Pál Type Interpolation Problems with Additional Value Nodes

Poornima Tiwari
Department of Mathematics and Statistics, The Bhopal School of Social Sciences, Bhopal, M.P., India

Keywords: PTIP, Regularity, Roots of Unity, Value Nodes, 2020 Mathematics Subject Classification: 41A05.

Abstract

The author termed Pál type interpolation problems as PTIP. In this paper the regularity of $(0,1)-$ PTIP and $(0,2)$ - PTIP, with addition of two non-zero complex nodes $\pm \zeta$ or two real nodes ± 1 at value nodes for pairs of considered polynomials is evaluated.

1 INTRODUCTION

L. G. Pál 1975, introduced a new kind of Interpolation on zeros of two different Polynomials. It involves of finding a polynomial of degree ($m+$ $n-1$), that has prescribed values at m pairwise distinct nodes and prescribed values for $r^{t h}$ derivative at n pairwise distinct nodes. These nodes are called value nodes and derivative nodes respectively.

Let π_{n} be the set of polynomials of degree less than or equal to n with complex coefficients. Let $A(z) \in$ π_{n} and $B(z) \in \pi_{m}$, then for a given positive integer r the problem of $(0, r)-$ PTIP on the pair $\{A(z)$, $B(z)\}$, is to determine a polynomial $P(z) \in \pi_{n+m-1}$, which assumes arbitrary prescribed values at the zeros of $A(z)$ and arbitrary prescribed values of the $r^{t h}$ derivative at the zeros of $B(z)$. The problem is regular if and only if any $P(z)$ satisfying
$P\left(y_{i}\right)=0$; where $A\left(y_{i}\right)=0 ; i=1,2, \ldots, n$,
$P^{(r)}\left(z_{j}\right)=0$; where $B\left(z_{j}\right)=0 ; j=1,2, \ldots, m$,
vanishes identically. Here the zeros of $A(z), B(z)$ are assumed to be simple.
(De Bruin and Sharma 2003) observed regularity of $\left(0, m_{1}, \ldots, m_{q}\right)-$ PTIP on the zeros of $\left(z^{n}-\alpha_{0}^{n}\right)$, $\left(z^{n}-\alpha_{1}^{n}\right), \ldots,\left(z^{n}-\alpha_{q}^{n}\right)$ with $0<\alpha_{0}<\alpha_{1}<, \ldots,<$ α_{q}.
(De Bruin 2005) explored necessary and sufficient condition for regularity of $(0, r)-P T I P$ with respect to exchanging value-nodes and derivative-nodes.
(De Bruin and Dikshit 2005) examined regularity of $(0, r)-P T I P$ on the pair $\left\{\left(z^{m}-1\right)(z-\zeta),\left(z^{n}-\right.\right.$ $1)\}$, where m and n are given positive integers and ζ
is not a zero of the polynomial $\left(z^{m}-1\right)$. They determined largest domain for ζ, which ensures regularity of the problem. They observed that $(0, r)-$ PTIP on the pair $\left\{\left(z^{m}-1\right)(z-\zeta),\left(z^{n}-\right.\right.$ $1)\}$, for positive integers m and n are not regular, if $r>m+1$. For the case, $r \leq m+1$ and on the basis of relationship between the positive integers m and n, they explored $(0, r)-$ on some different pairs and found those problems are regular under certain conditions.
(Dikshit 2003) considered PTIP involving Möbius transform of zeros of $\left(z^{n}+1\right)$ and $\left(z^{n}-\right.$ 1) with one or two extra derivative nodes.
(De Bruin 2005) investigated regularity of ($0, m$) - PTIP on zeros of the pair $\left\{w_{n+m}^{(\alpha)}(z), w_{n}^{(\alpha)}(z)\right\}$, where α be a complex number with $\alpha^{2}, \alpha^{m}, \alpha^{n}, \alpha^{n+m} \neq 1 ; n, m \geq 1$.

