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Abstract: The motivation behind this paper is to study the spread of radioactive active substance Radon in the air 

medium. The Radon diffusion equation in air medium has been solved by applying finite difference scheme. 

Basic Time fractional Radon diffusion equation has been solved using Crank Nicholson method of finite 

difference scheme. The numerical solution is discussed for its stability and convergence. The stability of 

obtained solution is significantly validated for the accuracy and consistency of the solution using 

Mathematica. The Crank Nicholson Finite Difference Scheme is found to be the best suitable scheme after 

observing the estimates and errors of radon concentration and its graphical representation. The solution to the 

Radon diffusion equation is observed to be categorically stable and convergent. 

1 INTRODUCTION 

The detail study of Radon Diffusion equation in 

various mediums serves the motive of study of 

propagation of Radon gas and its ill effect in our 

surroundings and its natural growth which is harmful 

for living beings. Hence the sole purpose of this paper 

is to detect the Radon concentration in the air 

medium, by solving the Radon Diffusion Equation by 

using FDM. 

    

  The hypothesis of this research paper hence are: 

 

1. To study the estimates of Radon 

concentration through air medium  

2. To solve the Time Fractional Radon 

Diffusion equation 

3. To apply the Crank Nicholson Finite 

Difference Scheme to solve the TFRDE 

4. To understand the stability of the solution 

obtained by the FDM. 

5. To observe the convergence of solution 

obtained by computational method  

6. To validate the solution by graphical 

representation of solution using 

Mathematica. 

 

* Research Scholar 

Crank Nicholson Finite Difference Scheme has 

been used to solve the time fractional diffusion 

equation here. The computations have been supported 

from the numerical data for different parameters from 

the (Millar, 1993). The structure of this paper has 

section wise development. Section one includes 

overview; section II contains the Crank Nicholson 

FDM and the solution to TFRDE. The section III 

discusses stability criteria of solution. Section IV 

includes convergence of the solution. Section V 

includes conclusion and discussions. 

2 CRANK NICHOLSON FINITE 

DIFFERENCE ALGORITHM 

The finite difference algorithms try to solve 

Fractional Partial Differential Equations by akin to 

the equation over the provided boundary conditions 

by converting it to a scheme of algebraic equations. 

The algebraic equations are solved to obtain the 

numerical solutions to fractional partial differential 

equation. The finite difference schemes like Implicit, 

Explicit and Crank Nicholson are associated but vary 

in stability, exactness and performance speed. The 

modelling of a fractional partial differential equation 
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problem, involves three major attributes:  1. Actual 

partial differential equation. 2. The space-time 

domains applicable to the fractional partial 

differential equation, and 3. The auxiliary boundary 

values and initial value conditions. 

Crank Nicolson algorithm is a finite difference 

algorithm applied to solve diffusion differential 

equations. This algorithm is implicit in time, 

unconditionally stable and has higher order of 

accuracy when used for regular heat equations 

without any nonlinear expression coming into the 

equation. 

 

Figure 1. 

3 RADON DIFFUSION 

EQUATION 

The radon concentration through air medium is the 

outcome of the second order Radon diffusion 

equation which is the prime interest in this paper. 

Crank Nicholson finite difference algorithm has been 

used for solving TFRDE. 

∂αv(x, t)

∂tα
= D

∂2v(x, t)

∂x2
− λv(x, t), 

where λ is decay constant of radon. 
We consider the following equation which is time 

fractional diffusion equation, 

  
∂αv(x,t)

∂tα
= D

∂2v(x,t)

∂x2 − λv(x, t),.,                        (1) 

IC: 𝑣(x, 0) = 0,0 < 𝑥 < 𝑙                            (2) 

B. C. : 𝑣(0, t) = v0, t ≥ 0  and 
∂v(x, t)

∂x
=           

  0, t ≥ 0 .     0 ≤ 𝛼 ≤ 1                         (3) 

3.1 Application of Crank Nicholson 
Finite Difference Algorithm by 
Discretization 

To covert the time fractional derivative in discrete 

form, we use𝑡𝑘 = 𝑘𝜏, and 𝑥𝑖 = 𝑖ℎ, 𝜏 =
𝑇

𝑁
, ℎ =

𝑙

N
.  

Let v ( 𝑥𝑖 , 𝑡𝑘), 𝑖 = 𝑜, 1,2…… ,𝑀 𝑎𝑛𝑑 𝑘 =
𝑜, 1,2, …… ,𝑁 be the exact solution of TFRDE from 

(1) - (3) at the mesh point (𝑥𝑖 , 𝑡𝑘).  Let 𝑢𝑖
𝑘  be the 

numerical approximation of the point v(𝑥𝑖 , 𝑡𝑘) =
v(𝑖ℎ, 𝑘𝜏).  

