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Abstract: Image recognition is of paramount importance in our contemporary world, with diverse applications across 
domains such as traffic control, medical diagnosis, educational tools, and workplace automation. Its impact 
is profound and multifaceted. This study highlights Resnet's effectiveness in building robust deep-learning 
models for image classification. Through the integration of residual blocks, residual network (ResNet) 
overcomes challenges like vanishing gradients, enabling the training of very deep networks. Experiments on 
the CIFAR-10 dataset showcase ResNet's impressive accuracy in image recognition, with loss fluctuations 
mitigated via hyperparameter tuning. ResNet excels in feature extraction and precise image classification. 
The important topic of this research is trying to figure out the efficiency comparing convolutional neural 
network (CNN) and Resnet using Resnet's residual block to find out the difference of parameter changes the 
accuracy of the model, by inducting Resnet, the performance of the model behaves much better, and solve the 
problem of gradient vanishment,   Resnet plays a pivotal role in image classification by enabling the training 
of very deep neural networks, enhancing feature extraction, and achieving state-of-the-art accuracy in various 
visual recognition tasks. 

1 INTRODUCTION 

In today's digitally driven world, the surge in modern 
technology has led to an era of unprecedented data 
generation and spread over the internet. This rapid 
growth in information necessitates robust tools for 
managing diverse data forms, particularly images. 
Various industries now require proficient image 
classification techniques to make sense of this 
information influx. 

The previous machine learning material provided 
insights into fundamental algorithms and concepts, 
spanning across supervised learning, unsupervised 
learning, and deep learning domains. You acquired 
skills in data preprocessing, feature engineering, and 
model evaluation, establishing a robust foundation for 
tackling real-world problem-solving (Schaetti 2018). 
Data scientists used a basic Convolutional Neural 
Network (CNN) network to do machine learning 
work. For example, In the realm of Deep Learning 
(DL), CNNs have gained immense prominence 
(Krizhevsky et al 2017). One of their distinguishing 
strengths compared to their predecessors is their 
ability to autonomously extract important features 
without human supervision (Gu et al 2018). CNNs 
provide extensive applications across diverse fields, 
including computer vision (Fang et al 2020), gesture 

processing (Palaz et al 2019), and even Face 
Recognition (Lu et al 2018). The basic concept of 
CNNs takes inspiration from the neural organization 
in both human and animal health bodies, notably in the 
visual cortex. For instance, the complex network of 
cells constituting a feline's visual cortex finds an 
analogous representation in CNNs (Li et al 2020). 
Goodfellow underscores three pivotal features of 
CNNs: CNNs stand out due to their capacity for 
creating equivalent representations, promoting sparse 
interactions, and enabling parameter sharing. In 
contrast to conventional fully connected (FC) 
networks, CNNs leverage shared weights and 
localized connections to exploit the inherent 2D 
structure within input data, particularly in the case of 
image signals. This architectural choice not only 
reduces unnecessary parameters but also mirrors the 
selective information processing observed in our 
brain's visual system, similar to how our visual cells 
focus on specific areas (Hubel and Wiesel 1962). This 
method not only reduces unnecessary parameters but 
also makes training more efficient, much like how our 
brain's visual cells selectively process information. 
Just as these cells concentrate on specific areas, CNNs 
use local filters to extract important details from the 
input (Goodfellow et al 2016). CNNs can face 
challenges like overfitting, high computational load, 
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limited contextual understanding, and issues with 
translation invariance.  Residual Networks, addresses 
these by introducing residual blocks, which enable 
direct gradient flow during training. ResNet, a form of 
deep neural network, incorporates skip connections or 
shortcuts in its architecture (Schaetti 2018). Applying 
in the domain of autonomous driving, ResNet emerges 
as a key for accurately identifying and categorizing 
road objects. This capability significantly fortifies the 
safety and reliability of self-driving vehicles. 
Similarly, the medical sector benefits from ResNet's 
prowess, which accelerates the detection of anomalies 
in medical images, thereby expediting disease 
diagnosis and prognostication. ResNet's adaptability 
and effectiveness across these complicated sectors 
underscore its compelling ability to address real-world 
complexities in image analysis. Consequently, ResNet 
stands out as a multifunctional solution to address the 
contemporary challenges of image processing. 