The method of considering non-uniformly distributed nodes on unit disk is generalized, by involving the Möbius transform of zeros of ($z^{2 n}-$ $\rho^{2 n}$) on the circle $|z|=\rho^{\prime}$ (Mandoli and Pathak 2008).
$(0,1)-$ PTIP are found to be regular for following pairs, where $a_{m}(z) \in \pi_{m}$ and $b_{n}(z) \in \pi_{n}$ with simple zeros, $A_{m}(z)$ and $B_{n}(z)$ are the sets of zeros of the polynomials $a_{m}(z)$ and $b_{n}(z)$ respectively such that $B_{n}(z) \subseteq A_{m}(z)$ (Modi et al 2012)

- $\left\{a_{m}(z),(z-\zeta) b_{n}(z)\right\}$.
- $\left\{(z-\zeta) a_{m}(z), b_{n}(z)\right\}$.
- $\left\{a_{m}(z),\left(z-\zeta_{1}\right)\left(z-\zeta_{2}\right) b_{n}(z)\right\} ; \zeta_{1} \neq \zeta_{2}$.
- $\left\{a_{m}(z), \prod_{i=1}^{\beta} \quad\left(z-\zeta_{i}\right) b_{n}(z)\right\} ; \quad \zeta_{i} \quad$ are pairwise distinct.
- $\left\{a_{m}(z), \Psi(t) b_{n}(z)\right\} ; \Psi(t) \in \pi_{t}(t \geq 2)$ be a polynomial with simple zeros.
- $\left\{\left(z-\zeta_{1}\right) a_{m}(z),\left(z-\zeta_{2}\right) b_{n}(z)\right\}$.

The author (Pathak and Tiwari 2019, Pathak and Tiwari 2018) revisited regularity of Pál type Birkhoff interpolation and have introduced a new class of PTIP. Also, the author (Pathak and Tiwari 2018, Pathak and Tiwari 2020) examined the regularity of 'incomplete' type PTIP on non-uniformly distributed nodes by omitting real and complex nodes and studied 'Incomplete' type PTIP on zeros of polynomials with complex coefficients.

2 MAIN RESULTS

The author considered the polynomials $a_{m}(z) \in \pi_{m}$ and $b_{n}(z) \in \pi_{n}$ with simple zeros. $A_{m}(z)$ and $B_{n}(z)$ are the sets of zeros of the polynomials $a_{m}(z)$ and $b_{n}(z)$ respectively such that $B_{n}(z) \subseteq A_{m}(z)$. Section 2.1 deals with $(0,1)-P T I P$, while section 2.2 deals with $(0,2)-P T I P$.
$(0,1)$ - PTIP with two Additional Value Nodes
Theorem 2.1: Let $m, n \geq 1$, then $(0,1)-P T I P$ on $\left\{\left(z^{2}-\zeta^{2}\right) a_{m}(z), b_{n}(z)\right\} ; \pm \zeta \notin A_{m}(z), B_{n}(z) \subseteq$ $A_{m}(z)$ is regular.

Proof: Here, we have total $(m+n+2)$ interpolation points.
We need to determine a polynomial $P(z) \in \pi_{m+n+1}$ with

$$
\begin{gathered}
P\left(y_{i}\right)=0 ; y_{i} \in A_{m}(z) ; i=1,2, \ldots, m, \\
P(\pm \zeta)=0 ; \pm \zeta \notin A_{m}(z), \\
P^{\prime}\left(z_{j}\right)=0 ; z_{j} \in B_{n}(z) ; j=1,2, \ldots, n .
\end{gathered}
$$

Let $P(z)=\left(z^{2}-\zeta^{2}\right) a_{m}(z) Q(z)$; where $\quad Q(z) \in$ π_{n-1}.

Thus $P(z) \in \pi_{m+n+1}$.
The posed problem will be regular, if $P(z) \equiv 0$.
Since $P^{\prime}\left(z_{j}\right)=0$, we get

$$
\begin{gathered}
\left(z_{j}^{2}-\zeta^{2}\right) a_{m}\left(z_{j}\right) Q^{\prime}\left(z_{j}\right)+Q\left(z_{j}\right)\left[\left(z_{j}^{2}-\right.\right. \\
\left.\left.\zeta^{2}\right) a_{m}^{\prime}\left(z_{j}\right)+2 z_{j} a_{m}\left(z_{j}\right)\right]=0 .
\end{gathered}
$$

As $z_{j} \in B_{n}(z) \subseteq A_{m}(z)$, we have

$$
\left(z_{j}^{2}-\zeta^{2}\right) a_{m}^{\prime}\left(z_{j}\right) Q\left(z_{j}\right)=0
$$