The time fractional derivative is approximated in 

Caputo sense is given by, 

∂αv(𝑥𝑖 , 𝑡𝑘+1)

∂tα

=
1

Γ(1 − α) 
∫

1

(𝑡𝑘+1 − 𝜉)𝛼

∂v(𝑥𝑖 , 𝜉)

∂𝜉

𝑡𝑘+1

0

d𝜉 

Substitute 𝑡𝑘+1 − 𝜉 = η and simplifying we get 

=
τ−α

Γ(2−α) 
∑

(v(𝑥𝑖,𝑡𝑘−𝑗+1)−𝑣(𝑥𝑖,𝑡𝑘−𝑗))

τ

k
j=0 [ bj] + o(τ); 

 Where, bj = (j + 1)(1−α) − (j)(1−α), j =

0,1,2…N but  b0 = 1, so we have; 

∂αv(𝑥𝑖 , 𝑡𝑘+1)

∂tα

=
τ−α

Γ(2 − α) 
[vi

k+1 − vi
k[ b0] + o(τ)

+
τ−α

Γ(2 − α) 
∑

(vi
k−j+1

− vi
k−j

)

τ

k

j=1

[ bj] 

We implement central difference second order 

scheme in space for every interior grid point 

𝑥𝑖  𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑚.   

∂2v(x, t)

∂x2

=
1

2
[
𝑣(𝑥𝑖−1, 𝑡𝑘+1) − 2𝑣(𝑥𝑖 , 𝑡𝑘+1) + 𝑣(𝑥𝑖+1, 𝑡𝑘+1)

h2

+
𝑣(𝑥𝑖−1, 𝑡𝑘) − 2𝑣(𝑥𝑖 , 𝑡𝑘) + 𝑣(𝑥𝑖+1, 𝑡𝑘)

h2
] 

∂2𝑣(x, t)

∂x2
= [

vi−1
k+1 − 2𝑣𝑖

𝑘+1 + 𝑣𝑖+1
𝑘+1)

h2

+
vi−1

k − 2𝑣𝑖
𝑘 + 𝑣𝑖+1

𝑘 )

h2
] 

So the numerical approximation equation thus 

obtained by using the central difference and time 

fractional approximation the Crank Nicholson type 

numerical approximation to equation (1-3), expressed 

as follows: 

τ−α

Γ(2−α) 
[𝑣i

k+1 − vi
k] +

τ−α

Γ(2−α) 
∑ [ bj]

k
j=1 (𝑣i

k−j+1
−

𝑣i
k−j

) = D
1

2
[
𝑣i−1

k+1−2𝑣𝑖
𝑘+1+𝑣𝑖+1

𝑘+1)

h2 +
vi−1
k −2𝑣𝑖

𝑘+𝑣𝑖+1
𝑘 )

h2 ] −

λv(𝑥𝑖 , 𝑡𝑘) 
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[vi
k+1 − vi

k] + ∑ [ bj](vi
k−j+1

−k
j=1

vi
k−j

) = D   
Γ(2−α)τα 

h2 [{vi−1
k+1 − 2𝑣𝑖

𝑘+1 + 𝑣𝑖+1
𝑘+1} +

{vi−1
k − 2𝑣𝑖

𝑘 + 𝑣𝑖+1
𝑘 }] −  Γ(2 − α) λ𝑣i

k.    

 Let        𝑟 = D  
Γ(2−α)τα 

h2  

 𝑎𝑛𝑑 𝜇 = Γ(2 − α) λτ𝛼 

[vi
k+1 − 𝑣i

k] + ∑[ bj](𝑣i
k−j+1

− vi
k−j

)

k

j=1

 

= r[{𝑣i−1
k+1 − 2𝑣𝑖

𝑘+1 + 𝑣𝑖+1
𝑘+1} + {vi−1

k − 2𝑣𝑖
𝑘 +

𝑣𝑖+1
𝑘 }] − 𝜇vi

k                       (4) 

−rvi−1
k+1 + (1 + 2r)𝑣i

k+1 − rvi+1
k+1

= 𝑟vi−1
k + (1 − 2r − 𝜇)𝑣i

k

+ 𝑟𝑣𝑖+1
𝑘

− ∑[ bj](𝑣i
k−j+1

− 𝑣i
k−j

)

k

j=1

 

