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Abstract: The development of effective climate change mitigation methods and the understanding of the future effects 
of climate change are made possible by accurate projections of carbon dioxide (CO2) emissions. This paper 
uses the Long short-term memory (LSTM) model to increase the prediction accuracy of CO2 emissions. 
Prediction issues can benefit from the use of the LSTM model. Specifically, this paper compares the Mean 
squared error (MSE) value, representing the precision of CO2 emission prediction, for several LSTM layers 
and epochs in great detail. This study is conducted on the U.S. Energy Information Administration's CO2 
emissions from the coal power industry dataset. The experiment's findings show that increasing the number 
of layers of LSTM can increase the prediction accuracy of CO2 emissions, while reducing the number of 
layers would decrease that accuracy. Meanwhile, the number of epochs with the maximum prediction 
accuracy of CO2 emissions under various epochs is 10, and there is no direct relationship between epochs and 
prediction accuracy. This paper provides an efficient CO2 emission prediction model to provide a practical 
method to mitigate the greenhouse effect by optimizing the parameters of the LSTM model. 

1 INTRODUCTION 

Given the "Paris Agreement" assurances to control the 
status quo of global warming by regulating 
greenhouse gas emissions, more individuals are now 
beginning to pay attention to carbon emissions. 
Climate extremes such as drought or storms, as well 
as regional changes in temperature and precipitation 
extremes, carbon dioxide (CO2) emissions, and other 
factors could cause reductions in carbon stocks in 
regional ecosystems, potentially offsetting the 
anticipated increase in terrestrial carbon uptake and 
having a significant impact on the carbon balance 
(Seneviratne et al 2016 & Reichstein et al 2013). The 
prediction of CO2 emissions is therefore necessary. 
Large amounts of energy are used, and CO2 is 
released as a result of the rapid expansion of industry. 
Industrial companies can more easily accomplish 
clean production, optimize energy structure, lower 
production costs and carbon emissions, and exert 
greater control over production conditions through 
precise energy consumption and carbon emission 
forecasts. Additionally, it manages the greenhouse 
effect (Hu and Man 2023). 

The calculation of CO2 emissions and the creation 
of prediction models are current research areas for 

numerous professionals and academics. A number of 
models have been put forth, including the logarithmic 
mean Divisia index (LMDI) method, the production 
function theory, and a data-driven method (Ang 2005 
& Wang et al 2019). Energy intensity is a significant 
indicator for lowering CO2 emissions using the LMDI 
approach, according to Zhang et al.'s analysis (Zhang 
et al 2019). Models for predicting carbon emissions 
rely on the direct or indirect transformation of energy 
data to calculate emissions. Concerning the data-
driven method, machine learning techniques, which 
depend on extrapolating energy usage patterns from 
past data, are the main focus. To handle the time series 
forecast of CO2 emissions, Abdel suggested an 
artificial neural network model (ANN) that has four 
inputs for global oil, natural gas, coal, and primary 
energy consumption (Fang et al 2018). ANN, long 
short-term memory (LSTM), etc. have all advanced 
the study of CO2 emission prediction in recent years 
(Tealab 2018 & Peng et al 2022). 

The main objective of this study is to introduce the 
deep learning technology of the LSTM framework to 
improve the performance of CO2 emission prediction. 
Specifically, first, LSTM networks are used to 
evaluate CO2 emission forecasts. Second, LSTM 
models are a development of recurrent neural 
networks (RNN), and they provide a remedy for the 
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problem of RNN long-term dependency. The 
application of LSTM for CO2 emission prediction is 
appropriate since it is suitable for time series data 
processing, forecasting, and classification (Rostamian 
and Hara 2022). Third, the predictive performance of 
the different models is analyzed and compared. This 
study compares distinct LSTM layers and examines 
the effectiveness of CO2 emission prediction across 
multiple epochs. The experimental results 
demonstrate that when the number of epochs is the 
same, adding a layer of LSTM could boost CO2 
emission forecast accuracy, while removing a layer 
will reduce accuracy. Additionally, when the number 
of LSTM layers is constant, there is a relationship 
between the number of epochs and the prediction 
accuracy of CO2 emissions, but it is neither 
proportionate nor inversely proportional. In this 
experiment, the number of epochs with the highest 
prediction accuracy of CO2 emissions is 10. Finally, 
this study can provide valuable insights into the field 
of CO2 emission prediction. An accurate and efficient 
CO2 emission prediction model can successfully 
control CO2 emissions and slow down global 
warming and other greenhouse effects. 