Since $\pm \zeta \notin A_{m}(z)$ and $a_{m}(z)$ has simple zeros, the polynomial and its derivative cannot vanish simultaneously at the same point, we have

$$
Q\left(z_{j}\right)=0 .
$$

Since z_{j} has n values, we get

$$
\begin{equation*}
Q(z)=C q_{n}(z) \tag{2.1}
\end{equation*}
$$

According to our assumption $Q(z) \in \pi_{n-1}$ and therefore on account of equation (2.1), we get

$$
Q(z) \equiv 0 .
$$

Corollary 2.1: Let $m, n \geq 1$, then $(0,1)-P T I P$ on $\left\{\left(z^{2}-1\right) a_{m}(z), b_{n}(z)\right\} ; \pm 1 \notin A_{m}(z), B_{n}(z) \subseteq$ $A_{m}(z)$ is regular.

$(0,2)-P T I P$ with two Additional Value Nodes

Theorem 2.2: Let $m, n \geq 1$, then $(0,2)-$ PTIP on $\left\{\left(z^{2}-\zeta^{2}\right) a_{m}(z), b_{n}(z)\right\} ; \pm \zeta \notin A_{m}(z), B_{n}(z) \subseteq$ $A_{m}(z)$ is regular.

Proof: Here, we have total $(m+n+2)$ interpolation points.
We need to determine a polynomial $P(z) \in \pi_{m+n+1}$ with

$$
\begin{gathered}
P\left(y_{i}\right)=0 ; y_{i} \in A_{m}(z) ; i=1,2, \ldots, m, \\
\quad P(\pm \zeta)=0 ; \pm \zeta \notin A_{m}(z), \\
P^{\prime \prime}\left(z_{j}\right)=0 ; z_{j} \in B_{n}(z) ; j=1,2, \ldots, n .
\end{gathered}
$$

Let $\quad P(z)=\left(z^{2}-\zeta^{2}\right) a_{m}(z) Q(z)$; where $Q(z) \in$ π_{n-1}.

Thus $P(z) \in \pi_{m+n+1}$.
The posed problem will be regular, if $P(z) \equiv 0$.
Since $P^{\prime \prime}\left(z_{j}\right)=0$, we get

$$
\begin{aligned}
\left(z_{j}^{2}-\zeta^{2}\right) a_{m}\left(z_{j}\right) & Q^{\prime \prime}\left(z_{j}\right) \\
& +2\left[\left(z_{j}^{2}-\zeta^{2}\right) a_{m}^{\prime}\left(z_{j}\right)\right. \\
& \left.+2 z_{j} a_{m}\left(z_{j}\right)\right] Q^{\prime}\left(z_{j}\right) \\
& +\left[\left(z_{j}^{2}-\zeta^{2}\right) a_{m}^{\prime \prime}\left(z_{j}\right)+4 z_{j} a_{m}^{\prime}\left(z_{j}\right)\right. \\
& \left.+2 a_{m}\left(z_{j}\right)\right] Q\left(z_{j}\right)=0 .
\end{aligned}
$$

As $z_{j} \in B_{n}(z) \subseteq A_{m}(z)$ and $a_{m}(z)$ has simple zero, the polynomial and its derivative cannot vanish simultaneously at the same point, we have

$$
\begin{aligned}
2\left(z_{j}^{2}-\zeta^{2}\right) a_{m}^{\prime}\left(z_{j}\right) & Q^{\prime}\left(z_{j}\right) \\
& +\left\{\left(z_{j}^{2}-\zeta^{2}\right) a_{m}^{\prime \prime}\left(z_{j}\right)\right. \\
& \left.+4 z_{j} a_{m}^{\prime}\left(z_{j}\right)\right\} Q\left(z_{j}\right)=0
\end{aligned}
$$