Further,  −rvi−1
k+1 + (1 + 2r)𝑣i

k+1 − rvi+1
k+1 =

𝑟vi−1
k + (1 − 2r − 𝜇)𝑣i

k + 𝑟𝑣𝑖+1
𝑘 − (b1 −

b2)vi
k−1 − (b2 − b3)vi

k−2 − … .−(bk−1 − bk)vi
1 −

bk𝑣i
0 = 

= (1 − 𝜇 − b1) 𝑣i
k − rvi−1

k+1 + (1 + 2r)vi
k+1

− rvi+1
k+1

= (1 − 𝜇 − b1)𝑣i
k

+ ∑(bj − bj−1)

k−1

j=1

𝑣i
k−j

+ bk𝑣i
0 ….    

 

where, bj = (j + 1)1−α − (j)1−α ; 𝑖 =

0, 1,2. . . . 𝑚; 𝑘 = 0,1,2, . . . . 𝑛 

Now we convert the initial condition and 

boundary conditions in discritized format: 

𝑣i
0 = 0; i = 0,1,2… .m; 

The boundary conditions 𝑥0, and 𝑥𝑚, the 

discritization scheme implements as:  

𝑣0
k = 0 and 

𝑣m+1
k+1 − 𝑣m−1

k+1

2h
= 0 ; implies   vm+1

k+1

= 𝑣m−1
k+1  

𝑘 = 0,   
the fractional approximation IBVP looks like 

(From 4) 

  −𝑟𝑣i−1
1 + (1 + 2r)𝑣i

1 − r𝑣i+1
1 = 𝑟𝑣i−1

0 + (1 −
2r − 𝜇)vi

0 + 𝑟𝑣i+1
0 ….                                              (6) 

For 𝑘 ≥ 0, from 2.5 

−rvi−1
k+1 + (1 + 2r)𝑣i

k+1 − rvi+1
k+1

= 𝑟vi−1
k + (1 − 𝜇 − b1)𝑣i

k

+ 𝑟𝑣𝑖+1
𝑘 + ∑(bj − bj+1)𝑣i

k−j

k−1

j=1

+ bkvi
0 (𝑘 ≥ 1)….                      (7) 

With initial condition 𝑣i
0 = 0, 

           i = 0,1,2……m .........                           (8) 

And boundary condition 

    vm+1
k+1 = vm−1

k+1                                                       (9) 

The problem (6) to (9) is the complete discretized 

form of (1) to (3) 

So, the equation can be expressed in to matrix 

form at  𝑘 = 0 𝑎𝑛𝑑 𝑖 = 1,2,3…𝑚 

−𝑟𝑣i−1
1 + (1 + 2r)𝑣i

1 − r𝑣i+1
1

= 𝑟𝑣i−1
0 + (1 − 2r − 𝜇)vi

0

+ 𝑟𝑣i+1
0  

Can be represented in matrix form as; 

                                +

[
 
 
 
 
𝑟𝑣0

1

0
.
0
0 ]

 
 
 
 

  ...                        (10) 

𝐴𝑣1 = 𝐵𝑣0 + 𝑆  
Now for 𝑓𝑜𝑟 𝑘 ≥ 1; 𝑖 = 1,2,3… . .𝑚 

−rvi−1
k+1 + (1 + 2r)𝑣i

k+1 − rvi+1
k+1

= 𝑟vi−1
k + (1 − 𝜇 − b1)𝑣i

k

+ 𝑟𝑣𝑖+1
𝑘 + ∑(bj − bj+1)𝑣i

k−j

k−1

j=1

+ bkvi
0 (𝑘 ≥ 1) 

 

The matrix representation is given by, 
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[
 
 
 
 
 

𝑣1
𝑘

𝑣2
𝑘

.
𝑣𝑚−1

𝑘

𝑣𝑚
𝑘 ]

 
 
 
 
 

+ ∑ (bj − bj+1)

[
 
 
 
 
 𝑣1

𝑘−𝑗

𝑣2
𝑘−𝑗

.

𝑣𝑚−1
𝑘−𝑗

𝑣𝑚
𝑘−𝑗

]
 
 
 
 
 

k−1
j=1 +

(bk)

[
 
 
 
 
 

𝑢1
0

𝑢2
0

.
𝑢𝑚−1

0

𝑢𝑚
0 ]

 
 
 
 
 

+

[
 
 
 
 
𝑟𝑢0

1

0
.
0
0 ]

 
 
 
 

 

𝐴𝑣𝑘+1 = 𝑃𝑣𝑘+ + ∑ (bj − bj+1)vi
k−jk−1

j=1 +

bk𝑣i
0 + 𝑆                       …..                                   (11) 

with nitial condition. ui
0

= 0 and boundary condition  u0
k

= u0, 
 um+1

k = um−1
k    

k =  0,1,2… . . N 

represents the completely discritized matrix  
form of the problem. 