The main objective of this study is to utilize 
ResNet for constructing an efficient image 
classification model and using different numbers of 
residual models to find out the change in efficiency. 
By introducing residual blocks, the aim is to counter 
overfitting and enhance the model's ability to retain 
crucial original feature information, leading to 
improved feature representation. Specifically, firstly, 
the incorporation of ResNet's residual blocks 
addresses issues such as vanishing gradients and 
degradation, which often hinder the training of deep 
networks. This helps ensure smoother gradient 
propagation during training, facilitating the learning 
process. Secondly, the utilization of skip connections 
within ResNet aids in maintaining and transmitting 
essential features across layers, thereby mitigating the 
loss of valuable information. Thirdly, an in-depth 
analysis and comparison of predictive performances 
across various models are conducted. Furthermore, the 
integration of ResNet addresses the challenge of 
training deep neural networks effectively. ResNet's 
architecture with residual blocks helps alleviate the 
degradation problem, enabling successful training of 
networks with extensive depth. Simultaneously, the 
incorporation of skip connections supports gradient 
flow during backpropagation, effectively tackling the 
issue of vanishing gradients that frequently arise 
during the training of deep networks. These strategic 
enhancements collectively contribute to ResNet's 
efficacy in overcoming challenges associated with 
training deep networks and accomplishing image 
classification tasks. 

2 METHODOLOGY 

2.1 Dataset Description and 
Preprocessing 

The research used the Canadian Institute for 
Advanced Research (CIFAR) dataset to explore the 
problem around ResNet (Abouelnaga et al 2016). The 
CIFAR-10 dataset, a cornerstone in the realm of 
computer vision, originates from the CIFAR and 
serves as a vital benchmark for image classification 
tasks. Comprising 60,000 color images with 
dimensions of 32x32 pixels, the dataset encompasses 
ten diverse classes, each containing 6,000 images. 
This study delves into the enhancement of the CIFAR-
10 dataset for robust model training through a 
sequence of preprocessing techniques. Segmented 
into 50,000 training images and 10,000 test images, 
the dataset facilitates rigorous model evaluation. 

The core focus of this study lies in the application 
of preprocessing methods to amplify the dataset's 
efficacy. The "Rescaling" technique, normalizing 
pixel values to the [0, 1] range, is coupled in horizontal 
and vertical modes, introducing data augmentation by 
enabling random image flips. Horizontal flips emulate 
diverse object orientations, while vertical flips inject 
variability in object positioning. These techniques 
collectively bolster model robustness, alleviate 
overfitting concerns, and elevate generalization 
capabilities. The integration of these preprocessing 
measures results in an elevated quality of the CIFAR-
10 dataset, rendering it particularly suitable for 
training CNNs and other image recognition models. 
The optimized dataset plays a pivotal role in 
advancing classification accuracy and fostering 
adaptability for object recognition in real-world 
settings. This paper underscores the significance of 
preprocessing methodologies in refining image 
datasets, underscoring their role in advancing the 
performance of machine learning models in the realm 
of computer vision. 

2.2 Proposed Approach 

Introduction to the research technology. ResNet is an 
exciting and groundbreaking deep learning 
architecture known for its ability to train extremely 
deep networks effectively. By leveraging the concept 
of residual blocks, ResNet has shown remarkable 
performance in various computer vision tasks. This 
architecture combines several components, such as 
convolutional layers, residual pathways, global 
average pooling, and fully connected layers, all 
working together harmoniously. The pipeline of the 
ResNet architecture can be visualized in Fig. 1, 
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providing a comprehensive overview of its structure 
and flow. At the heart of this architecture lies the 
Convolution operation, specifically the 2-dimensional 
convolution (Conv2D). Conv2D is a fundamental 
operation in deep learning and serves as a powerful 
tool for extracting meaningful features from images. It 
employs a sliding window mechanism that scans the 
input image, highlighting patterns and capturing 
relevant information necessary for subsequent 
processing. To optimize computational efficiency and 
enhance the network's ability to focus on critical 
features, ResNet incorporates another essential 
operation known as 2-dimensional Max Pooling 
(MaxPooling2D). MaxPooling2D downsamples the 
data by selecting the maximum values within specific 
regions, effectively reducing the dimensionality of 
feature maps while emphasizing the most important 
features. By discarding non-maximal values, 
MaxPooling2D helps to reduce noise, improve 
robustness, and enhance the overall performance of 
the deep learning model. 