2 METHODOLOGY 

2.1 Dataset Description and 
Preprocessing 

The dataset used in this study, called Carbon 
Emissions, is sourced from Kaggle (Dataset). The 
Energy Information Administration's annual and 
monthly CO2 emissions from the coal-electric power 
sector are contained in the dataset. Millions of metric 
tons of CO2 are the units. This experiment loads a 
CSV file containing data on CO2 emissions before 
data preprocessing. This experiment divides the 
preprocessed data into a training set and a test set 
based on whether the year is greater than or equal to 
2015. It also only retains the year and value columns 
and replaces any missing values with the mean value. 
Then scale the data to make it suitable for the LSTM 
model. Then the data is scaled to make it suitable for 
the LSTM model while being normalized between a 
range of -1 and 1. 

2.2 Proposed Approach 

The main purpose of this study is to develop a model 
that can accurately forecast future CO2 emission 
levels while ensuring reliability and conciseness. The 
foundation of this study lies in the utilization of LSTM 

networks, which are well-suited for capturing 
sequential patterns in time series data such as 
historical CO2 emission data. To construct the model, 
a systematic process, as illustrated in Fig. 1, is 
followed. Initially, the input data undergoes 
preprocessing to ensure its compatibility with the 
LSTM architecture. This may involve steps like 
normalization or scaling to facilitate optimal model 
performance. Once the LSTM model is trained using 
the preprocessed data, it is ready for predicting CO2 
emissions on the test data. By feeding the test data into 
the trained model, it generates forecasts that estimate 
the future emission levels. These predictions are then 
compared to the actual values using the Mean Squared 
Error (MSE) metric. 

The MSE quantifies the average squared 
difference between the predicted and actual CO2 
emission values, providing an objective measure of 
the model's accuracy. A lower MSE indicates a more 
precise and reliable forecasting model. By employing 
LSTM networks and following a systematic approach, 
this study aims to contribute to the development of an 
effective model for forecasting future CO2 emission 
levels. The utilization of the MSE metric ensures a 
quantitative evaluation of the model's predictive 
performance, thereby facilitating comparisons with 
other forecasting methods and enabling policymakers 
and stakeholders to make informed decisions 
regarding carbon emissions mitigation strategies. 

 
Figure 1: The pipeline of the model (Picture credit: 
Original). 

2.2.1 LSTM 

A particular type of RNN called LSTM is able to gain 
insight into the long-term dependencies of the 
information gathered. Long-term retention of 
memories is beneficial through the use of LSTM 
since it has the capability to maintain an internal state. 
This makes LSTM, therefore, extremely useful for 
tasks like speech recognition, language modeling, and 
predicting time series. The cell state and its 
assortment of gates are what constitute the 
fundamental concept of an LSTM. The internal 
memory of the LSTM network incorporates the cell 
state, which undergoes processing by input gates and 
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forget gates. Sigmoid activations with compression 
values between 0 and 1 can be observed in gates. 
Since each of the numbers multiplied by 0 equals 0 
and each and every number multiplied by 1 
corresponds to the same value, the sigmoid activation 
feature enables the network to determine which data 
is crucial for storage and which data is of no 
significance to throw away. 

Three distinct gates in the LSTM are used to 
control the information flow in the LSTM cells. The 
first one is the input gate, which, as suggested by its 
name, is in charge of taking input data. The input gate 
will determine whether the input data should be added 
to the cell state based on the sigmoid activation 
function in accordance with the foregoing. The forget 
gate is also in the position of selecting which data to 
throw away. To choose which pieces of information to 
keep track of, it also utilizes a sigmoid activation 
function. The output gate is the final one. The LSTM 
network's output is generated by the output gate via 
the cell state. It creates an information vector that 
depicts the current state of the system using a Tanh 
activation process. In general, an LSTM network 
evaluates new information, processes it, and then 
stores it in the cell state. After passing through the 
forget gate, where certain data could be dropped, the 
cell state is then transferred via the output gate to 
create the desired output. The network is able to learn 
long-term dependencies courtesy of the loop's ability 
to keep track of its internal state over time. 