 

 

Figure 2: Radon concentration at 0.9 fractional order 

derivative. 

 
 

 

Figure 3: Radon Concentration at 0.8 fractional order 

derivative. 

 
 

 

Figure 4: Radon Concentration at 0.7 fractional order 

derivative. 

4 THE INVESTIGATION OF 

RADON DIFFUSION IN AIR BY 

CRANK NICHOLSON FINITE 

DIFFERENCE METHOD 

The secondary data for different parameters included 

in the Radon diffusion in air medium has been 

referred from “Numerical and Analytical Assessment 

of Radon, Diffusion in Various Media and Potential 

of Charcoal “, as Radon Detector by (Sasaki,2006),  

• The diffusion coefficient of radon in air.  𝐷𝑎 =

1 ×
10−5𝑚2

𝑠
= 0.1𝑐𝑚2/𝑠   . 

•     The radon concentration in ambient air  𝑣0 =
200𝐵𝑞/𝑚3 

• The radon absorption coefficient 𝑘 =
1𝑚3

𝑘𝑔
𝑎𝑛𝑑 𝜌 =

1𝑔

𝑐𝑚3   

• The length of cylinder for measurement 𝑙 = 1𝑚  

• The volume of cylinder for measurement  𝑣 =
1𝑚3 

• Radius of cylinder used for measurement is, =
1

√𝜋
𝑚 . 

• The experiment for measurement of Radon 

diffusion was conducted for 72 hours duration, 

for saturation of radon activity in air. 
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• 𝑣(0, 𝑡) = 𝑘𝜌𝐶0 = 1 × 1 × 200 = 200 ×
106𝐵𝑞/𝑐𝑚3. 𝜆 = 2.1 × 10−6/𝑠 is the decay    

coefficient of Radon. 

• 𝑟 = D  
Γ(2−α)τα 

h2  

• 𝜇 = Γ(2 − α) λ 

• surface area S = πr2 

Let the fractional order derivative, 
 0 ≤ α ≤ 1, α = 0.9,0.8,0.7and 

  bj = (j + 1)(1−α) − (j)(1−α), b0 = 1 
 

• For 𝛼 = 0.9,   𝑟 = 0.808004 × 10−6, 𝑆 =
1𝑚2, 𝜇 = 1.696 × 10−8, 𝑆𝑜, 𝑢(0, 𝑡) = 200 ×
106     

• For 𝛼 = 0.8,   𝑟 = 1.3254 × 10−5, 𝑆 =
1𝑚2, 𝜇 = 0.0278 × 10−6, 𝑆𝑜, 𝑢(0, 𝑡) =
200 × 106, 

• For 𝛼 = 0.7,   𝑟 = 2.1993 × 10−5, 𝑆 =
1𝑚2, 𝜇 = 0.04616 × 10−6, 𝑆𝑜, 𝑢(0, 𝑡) =
200 × 106 

• The estimates are used to solve the system of 

equations obtained in matrix form finding the 

relation between the radon concentration as 

function of distance x and time t. Similarly 

solving it for fractional order derivative 0 ≤ α ≤
1, α = 0.9,0.8,0.7we see the solution interpreted 

graphically by using ‘Mathematica’. 

5 STABILITY 

Lemma 5.1: If  𝜆𝑗(𝐴); 

 𝑗 = 1,2,3. . . . . . . 𝑀 − 1, represents equations of 

matrix A then the following results are true. 

|𝛌𝐣(𝐀)| ≥ 𝟏    And  ‖𝐀−𝟏‖ ≤ 𝟏,  

For 𝐣 = 𝟏, 𝟐, 𝟑. . . . . . . 𝐌 − 𝟏. 
 

Lemma 5.2:  The solution obtained for the time 

fractional radon diffusion equation is unconditionally 

stable for air medium. 

