑥2𝑛+2) +
𝑐𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+2) 

𝑁𝑏(𝑥2𝑛 , 𝑥2𝑛 , 𝑥2𝑛+1)
+ 𝑘[𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+1)
+ 𝑁𝑏(𝑥2𝑛+2, 𝑥2𝑛+2, 𝑥2𝑛)]
≥ 𝑎𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛) 

+𝑏𝑁𝑏(𝑥2𝑛+2, 𝑥2𝑛+2, 𝑥2𝑛+1)
+ 𝑐𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+2) 

⇒ 𝑁𝑏(𝑥2𝑛 , 𝑥2𝑛, 𝑥2𝑛+1) +
𝑘[2𝑠𝑁𝑏(𝑥2𝑛+2, 𝑥2𝑛+2, 𝑥2𝑛+1) +

𝑠𝑁𝑏(𝑥2𝑛, 𝑥2𝑛 , 𝑥2𝑛+1)] ≥ 𝑎𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛) 

+𝑏𝑁𝑏(𝑥2𝑛+2, 𝑥2𝑛+2, 𝑥2𝑛+1) +
𝑐𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+2) 

⇒ (1 + 𝑠𝑘 − 𝑎)𝑁𝑏(𝑥2𝑛, 𝑥2𝑛 , 𝑥2𝑛+1)
≥ (𝑏 + 𝑐
− 2𝑠𝑘)𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+2) 

⇒ 𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+2)

≤
(1 + 𝑠𝑘 − 𝑎)

(𝑏 + 𝑐 − 2𝑠𝑘)
𝑁𝑏(𝑥2𝑛 , 𝑥2𝑛 , 𝑥2𝑛+1) 

⇒ 𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+2) ≤ 𝐾1𝑁𝑏(𝑥2𝑛 , 𝑥2𝑛, 𝑥2𝑛+1) 

where   𝐾1 =
(1+𝑠𝑘−𝑎)

(𝑏+𝑐−2𝑠𝑘)
< 1 (𝐴𝑠  𝑎 + 𝑏 + 𝑐 > 1 + 3𝑠𝑘) 

Similarly, we can calculate 

⇒ 𝑁𝑏(𝑥2𝑛+2, 𝑥2𝑛+2, 𝑥2𝑛+3)
≤ 𝐾2𝑁𝑏(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+2) 

Where   𝐾2 =
(1+𝑠𝑘−𝑎)

(𝑏+𝑐−2𝑠𝑘)
< 1 (𝐴𝑠  𝑎 + 𝑏 + 𝑐 > 1 + 3𝑠𝑘) 

and so on. 

⇒ 𝑁𝑏(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1) ≤ 𝐾𝑁𝑏(𝑥𝑛−1, 𝑥𝑛−1, 𝑥𝑛) for 𝑛 =
1,2,3, … 

where 𝐾 = 𝑚𝑎𝑥{𝐾1, 𝐾2} then 𝐾 < 1. 
 

⇒ 𝑁𝑏(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1) ≤ 𝐾𝑛𝑁𝑏(𝑥0, 𝑥0, 𝑥1) 
Now we shall prove that {𝑥𝑛} is a Cauchy sequence. 

For this for every positive integer 𝑝, we have 

𝑁𝑏(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+𝑝)

≤ 2𝑠𝑁𝑏(𝑥𝑛 , 𝑥𝑛, 𝑥𝑛+1) + 2𝑠2𝑁𝑏(𝑥𝑛+1, 𝑥𝑛+1, 𝑥𝑛+2)

+ ⋯ + 2𝑠𝑛+𝑝−1𝑁𝑏(𝑥𝑛+𝑝−2, 𝑥𝑛+𝑝−2, 𝑥𝑛+𝑝−1)

+ 𝑠𝑛+𝑝𝑁𝑏(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝) 

≤ 2𝑠𝑁𝑏(𝑥𝑛 , 𝑥𝑛, 𝑥𝑛+1) + 2𝑠2𝑁𝑏(𝑥𝑛+1, 𝑥𝑛+1, 𝑥𝑛+2)

+ ⋯ + 2𝑠𝑛+𝑝−1𝑁𝑏(𝑥𝑛+𝑝−2, 𝑥𝑛+𝑝−2, 𝑥𝑛+𝑝−1)

+ 2𝑠𝑛+𝑝𝑁𝑏(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝) 

     ≤ [2𝑠𝐾𝑛 + 2𝑠2𝐾𝑛+1 + ⋯ + 2𝑠𝑛+𝑝−1𝐾𝑛+𝑝−2

+ 2𝑠𝑛+𝑝𝐾𝑛+𝑝−1]𝑁𝑏(𝑥0, 𝑥0, 𝑥1) 
 = 2𝑠𝐾𝑛[1 + 𝑠𝐾 + 𝑠2𝐾2 + ⋯ ]𝑁𝑏(𝑥0, 𝑥0, 𝑥1) 

                                           <
2𝑠𝐾𝑛

(1−𝑠𝐾)
𝑁𝑏(𝑥0, 𝑥0, 𝑥1) 

    ⇒ ‖𝑁𝑏(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+𝑝)‖

<
2𝑠𝐾𝑛

(1 − 𝑠𝐾)
𝐾 ‖𝑁𝑏(𝑥0, 𝑥0, 𝑥1)‖ 

which implies that ‖𝑁𝑏(𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+𝑝)‖ → 0 as 𝑛 →

∞. 