LSTM is suitable for dealing with data that is 
associated with each other between multiple variables; 
that is, the data set has a significant correlation in time 
series changes. The CO2 emission prediction in this 
experiment is based on the CO2 emissions in previous 
years to predict the next CO2 emissions, and LSTM is 
very suitable as a model for this experiment. In this 
study, the LSTM model first analyzes and trains the 
input CO2 emissions and years before predicting the 
potential values of CO2 emissions in the next few 
years for testing. 

2.2.2 Loss Function 

It is crucial to select the loss function for training. The 
MSE loss function, which is frequently used in 
machine learning, is the most suitable option for this 
task of predicting CO2 emissions. Regression is one 
of the three fundamental machine learning models, 
and it plays a vital role in modeling and analyzing the 
relationships between variables. In the context of 
predicting CO2 emissions, the selection of an 
appropriate loss function for training is crucial. 
Among the various options available in machine 

learning, the MSE loss function stands out as the most 
suitable choice. The MSE loss function is commonly 
employed in regression tasks, where the goal is to 
accurately estimate continuous values based on input 
variables. Given its relevance to this study's objective 
of forecasting CO2 emission levels, the MSE function 
becomes particularly pertinent. Regression analysis is 
one of the fundamental pillars of machine learning, 
providing valuable insights into the relationships 
between variables. By leveraging regression models, 
researchers and analysts can effectively model and 
analyze the complex dynamics of CO2 emissions, 
uncovering underlying patterns and trends. The MSE 
loss function quantifies the discrepancy between the 
predicted and actual CO2 emission values by 
computing the average squared difference. This 
choice of loss function aligns well with the objective 
of accurate forecasting, as it places higher emphasis 
on larger prediction errors, thus favoring more precise 
models. 

Moreover, the MSE metric offers several 
advantages in evaluating the performance of the CO2 
emission forecasting model. It provides an easily 
interpretable measure of prediction accuracy, 
enabling researchers and stakeholders to assess the 
reliability of the model's forecasts. The squared 
nature of MSE also ensures that larger deviations 
from the actual values receive more significant 
penalties, promoting the prioritization of accurate 
predictions. By incorporating the MSE loss function 
into the model training process, this study aims to 
develop a robust and reliable forecasting model for 
CO2 emissions. Through comprehensive analysis and 
consideration of the relationships between various 
variables, the regression-based approach empowered 
by the MSE metric offers valuable insights into 
mitigating climate change and shaping effective 
environmental policies. In regression problems, a 
precise value is typically predicted, such as in this 
study's predicted annual CO2 emissions value, as 
follows: 

          MSE = ∑ ( 𝒾 𝒾)²                                     (1) 
 

Given n training data, each training data's actual 
output is y𝒾  and its expected value is  y𝒾 . The 
aforementioned formula can be used to define the 
MSE loss produced by the model for n training data. 
The MSE function measures the quality of the model 
by calculating the distance between the predicted 
value and the actual value, that is, the square of the 
error. When summing samples, MSE loss applies the 
square method to prevent positive and negative errors. 
This method's distinguishing feature is that it 

The Prediction of Carbon Dioxide Emissions and Parameter Analysis Based on the LSTM

529



penalizes greater errors more severely, making it 
simpler to reflect on larger errors. The mean of the 
error squares is then calculated by adding together the 
error squares and dividing them by the total number of 
samples. The preceding formula indicates that there is 
one and that the value of this loss function is 0, which 
is the smallest value, only when the predicted value 
equals the actual value. The function's absolute 
maximum value is infinity. Therefore, the MSE value 
will decrease the closer the estimated number is to the 
actual value. 

2.3 Implementation Details 

The study used Python 3.10 and imported various 
libraries, including NumPy, Pandas, Matplotlib, and 
Scikit-Learn, to perform data manipulation, analysis, 
and visualization. It also imports TensorFlow and 
Keras to build and train the LSTM model. A batch size 
of 1 is used, and the model trains for a total of 100 
epochs. The Adam optimizer is the chosen optimizer 
for this study because it is memory-efficient, simple to 
use, and computationally effective. 

3 RESULTS AND DISCUSSION 

The results of the CO2 emission prediction under 
varied LSTM layers and epochs will be discussed and 
analyzed in this chapter. The study first analyzed the 
precise value change that results from adding and 
removing layers from the initial LSTM layer, and it 
then examined the comparison for different epochs. 