Proof: The stability of the solution obtained for time 

fractional radon diffusion equation mentioned above, 

we prove the relation‖𝑣‖2 ≤ ‖𝑣0‖2𝑓𝑜𝑟 𝑛 ≥ 1.  from 

(3.10)  𝐴𝑣1 = 𝐵𝑣0 + 𝑆      
                v1 = A−1𝐵v0 + A−1S 

‖𝑣1‖2 = ‖𝐴−1𝐵𝑣‖2   ≤  ‖𝐴−1‖2‖𝑣0‖2‖𝐵‖2 
‖𝑣‖2 ≤ 𝑘‖𝑣0‖2 𝑎𝑛𝑑 ‖𝐴−1‖2 ≤ 1,   

By Principle of induction, we extend this statement 

for = 𝐤 ; 

‖𝑣‖2 ≤ 𝑘‖𝑣0‖2 and for n = k + 1  From (11) 
 

𝐴𝑣𝑘+1 = 𝐶𝑣𝑘 + ∑(bj − bj+1) vi
k−j

k−1

j=1

+ 𝑏𝑘𝑣i
0 + 𝑆 

 

𝑣𝑘+1 = 𝐴−1𝐶𝑣𝑘 + ∑(bj − bj+1)𝐴
−1vi

k−j

k−1

j=1

 

 

+𝐴−1bkvi
0 + 𝐴−1𝑆 

‖𝑣𝑘+1‖2 ≤ ‖𝐶‖2‖𝐴−1‖2‖𝑣𝑘‖2+ 

 

∑
(bj − bj+1)‖𝐴−1‖2‖𝑣𝑘−𝑗‖

2

k−1

j=1

+ 

|bk|‖𝐴−1‖2‖𝑣0‖2, 

‖𝑣𝑘+1‖2 ≤ 𝑘‖𝑣0‖2 

These conditions affirm us about the 

unconditional stability of Crank Nicholson finite 

difference scheme to the Radon diffusion equation. 

6 CONVERGENCE 

The convergence of the approximate solution 

obtained by Crank Nicholson finite difference 

scheme of approximation towards the exact solution 

is observed here (Savovic, 2008). Let  𝑢(𝑥𝑖 , 𝑡𝑘) be the 

exact solution of the time fractional diffusion 

equation in (1) to (3) and  𝑢𝑖
𝑘  be the approximate 

solution for (6) to (9) at some point (𝑥𝑖 , 𝑡𝑘) obtained 

by Crank Nicholson finite difference scheme 

i =1, 2, 3.... m-1; 

k =1, 2, 3……n. 

Let𝑒𝑖
𝑘 = 𝑢(𝑥𝑖 , 𝑡𝑘) − 𝑢𝑖

𝑘. 

𝐸𝑘 = (𝑒1
𝑘, 𝑒2

𝑘 …… . . 𝑒𝑚−1
𝑘 ), 

                     𝐸0 = 0, 𝐸0
𝑘 = 0, 𝐸𝑛

𝑘 = 0. 

From the discretised scheme 
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Lemma 6.1:  The fractional order Crank Nicholson 

finite difference scheme for the TFRDE 

ui
kconverges to u(xi, tk), the relation between the 

two solutions satisfies the relation ‖u(xi, tk) −

ui
k‖ ≤ ‖𝐸‖∞ + 𝑂(𝜏1−𝛼 + ℎ2), 𝑖 = 1,2, … . .𝑚 −

1; 𝑘 = 1,2, . . 𝑛. 
 

 

These conditions affirm us about the 

unconditional convergence of Crank Nicholson finite 

difference scheme to the Radon diffusion equation. 

7 DISCUSSION AND 

CONCLUSION 

 
The time fractional radon diffusion equation (1) - (3) 

has been solved by discretising the equation in time 

fractional form. The Crank Nicholson finite 

difference scheme has been used for approximation. 

The numerical solution is obtained using time 

fractional radon diffusion equation in air medium 

with initial and boundary conditions. The solution has 

been validated by using ‘Mathematica’ software. We 

believe the one- boundary conditions 0< x <1, 0< α ≤ 

1, t > 0 initial condition: dimensional time fractional 

diffusion equation subjected to initial and  

ui
0 = 0 , and boundary conditions . 

 u0
k = u0,   um+1

k = um−1
k .  At α = 0.9,0.8 ,0.7. The 

numerical solutions are analysed at t = 0.05 by taking 

into consideration the terms τ = 0.005, h = 0.1. 

Convergent numerical solution is obtained for the 

diffusion equation under analysis. The Radon 

movement and transportation through a cylinder of 

air is calculated as the concentration at various levels. 

The study of the fractional order Crank Nicholson 

finite difference scheme for time fractional radon 

diffusion equation is best fit, which gives 

unconditionally stable and convergent solution. 
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