Sinc𝑒 𝐾 → 0 as  𝑛 → ∞. 

Therefore {𝑥𝑛} is a Cauchy sequence in 𝑋, which is 

complete space, so {𝑥𝑛} → 𝑥 ∈ 𝑋. 

 

Existence of Fixed Point: Since mappings are 

continuous therefore existence of fixed point follows 

very easily. As shown below 

   𝑥 = 𝑥2𝑛  = 𝑓𝑥2𝑛+1  = 𝑥2𝑛+1  
= 𝑓𝑥(𝑎𝑠  𝑛 → ∞ {𝑥2𝑛+1} → 𝑥) 

Similarly 
𝑥 = 𝑥2𝑛+1  = 𝑔𝑥2𝑛+2  = 𝑥2𝑛+2

= 𝑔𝑥 (𝑎𝑠  𝑛 → ∞ {𝑥2𝑛+2} → 𝑥) 
                           𝑥 = 𝑦                                         (1.1.3) 

which shows that 𝑥 is a common fixed point of 𝑓and 

𝑔. 

 

Uniqueness: Let 𝑧 be another common fixed point of 

𝑓 and 𝑔, that is 
 𝑓𝑧 = 𝑧 𝑎𝑛𝑑 𝑔𝑧 = 𝑧                               (1.1.4) 

𝑁𝑏(𝑥, 𝑥, 𝑧) = 𝑁𝑏(𝑓𝑥, 𝑓𝑥, 𝑔𝑧) 
                   ≥ −𝑘[𝑁𝑏(𝑥, 𝑥, 𝑔𝑧) + 𝑁𝑏(𝑧, 𝑧, 𝑓𝑥)]

+ 𝑎𝑁𝑏(𝑥, 𝑥, 𝑓𝑥) + 𝑏𝑁𝑏(𝑧, 𝑧, 𝑔𝑧)
+ 𝑐𝑁𝑏(𝑥, 𝑥, 𝑧) 

 

⇒ 𝑁𝑏(𝑥, 𝑥, 𝑧) ≥ −𝑘[𝑁𝑏(𝑥, 𝑥, 𝑧) + 𝑁𝑏(𝑧, 𝑧, 𝑥)]
+ 𝑎𝑁𝑏(𝑥, 𝑥, 𝑥) + 𝑏𝑁𝑏(𝑧, 𝑧, 𝑧)
+ 𝑐𝑁𝑏(𝑥, 𝑥, 𝑧)[𝑏𝑦 1.1.4] 

⇒ (1 − 𝑐 + 2𝑘)𝑁𝑏(𝑥, 𝑥, 𝑧) ≥ 0 
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⇒ 𝑁𝑏(𝑥, 𝑥, 𝑧) = 0        [𝐴𝑠  𝑐 > 3𝑠𝑘 + 1 > 2𝑘 + 1] 
⇒ 𝑥 = 𝑧 
This completes the proof of the Theorem 1. 
 

Corollary 2. Let (𝑋, 𝑁𝑏) be a complete symmetric 

𝑁𝑏-cone metric space with respect to a cone 𝑃 

contained in a real Banach space 𝐸. Let 𝑓 and 𝑔 be 

two surjective  continuous self maps of 𝑋 satisfying. 

𝑁𝑏(𝑓𝑥, 𝑓𝑥, 𝑔𝑦) ≥  𝑐𝑁𝑏(𝑥, 𝑥, 𝑦) 

where 𝑐 > 1. Then 𝑓 and 𝑔 have a unique common 

fixed point in 𝑋. 
 

Proof: If we put 𝑘, 𝑎, 𝑏 = 0 in Theorem 1, then we 

get above Corollary 2. 

Corollary 3. Let (𝑋, 𝑁𝑏) be a complete symmetric 

𝑁𝑏-cone metric space with respect to a cone 

𝑃 contained in a real Banach space 𝐸. Let 𝑓 be a 

continuous surjective self map of 𝑋 satisfying. 

     𝑁𝑏(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≥  𝑐𝑁𝑏(𝑥, 𝑥, 𝑦)      (1.1.5) 

where 𝑐 > 1. Then 𝑓 has a unique fixed point in 𝑋. 
 

