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Abstract: This study presents a comprehensive comparative analysis of image classification algorithms across diverse 
datasets and distinct convolutional neural network (CNN) architectures. The datasets considered—CIFAR-
10, CALTECH-101, and STL-10—embody varying complexities characteristic of real-world scenarios. They 
span scenarios of limited categories and low-resolution images to challenges involving diverse instances with 
fewer categories and high-resolution demands. The selected CNN architectures—LeNet5, VGG16, and 
ResNet50—exhibit varying depths and design philosophies, offering a diverse landscape for evaluation. 
Systematic experimentation and evaluation unveil the intricate interplay between architectural complexity and 
dataset characteristics. The findings underscore the pivotal role of architectural depth in addressing diverse 
dataset challenges. Notably, VGG16 and ResNet50 consistently outperform LeNet5 across all datasets, 
emphasizing the importance of deeper architectures in image classification tasks. These insights provide 
valuable guidance for architectural choices in image classification, ensuring alignment with specific dataset 
characteristics. Additionally, the study lays the foundation for future research endeavors aimed at refining 
architectural designs and enhancing image classification algorithm performance across various real-world 
scenarios. 

1 INTRODUCTION 

Image classification, a foundational task in the realm 
of computer vision, holds a central role in a multitude 
of real-world applications, ranging from object 
recognition and medical imaging to enabling 
autonomous vehicles. Throughout the years, CNN has 
emerged as the predominant approach for image 
classification, achieving remarkable success due to its 
innate capability to autonomously extract pertinent 
features from raw image data. Moreover, it is worth 
noting that Deep Learning (DL) stands as an effective 
solution for addressing various image processing 
challenges, such as facial recognition (Yu et al, 2019). 
The ever-evolving landscape of CNN architectures, 
encompassing both traditional and advanced models, 
presents a compelling opportunity to assess their 
comparative performance across diverse datasets 
(Bhatt et al, 2021). 

This paper aims to conduct a comparative analysis 
of image classification algorithms, focusing on both 
traditional and advanced CNN architectures. 
Specifically, the performance of LeNet-5, ResNet50, 

and VGG16 was investigated across three diverse 
benchmark datasets: CALTECH-101, CIFAR-10, and 
STL-10. This study sheds light on the architectures' 
suitability for handling various image classification 
challenges, while also offering insights into the 
significance of employing advanced networks. 

2 RELATED WORK 

The landscape of image classification has been 
significantly shaped by the emergence of CNNs, 
which have revolutionized the field and demonstrated 
exceptional performance in a variety of applications 
(Pei et al, 2019). This section provides an overview of 
the pertinent literature surrounding image 
classification algorithms and their comparative 
evaluations. 

2.1 Image Classification and CNNs 

Image classification involves assigning a label to an 
image from a predefined set of categories. CNNs, 
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inspired by the organization of the visual cortex in 
animals, have shown remarkable performance in 
image classification tasks. LeNet-5, introduced by 
LeCun et al., marked a significant step in the evolution 
of CNNs, demonstrating the potential of deep learning 
for feature extraction (Lecun et al, 1998 & Liu et al, 
2022). Subsequent architectures, such as VGG16 and 
ResNet50, introduced deeper architectures with skip 
connections and improved accuracy (Simonyan and 
Zisserman, 2015 & He et al, 2016). 

2.2 Comparative Analysis of CNN 
Architectures 

Comparative analyses of CNN architectures have 
become essential to understand the strengths and 
weaknesses of different models. Previous studies have 
focused on benchmark datasets to assess architecture 
performance. For instance, Krizhevsky et al. evaluated 
different CNN architectures on the ImageNet dataset, 
demonstrating the effectiveness of deep networks in 
large-scale image classification (Krizhevsky et al, 
2012). More recent work by Tan & Le introduced 
EfficientNet, showcasing superior performance while 
being computationally efficient (Tan and Le, 2019). 

2.3 Challenges and Dataset Selection 

Dataset selection plays a pivotal role in shaping the 
outcomes of comparative studies. It is crucial to 
choose diverse datasets with distinct characteristics to 
provide a comprehensive evaluation of the capabilities 
of different architectural models. This study selected 
three widely used benchmark datasets, each with its 
unique features and challenges. 

 CIFAR-10: CIFAR-10 is a classic dataset that 
contains samples from ten major image classes 
shown in Fig. 1. This dataset focuses on the 
basic class classification of objects and is 
suitable for evaluating the performance of 
image classification algorithms in identifying 
common objects.  

 
Figure 1: Images from CIFAR-10 (Picture credit: Original). 

 STL-10: The composition of STL-10 is similar 
to CIFAR-10. It also includes ten categories 
with natural scenes and objects common in 
life, which are almost the same as the previous 
one (Coates et al, 2021) . Fig. 2 shows 
examples of each class. STL-10 images are 
often complex, which can be recognized as an 
upgraded version of CIFAR-10 with higher 
resolution and more instances. It can better 
reflect real-world image diversity. 

 
Figure 2: Images from STL-10 (Picture credit: Original). 