By combining Conv2D and MaxPooling2D within 
the ResNet architecture, researchers and practitioners 
have unlocked new possibilities and achieved state-of-
the-art results in image classification, object detection, 
semantic segmentation, and various other computer 
vision tasks. This powerful combination of operations 
has proven crucial in extracting rich and 
discriminative features, enabling deep networks to 
learn intricate patterns and make accurate predictions 
in complex visual tasks. 

 
Figure 1: The pipeline of the model (Picture credit: 
Original). 

2.2.1 Conv2D 

Introduction to the Conv2D technique. The Conv2D 
layer plays a pivotal role in CNN, serving as a 
fundamental element for feature extraction from 
images. Operating on the principle of two-
dimensional convolution, this layer convolves filters 
across input images or feature maps to uncover 

intricate spatial patterns, edges, and textures. This 
iterative process progressively constructs a 
hierarchical representation of features essential for 
image analysis. Practically, Conv2D requires a 4D 
tensor input encompassing parameters like batch size, 
image dimensions, and channel count. Through 
convolution operations, it computes dot products 
between filters and localized input regions, 
generating feature maps. Its primary strength lies in 
automated feature extraction, enhancing the 
network's capability to capture significant visual cues 
and enabling robust image comprehension. Integrated 
into the ResNet architecture, the Conv2D layer 
initiates the process of feature extraction, producing 
intermediary feature maps that undergo activation 
functions for further processing. Its significance 
resonates across deep learning models, solidifying its 
status as a cornerstone in image recognition and 
computer vision. 

2.2.2 ResNet 

Another interesting module is the Residual block. 
Residual Blocks, a groundbreaking innovation 
introduced by ResNet, offer a transformative solution 
to challenges posed by training deep neural networks. 
These blocks effectively address the vanishing 
gradient issue through residual connections, enabling 
direct information flow across layers. The core 
functionality of Residual Blocks revolves around 
their capacity to learn incremental changes in feature 
representations. Instead of focusing on complex 
transformations, these blocks allow networks to 
concentrate on residual or incremental updates, 
streamlining learning within deeper architectures. 

Residual Blocks find optimal utility within deep 
networks, particularly those susceptible to gradient 
degradation. By retaining earlier features via shortcut 
connections, these blocks ensure seamless gradient 
propagation—a pivotal factor in optimizing networks 
with extensive layers. In our implementation, Residual 
Blocks materialize using Conv2D layers and shortcut 
connections, forming essential components of the 
ResNet architecture. Their unique capability to 
mitigate gradient vanishing while facilitating the 
training of exceptionally deep networks has 
revolutionized the realm of deep learning. This 
innovation not only rekindles the pursuit of deeper 
architectures but also establishes new benchmarks for 
image recognition, object detection, and other 
computer vision tasks. 

2.2.3 Loss Function 

Loss function is one of the important elements in the 
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 research. In the realm of multi-class classification 
tasks, an important concept of the loss function is the 
variance, which is the difference between the 
expectation value and the true value, and it quantifies 
the gap between real value and predicted value. The 
Sparse Categorical Cross-Entropy (SparseCE) loss 
function emerges as a pivotal construct within this 
context, meticulously tailored to measure the 
alignment between model predictions and ground 
truth labels. The core equation encapsulating its 
essence involves the summation of the negative 
logarithm of predicted probabilities across all 
samples: Loss (L) equals the negative sum of the 
logarithm of the predicted probabilities (pi) for each 
sample: 

                          𝐿 ൌ ∑ logሺ𝑝𝑖ሻ                           ே௜ୀଵ (1) 
 

where 𝐿  signifies the computed loss value, 
representing the degree of divergence between 
predicted probabilities and true labels. Loss function 
indicates summation across all 𝑁  samples in the 
dataset, underscoring its comprehensive nature. logሺ𝑝𝑖ሻdenotes the natural logarithm of the predicted 
probability pi assigned to the true class of the ith 
sample, quantifying the model's confidence in its 
prediction. 𝑝𝑖 represents the predicted probability 
assigned to the true class of the ith sample, 
encapsulating the model's estimation of the likelihood 
that the sample belongs to its correct class. 