Since $Q(z) \in \pi_{n-1}$ and z_{j} has n values, the differential equation is given by

$$
\begin{gather*}
2\left(z^{2}-\zeta^{2}\right) a_{m}^{\prime}(z) Q^{\prime}(z)+\left\{\left(z^{2}-\zeta^{2}\right) a_{m}^{\prime \prime}(z)+\right. \\
\left.4 z a_{m}^{\prime}(z)\right\} Q(z)=C_{1} b_{n}(z), \\
Q^{\prime}(z)+\left\{\frac{1}{2} \frac{a_{m}^{\prime \prime}(z)}{a_{m}^{\prime}(z)}+\frac{2 z}{\left(z^{2}-\zeta^{2}\right)}\right\} Q(z) \tag{2.2}\\
=C \frac{b_{n}(z)}{\left(z^{2}-\zeta^{2}\right) a_{m}^{\prime}(z)},
\end{gather*}
$$

for some constant $C=\frac{C_{1}}{2}$.
Integrating factor of differential equation (2.2) is given by

$$
\begin{aligned}
& \varphi(z)=\exp \int\left\{\frac{1}{2} \frac{a_{m}^{\prime \prime}(z)}{a_{m}^{\prime}(z)}+\frac{2 z}{\left(z^{2}-\zeta^{2}\right)}\right\} d z, \\
& \varphi(z)=\left(z^{2}-\zeta^{2}\right)\left\{a_{m}^{\prime}(z)\right\}^{\frac{1}{2}}
\end{aligned}
$$

Set $\eta(z)=\left\{a_{m}^{\prime}(z)\right\}^{\frac{1}{2}}$.
Solution of differential equation (2.2) is given by

$$
\begin{gathered}
\varphi(z) Q(z)=C \int \frac{\varphi(t) b_{n}(t)}{\left(t^{2}-\zeta^{2}\right) a_{m}^{\prime}(t)} d t, \\
C \int \frac{\left(z^{2}-\zeta^{2}\right) \eta(z) Q(z)=}{\left(t^{2}-\zeta^{2}\right) a_{m}^{\prime}(t)} d t, \\
\left(z^{2}-\zeta^{2}\right) \eta(z) Q(z)=C \int \frac{\eta(t) b_{n}(t)}{a_{m}^{\prime}(t)} d t, \\
C \int \frac{\eta(t) b_{n}(t)}{a_{m}^{\prime}(t)} d t=0 \Rightarrow C=0 .
\end{gathered}
$$

De Bruin M.G. (2005), (0, m) Pál-type interpolation: interchanging value-nodes and derivative-nodes, J. Comput. and Appl. Math., 179, 175-184.
De Bruin M.G., and Dikshit H. P. (2005), Pál-type Birkhoff interpolation on non-uniformly distributed points, Numerical Algorithm, 40, 1-16.
Dikshit H.P., Pál-type interpolation on non-uniformly distributed nodes on the unit circle, J. Comput. and Appl. Math., 155 (2003), 253-261.
De Bruin M.G.(2005), (0, m) Pál-type interpolation on the Möbius transform of roots of Unity, J. Comput. and Appl. Math., 178 (2005), 147-153.
Mandloi A. and Pathak A. K. (2008), (0, 2) Pál-type interpolation on a circle in the complex plane involving Möbius transform, Numerical Algorithm, 47, 181-190.
Modi G., Pathak A. K. and Mandloi A. (2012), Some cases of Pál-type Birkhoff interpolation on zeros of polynomials with complex coefficients, Rocky Mountain J., 42, 711-727.
Pathak A. K. and Tiwari P. (2019), Revisiting some Pál type Birkhoff interpolation problems, J. of Indian Mathematical Society, 86 (1-2), 118-125.
Pathak A. K. and Tiwari P. (2019), A new class of Pál type interpolation, Applied Mathematic E-Notes, 19, 413418.

Pathak A. K. and Tiwari P. (2018), (0, 1) incomplete Pál type Birkhoff Interpolation Problems, International Journal of Adv. Research in Science \& Engineering, 7, 34-41.
Pathak A. K. and Tiwari P. (2020), Incomplete Pál type interpolation on non-uniformly distributed nodes, Journal of Scientific Research, 64 (2), 212-215.

Hence,

$$
Q(z) \equiv 0 .
$$

Corollary 2.2: Let $m, n \geq 1$, then $(0,2)-$ PTIP on $\left\{\left(z^{2}-1\right) a_{m}(z), b_{n}(z)\right\} ; \pm 1 \notin A_{m}(z), B_{n}(z) \subseteq$ $A_{m}(z)$ is regular.

REFERENCES

Pál L.G., (1975), A new modification of the Hermite-Fejer interpolation, Anal. Math., 1, 197-205.
De Bruin M.G., and Sharma A (2003), Lacunary Pál-type interpolation and over-convergence, Comput. Methods and Function Theory, 3, 305-323.