 CALTECH-101: The CALTECH-101 dataset 
is more challenging rather the others, which 
includes 101 different object categories. These 
categories cover a wide variety of objects, 
including animals, food, tools, and more (Li et 
al, 2004). Fig. 3 shows some examples of part 
of the classes in this dataset, where the images 
have not been preprocessed. CALTECH-101 
provides a rigorous test of object recognition 
algorithms because it requires the algorithms 
to be able to handle a variety of different 
classes of objects. 

 
Figure 3: Images from CALTECH-101 (without 
preprocessing) (Picture credit: Original). 

These dataset selections ensure that the 
comparative analysis encompasses a spectrum of 
image classification challenges, ranging from small, 
simple images to high-resolution, complex scenes, and 
diverse object categories. 

2.4 Significance of Comparative Studies 

Comparative analyses guide researchers and 
practitioners in selecting appropriate architectures for 
specific tasks. Such studies facilitate a deeper 
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understanding of architectural behavior across 
different scenarios, aiding informed decision-making. 
The insights gained from these analyses contribute to 
the design of more effective models and the 
advancement of the field. 

3 METHODOLOGY 

The methodology applied in this research underscores 
a meticulous and strategic approach to conducting a 
comprehensive and rigorous comparative analysis of 
image classification algorithms. The primary 
objective of this section is to delve into the key aspects 
of the methodology, highlighting the preprocessing 
steps and the rationale behind the selection of 
convolutional neural network (CNN) architectures. 
This strategic approach ensures holistic evaluation of 
algorithmic performance, taking into consideration 
both data preparation and architectural considerations. 

3.1 Preprocessing 

Not only the quality of data but also the quality of 
preprocessing can affect the performance of the model  
(Gulati and Raheja, 2021). To ensure rigorous 
evaluation, each dataset was divided into three 
subsets: training, validation, and test set with a ratio of 
7:2:1. The training set was used for model parameter 
optimization, the validation set aided in 
hyperparameter tuning, and the test set, consisting of 
unseen data, served as the final performance 
evaluation metric. Table 1 shows how the datasets are 
split. 

Table 1: Split of the datasets. 

Dataset Train set Validation set Test set 

CIFAR-10 49,000 14,000 7,000 

STL-10 9,100 2,600 1,300 

CALTECH-101 6,400 18,28 916 

Minimal resizing was performed on the images to 
retain their original dimensions. However, since the 
images in the CALTECH-101 dataset have varying 
sizes, they were uniformly resized to 224x224 pixels. 
For data augmentation, horizontal flipping was 
applied. Additionally, the images were normalized 
with 0.485, 0.456, 0.406, and 0.229, 0.224, 0.225 
respectively for the mean and standard deviation 
values for the RGB channels. These values are from 
the famous ImageNet dataset.  

3.2 CNN Architectures 

Choosing the right CNN architectures is crucial for 
this study as it ensures a comprehensive evaluation of 
image classification algorithms at different 
developmental stages. Three significant architectures 
were selected that have played a pivotal role in 
computer vision. By comparing these architectures, 
the results on various aspects of image classification 
can be obtained clearer and more meaningful. 
 LeNet-5: Introduced by LeCun et al. in 1998, 

LeNet-5 holds a paramount place in the 
history of convolutional neural networks 
(Lecun et al, 1998). Fig. 4. illustrates the 
classic architecture of LeNet-5. As one of the 
earliest CNNs, its “Convolutional + 
Sampling(Pooling) + Fully Connection” 
structure laid the foundation for modern image 
classification techniques (Lecun et al, 1998). 
LeNet-5's significance lies in its utilization of 
convolutional and subsampling layers, 
showcasing the effectiveness of hierarchical 
feature learning. Despite its relatively simple 
structure, its inclusion in this study allows for 
a benchmark evaluation of fundamental model 
performance. 

 
Figure 4: Architecture of LeNet-5. 

 VGG16: The year 2014 witnessed the 
introduction of VGG16, a seminal architecture 
crafted by Simonyan and Zisserman. 
Renowned for its uniformity and depth, 
VGG16's distinctive trait is the consistent use 
of 3x3 convolutional filters across its layers 
(shown in fig. 5) (Simonyan and Zisserman, 
2015) This architectural simplicity contributes 
to its ease of implementation and 
interpretation. Although resource-intensive 
due to its 16-layer depth, VGG16's deep 
structure empowers it to capture intricate 
features within images. Its selection in this 
study enables the exploration of the impact of 
architectural complexity on classification 
outcomes. 
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Figure 5: Architecture of VGG16. 

 ResNet50: Introduced by He et al. in 2015, 
ResNet50 represents a breakthrough in 
addressing the challenges posed by vanishing 
gradients in deep neural networks (shown in 
fig. 6) (He et al, 2016). This architecture's 
innovative use of skip connections allows for 
the training of remarkably deep networks 
without encountering diminishing gradient 
magnitudes. ResNet50's 50-layer depth 
showcases its ability to capture intricate image 
features while maintaining gradient flow. Its 
inclusion in this study offers insights into the 
advantages conferred by skip connections and 
depth in the field of image classification.  

 
Figure 6: Architecture of ResNet50. 