3.1 Various LSTM Layers 

In Fig. 2, the comparison of MSE values among 
different LSTM layers when the number of epochs is 
the same is presented. The histogram visualization 
effectively illustrates the numerical differences in the 
three sets of data. It becomes evident that 
incorporating additional LSTM layers results in 
improved accuracy for CO2 emission prediction, as 
the accuracy of the forecast tends to increase when the 
MSE value decreases, as previously mentioned. 
Conversely, it can be inferred that reducing the 
number of LSTM layers within a certain range 
negatively impacts the model's learning capacity and 
accuracy. Therefore, it can be concluded that, within 
this limited range, the inclusion of more LSTM layers 
aids in better learning for the model, ultimately 
leading to enhanced accuracy in CO2 emission 
predictions. By utilizing a deeper LSTM architecture, 
the model acquires a greater capacity for capturing and 

understanding complex patterns and dependencies 
amidst the CO2 emission data. This enables the model 
to make more precise and accurate forecasts, 
contributing to improved decision-making processes 
and the formulation of effective environmental 
policies. 

It is worth noting that while increasing the number 
of LSTM layers can enhance prediction accuracy, 
there may be diminishing returns beyond a certain 
point. Overfitting and computational complexity are 
potential challenges associated with excessively deep 
LSTM architectures. Thus, finding the optimal 
balance between model complexity and performance 
is an essential consideration in designing robust and 
efficient CO2 emission prediction models. 

 
Figure 2: Comparison of MSE values with different LSTM 
layers (Picture credit: Original). 

3.2 The Performance of the Various 
Epochs 

In Fig. 3, it can observe the contrasting MSE values 
across different epochs, despite keeping the number of 
LSTM layers constant. The line chart illustrates that 
there isn't a notably strong correlation between the 
epoch value and the accuracy of CO2 emission 
forecasts. This phenomenon exemplifies the concept 
of model convergence, where the model reaches its 
optimal state. Once the model has attained this optimal 
state, further training becomes unnecessary as it runs 
the risk of overfitting. Overfitting occurs when the 
model becomes too specialized to the training data, 
leading to reduced accuracy when presented with new, 
unseen data. In this case, increasing the epoch value to 
20 results in a higher MSE value and lower accuracy, 
mirroring the findings depicted in Fig. 3. It is 
important to strike a balance between training the 
model to capture meaningful patterns in the data and 
avoiding overfitting. Determining the ideal epoch 
value requires careful consideration and 
experimentation to ensure optimal model performance. 
Beyond a certain point, increasing the epoch value 
may not yield significant improvements in accuracy 
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and can potentially lead to computational 
inefficiencies. By understanding the relationship 
between epoch values, MSE values, and accuracy, 
researchers and practitioners can employ this 
knowledge to fine-tune their models and make 
informed decisions when training LSTM networks for 
CO2 emission prediction. 

 Therefore, adding additional training times does 
not necessarily increase the precision of forecasts of 
CO2 emissions. In the range of 5 to 50 epochs, epoch 
10 is the most accurate, and epoch 20 is the least 
accurate, as shown in Fig. 3. The graph does not show 
a link between these two variables that is either direct 
or inverse. Consequently, in order to acquire the 
experiment's finest results, it is necessary to compare 
the occurrences of different epochs. 

 
Figure 3: Comparison of MSE values with different epochs 
(Picture credit: Original). 

4 CONCLUSION 

This study introduces machine learning and deep 
learning technology to contribute to more accurate 
CO2 emission projections. The LSTM model is 
introduced as a baseline. Additionally, this paper 
analyzes the impact of different layers and iterations 
of LSTM. Extensive experiments were conducted to 
evaluate the proposed method. By comparing the 
MSE values for various combinations of LSTM layers 
and epochs, lower values signify estimates of CO2 
emissions that are more precise. Experimental results 
show that within a specific range, increasing the 
LSTM layer can make the CO2 emission prediction 
more precise, and the reliability of the CO2 emission 
prediction is different and unstable when the training 
times or epochs are different. The epochs in this 
experiment with the smallest MSE value, or the 
maximum prediction accuracy, are 10 epochs, which 

comprises 5 to 50 epochs. In the future, experiments 
with different hyperparameters like batch size and 
adjusting the sequence length for the LSTM will be 
considered the research objectives for the next stage. 
The research will focus on how different batch sizes 
and sequence lengths will affect the precision of CO2 
emission prediction and what their relationship is. 
Consequently, it is simple to find better and more 
reliable models for projecting CO2 emissions to assist 
organizations like governments in responding, even if 
they are required to. 
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