2.3 Implementation Details 

The research provides the construction and training of 
CNN models for image classification tasks using 
TensorFlow and Keras. The foundation of the system 
is established by importing the necessary libraries and 
modules. It introduces classes and functions that 
enable the creation of diverse CNN architectures, data 
preprocessing, training, and performance evaluation. 
Notably, data augmentation techniques are harnessed 
through a sequential layer, enhancing the dataset's 
variety by applying rescaling and random flips. This 
augmentation strategy bolsters the model's robustness 
and capacity to generalize to different image 
variations. The code also acknowledges the 
significance of hyperparameters by allowing 
customization of crucial factors such as learning rate, 
batch size, and data storage path. These parameters 
wield considerable influence over the model's training 
trajectory and final performance. In essence, the code 
amalgamates these elements into a cohesive 
framework that amalgamates system background 
awareness, data augmentation practices, and flexible 

hyperparameter configurations to cultivate effective 
image classification models. 

3 RESULTS AND DISCUSSION 

The ResNet loss function curve exhibits some 
rebounds between 20 epochs, possibly due to 
overfitting, suboptimal hyperparameters, and complex 
optimization. Strategies to mitigate rebounds include 
adjusting learning rates and regularization. The 
accuracy curve indicates ResNet's convergence 
around 20 epochs, with steeper changes attributed to 
its depth. ResNet's training "rebound" relates to its 
depth, gradient challenges, epoch times, learning rate, 
and number of layers. 

The Fig. 2 below illustrates the loss function of the 
Resnet method after 20 times epochs, the loss function 
rebounds and turns better after this. The rebound 
observed in the loss curve during ResNet training can 
be attributed to factors such as model overfitting, 
suboptimal hyperparameters, and the intricate 
optimization landscape of deep networks. The 
occasional rise in loss indicates potential challenges in 
achieving convergence due to overfitting, while 
oscillations can stem from a high learning rate causing 
overshooting. Moreover, complex optimization layers 
may result in temporary fluctuations as the algorithm 
seeks the global minimum. Strategies to mitigate 
rebounds include adjusting learning rates, regularizing 
the model, and applying learning rate schedules. 

 
Figure 2: Loss curve (Picture credit: Original). 

Based on Fig. 3 (the accuracy function),  the 
diagram can observed that the Resnet model's 
convergence point converges around 20 times epochs. 
However, the diagram is still steep since Resnet has 
more layers than normal CNN, and some of the 
gradients change faster than normal networks. During 
ResNet training, the phenomenon of "rebound" may 
occur due to the network's depth and complexity. 
Challenges in gradient propagation and learning rate 
adjustment can lead to oscillations in loss and 
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accuracy curves. However, with proper optimization 
strategies, ResNet can recover from these fluctuations 
and achieve favorable outcomes. 

 
Figure 3: Accuracy of model (Picture credit: Original). 

4 CONCLUSION 

This study underscores the effectiveness of ResNet in 
building robust deep-learning models for image 
classification tasks. By integrating residual blocks into 
the CNN architecture, ResNet successfully tackles 
challenges like vanishing gradients and degradation. 
These residual connections ensure smooth gradient 
propagation during backpropagation, enabling the 
training of exceptionally deep networks. Through 
extensive experiments conducted on the CIFAR-10 
dataset, ResNet demonstrates its ability to achieve 
remarkable accuracy in image recognition. While the 
loss function exhibits occasional fluctuations during 
training, meticulous hyperparameter tuning, including 
learning rate adjustments, effectively mitigates these 
fluctuations. The results validate ResNet's ability to 
extract distinctive visual features and accurately 
classify images. Future research avenues may explore 
enhancements to the residual blocks, including the 
implementation of bottleneck architectures to improve 
computational efficiency. Additionally, evaluating 
ResNet on datasets with more complex images can 
assess its generalization potential. In a rapidly 
evolving landscape of deep learning and image 
classification, ResNet stands as an exemplar of 
innovation and advancement. As we continue our 
journey in this field, we eagerly anticipate the 
innovations and breakthroughs that will inevitably 
shape the future of image recognition and deep 
learning. The potential is vast, and the promise is 
bright. 
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