In conclusion, the methodology of this study 
strategically selects and explores the historical 
significance and unique characteristics of three 
distinct CNN architectures. These selections span 
pivotal moments in the timeline of deep learning, 
allowing for a comprehensive evaluation of image 
classification algorithms. The careful consideration of 
these architectures ensures a robust foundation for the 
ensuing comparative analysis. 

4 EXPERIMENT 

4.1 Dataset Selection Rationale and 
Training Settings 

 Dataset Selection: The selection of datasets in 
this study is based on a deliberate strategy to 
encompass a range of challenges that 
progressively increase algorithmic demands. 
The details are shown in Table II. In detail, 
four factors were considered, number of 
classes, number of images, image size, and 
color channel. What all data sets have in 
common is the RGB color channel. 
Specifically, CIFAR-10 and STL-10 have 
limited categories, while the former has more 
instances with lower resolution. Moreover, the 
CALTECH-101 dataset is much more 
challenging where all the attributes are larger 
or higher, except the number of instances. This 
selection ensures a systematic evaluation of 
CNN architectures across varying 
complexities. 

Table 2: Description of the datasets. 

Dataset # of 
classes 

# of 
images 

Image 
size(pixel) 

Color 
channel 

CIFAR-10 10 70,000 32x32 RGB 

STL-10 10 130,000 96x96 RGB 

CALTECH-101 101 9,144 

variable 
(higher than 

224x224 
in average) 

RGB 

 

 Training Settings: The models were trained for 
120 epochs using the stochastic gradient 
descent (SGD) optimizer with a momentum of 
0.9. The criterion used for training was the 
cross-entropy loss function. 

4.2 Experiment Results 

The results section presents the performance of 
LeNet-5, VGG16, and ResNet50 across the three 
chosen datasets: CIFAR-10, CALTECH-101, and 
STL-10. The performance metrics are summarized in 
Fig. 7 providing a concise overview of each 
architecture's accuracy on each dataset. 
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Figure 7: Accuracies on the test sets of the datasets (Picture 
credit: Original). 

 LeNet-5: LeNet-5 exhibits the lowest accuracy 
on all datasets. The performance on VGG16 
and ResNet50 is comparable, while ResNet50 
shows better processing of more complex data 
sets. Furthermore, Since LeNet-5 is inherently 
designed for simpler tasks, its architecture is 
relatively shallower. Hence the under-
performance of LeNet-5 which struggles to 
capture the nuances presented in more 
complex datasets is predictable and acceptable. 

 VGG16 and ResNet50: It is evident that the 
more complex CNNs, VGG16 and ResNet50, 
outperform LeNet-5 across all datasets. 
Among all of them, ResNet50 achieves the 
highest accuracy on both CALTECH-101 and 
STL-10. These results underscore the 
significance of architectural complexity in 
enhancing image classification performance 
across diverse datasets. The advanced 
performance of VGG16 and ResNet50 on 
CALTECH-101 and STL-10 can be attributed 
to their deeper architectures, especially the 
skip connections of ResNet50, which allow 
them to capture intricate features in the diverse 
images present in these datasets. The 
complexity of CALTECH-101 and STL-10 
aligns with ResNet50's strengths, while 
VGG16's consistent architecture is advanta-
geous in maintaining a relatively good level in 
the face of a large number of instances. 
However, it is important to consider the 
computational demands of VGG16, 
particularly in resource-constrained scenarios. 
In this experiment, VGG16 always took the 
longest training time on all the datasets. In 
summary, the ability of these architectures to 
capture both low and high-level features is 
evident in their superior performance on 
CALTECH-101 and STL-10. 

It is worth noting that the characteristics of a 
dataset can have a significant impact on the observed 
performance. In the case of CIFAR-10, CALTECH-
101, and STL-10, the selection of datasets presents a 
set of challenges that reflect real-world scenarios. On 
the one hand, among all the CNNs, the accuracies on 
STL-10 are always the highest, which may be 
attributed to this dataset containing the largest number 
of instances with limited categories. On the other 
hand, the accuracies of the easiest dataset, CIFAR-10, 
on the more complex CNNs, VGG16 and ResNet50,  
are not the best as expected. This may point out that 
although more complex networks can adapt to more 
complex environments, they do not always perform 
very well in simple environments. 

5 CONCLUSION 

This study conducted a comprehensive analysis of 
image classification algorithms using diverse datasets: 
CIFAR-10, STL-10, and CALTECH-10, and CNN 
architectures: LeNet-5, VGG16, and ResNet50. The 
data set and network structure are carefully selected so 
that the results can cover a large scenario. This paper 
aims to figure out how architectural complexity 
impacts performance across varying datasets. Results 
highlighted the importance of architecture in 
addressing dataset challenges. Across the datasets, 
depth and skip connections were key. The depth of 
VGG16 and the application of skip connections in 
ResNet50 excelled on complex datasets, capturing 
intricate features. In conclusion, this study informs 
architectural decisions for diverse image classification 
scenarios, bridging CNN design and dataset specifics. 

Future research can explore intricate designs, 
transfer learning, and hybrid models. These efforts 
will advance image classification, producing 
enhanced performance and generalization models. 
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