Proof: If we put 𝑓 = 𝑔 in Corollary 2 then we get 

above Corollary 3 which is an extension of Theorem 

1 of Wang et al. (Wang et al., 1984) in 𝑁𝑏-cone metric 

space. 

Corollary 4. Let (𝑋, 𝑁𝑏) be a complete symmetric  

𝑁𝑏-cone metric space and 𝑓: 𝑋 → 𝑋 be a continuous 

surjection. Suppose that there exists a positive integer 

𝑛 and a real number 𝐶 > 1 such 

that 𝑁𝑏(𝑓𝑛𝑥, 𝑓𝑛𝑥, 𝑓𝑛𝑦) ≥ 𝐶𝑁𝑏(𝑥, 𝑥, 𝑦) for all 𝑥, 𝑦 ∈
𝑋. Then 𝑓 has a unique fixed point in 𝑋. 

Proof: From Corollary 3, 𝑓𝑛 has a unique fixed point 

𝑧. But 𝑓𝑛(𝑓𝑧) = 𝑓(𝑓𝑛𝑧) = 𝑓𝑧, so 𝑓𝑧 is also a fixed 

point of 𝑓𝑛. Hence 𝑓𝑧 = 𝑧, 𝑧 is a fixed point of 𝑓. 

Since the fixed point of 𝑓 is also fixed point of 𝑓𝑛, the 

fixed point of 𝑓 is unique. 

Corollary 5. Let (𝑋, 𝑁𝑏) be a complete symmetric 

𝑁𝑏-cone metric space with respect to a cone 

𝑃contained in a real Banach space 𝐸. Let 𝑓 and 𝑔 be 

two continuous surjective self maps of 𝑋 satisfying. 

𝑁𝑏(𝑓𝑥, 𝑓𝑥, 𝑔𝑦) ≥ 𝑎𝑁𝑏(𝑥, 𝑥, 𝑓𝑥) + 𝑏𝑁𝑏(𝑦, 𝑦, 𝑔𝑦)
+ 𝑐𝑁𝑏(𝑥, 𝑥, 𝑦) 

for every 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦 where 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑐 >
1. Then 𝑓 and 𝑔 have a unique common fixed point 

in 𝑋. 
 

Proof: The proof is similar to proof of the Theorem 1. 

Corollary 6. Let (𝑋, 𝑁𝑏) be a complete symmetric 

𝑁𝑏-cone metric space with respect to a cone 𝑃 

contained in a real Banach space 𝐸. Let 𝑓 be 

surjective continuous self map of 𝑋 satisfying. 
𝑁𝑏(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≥ 𝑎𝑁𝑏(𝑥, 𝑥, 𝑓𝑥) + 𝑏𝑁𝑏(𝑦, 𝑦, 𝑓𝑦)

+ 𝑐𝑁𝑏(𝑥, 𝑥, 𝑦) 

for every 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦 where 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑐 >
1. Then 𝑓 has a unique fixed point in 𝑋. 
 

Proof: If we put 𝑓 = 𝑔 in Corollary 5 then we get 

above Corollary 6 which is an extension of Theorem 

2 of Wang et al. [10] in 𝑁𝑏-cone metric space. 

The following example demonstrates Corollary 3. 

Example 2. Let 𝐸 = 𝑅3, 𝑃 = {(𝑥, 𝑦, 𝑧) ∈ 𝐸, 𝑥, 𝑦, 𝑧 ≥
0} and 𝑋 = 𝑅 and 𝑁𝑏: 𝑋 × 𝑋 × 𝑋 → 𝐸 is defined by 
𝑁𝑏(𝑥, 𝑦, 𝑧) = (𝛼(|𝑥 − 𝑧| + |𝑦 − 𝑧|)2, 𝛽(|𝑥 − 𝑧|

+ |𝑦 − 𝑧|)2, 𝛾(|𝑥 − 𝑧| |𝑦 − 𝑧|)2) 

where 𝛼, 𝛽, 𝛾 are positive constants. Then (𝑋, 𝑁𝑏) is 

a symmetric 𝑁𝑏-cone metric space. Define a self map 

𝑓 on 𝑋 as follows 𝑓𝑥 = 2𝑥 for all 𝑥 ∈ 𝑋. Clearly 𝑓 is 

an expansive mapping. If we take 𝑐 = 8 then 

condition (1.1.5) holds trivially good and 0 is the 

unique fixed point of the map 𝑓. 

Remark 2. In Corollary 6, we proved the fixed point 

is unique by using only 𝑐 > 1 and there is no need of 

𝑎 < 1 and 𝑏 < 1, so it extend and unify the Theorem 

2 of Wang et al. [10] in 𝑁𝑏-cone metric space. 
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