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Abstract: In the contemporary landscape defined by the ubiquity of data-driven applications and the unceasing demand 

for real-time processing, the imperative to fuse deep learning with edge computing networks has risen to the 

forefront. This paper, therefore, undertakes the crucial task of addressing the necessity for such integration 

while illuminating the formidable obstacles that impede the seamless delivery of services in this context. The 

research diligently navigates through a myriad of well-established edge computing architectures, evaluating 

their aptitude for supporting deep learning models. By capitalizing on the latest strides in research, it 

introduces inventive solutions aimed at harnessing the formidable potential of deep learning at the edge, all 

while mitigating the challenges posed by resource constraints. The outcomes of this research illustrate 

substantial enhancements in performance, shining a spotlight on the transformative possibilities that emerge 

from this synergy. Despite the presence of certain limitations, this work stands as a noteworthy contribution 

to the ongoing evolution of edge computing, offering the promise of heightened capabilities for both edge 

devices and applications alike. 

1 INTRODUCTION  

Due to the rapid expansion of the Internet of Things 

(IoT), an increasing number of IoT devices are finding 

utility across diverse applications. As the result of IoT 

applications expands, it is anticipated that the IoT 

market will reach $11.1 trillion (Manyika et al 2015), 

generating 79.4 zettabytes (ZB) of data annually 

(Badnakhe 2021). A common technique of processing 

data on cloud server is by deep learning (DL). The 

traditional cloud computing approach commonly 

uploads all data to a remote cloud server center for 

processing and future usage. However, this approach 

faces several existing challenges. Firstly, reliability is 

a challenge in cloud computing, since a considerable 

number of end devices is connected to the backbone 

network via wireless network. When the wireless is 

unstable, the cloud computing service should still be 

reliable (Wang et al 2020). Secondly, latency is a 

significant obstacle, particularly when large data 

volumes are simultaneously uploading to data centers, 

possibly leading to insufficient bandwidth. For 

instance, a single call to Amazon Web Services can 

incur a latency of up to 200 ms during DL service 

execution (Satyanarayanan 2017), which is 

unacceptable for numerous use cases. Additionally, 

sustainability is an emerging concern, as transmitting 

extensive data consumes substantial bandwidth and 

energy. For instance, power consumption can escalate 

to 1.04 kWh per gigabyte (GB) of data transferred 

(Chen and Ran 2019), posing environmental risks as 

data transmission scales up (Pihkola et al 2018). 

In facing all these challenges, many studies have 

provided applications of deploying DL in edge 

computing or in End-Edge-Cloud Computing 

(EECC), which refers to a computing paradigm that 

schedules the heterogeneous devices and manages the 

capabilities of on-device computing, edge computing, 

and cloud computing to fulfill the varied demands 

posed by resource-intensive and distributed Artificial 

Intelligence (AI) computations. Various of commonly 

employed framework have adopted to edge computing 

and developed applications from this adoption 

(Murshed et al 2021). For instance, TensorFlow Lite 

(Google) for Android, iOS have applications of 

Computer Vision (CV) and speech recognition. 

Despite of the DL frameworks development, major 

firms of hardware and system have also developed 

products for edge computing (Wang et al 2020). For 

instance, NVIDIA has developed Jetson which is a 

platform that can run in 5 Watts power. Moreover, 

empowering DL by edge computing has a widely has 

seen widespread use in various industries including 

CV, Natural Language Processing (NLP), network 

functions and VR/AR (Chen and Ran 2019). The 

necessity of this paper arises from the widespread 
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demand for deploying deep learning in the cloud 

environment. This paper will list some research that 

focuses on optimize the deep learning using in edge 

computing. Furthermore, it provides essential 

background information for future research in this 

direction. 

The main goal of this paper is to provide a 

comprehensive review of the application of deep 

learning methods in edge networks. Within this scope, 

this paper will research into the advantages, barriers, 

and strategies for enhancing the DL process in edge 

environments. First, this paper will briefly introduce 

some widely implemented edge computing structures. 

Subsequently, this paper will introduce how to deploy 

DL within the edge computing networks. Finally, this 

paper will conclude all the findings. 

2 EDGE COMPUTING 

STRUCTURE  

The concept of edge computing has now found 

widespread application in numerous domains 

(Satyanarayanan et al 2009). In addition to its 

application in conventional network architectures, 

edge computing is also being employed within the 

following networks. In vehicular networks, edge 

computing has been used as platforms and guarantees 

security. In smart homes, edge computing can be 

deployed in routers or hubs to improve the IoT devices 

performance. In Virtual Reality (VR), edge computing 

can be used to schedule the resource. This section will 

introduce six typical structures in different scenarios. 

2.1 Cloudlet 

Cloudlet is a reliable and resource-rich computing 

cluster closely connected to the backbone network and 

aims to serve nearby mobile devices (Satyanarayanan 

et al 2009). It serves as a pivotal component in a three 

layers architecture of "Mobile Device-Cloudlet-

Cloud." Unlike traditional cloud computing, in which 

mobile devices directly interact with remote cloud 

servers, Cloudlet functions as an intermediary layer. It 

works as a localized computing hub that bring 

computational resources and services closer to mobile 

users, reducing latency and enhancing the quality of 

service. Cloudlets can be implemented on a variety of 

hardware, including personal computers, affordable 

servers, or small clusters, and are often strategically 

deployed in public spaces such as cafes, libraries, or 

restaurants. Multiple clouds can be networked to form 

a distributed computing platform, effectively 

expanding the resources of mobile devices and 

improving the overall user experience by reducing 

communication delays and efficient bandwidth 

utilization. 

2.2 PCloud 

Personal Cloud (PCloud) is a pioneering technology 

designed to revolutionize the mobile device 

experience (Jang et al 2014). It overcomes the inherent 

limitations of mobile devices such as, limited battery 

life, restricted form factor, and constrained local data 

storage. PCloud achieves this goal by integrating 

nearby and remote cloud resources. Different from 

vendor-specific solutions, PCloud employs 

technologies e.g. Cirrostratus extensions for Xen to 

create a personalized execution environment at the 

hypervisor level. These environments are governed by 

policies that not only evaluate network connectivity 

but also consider device ownership and access 

permissions, which are securely managed through 

standard social networking services. PCloud has 

demonstrated its ability to significantly improve a 

device's native capabilities, resulting in improved 

application performance and a better user experience. 

2.3 ParaDrop 

ParaDrop is an innovative edge computing platform 

developed by the UW-Madison WiNGS Lab designed 

to push the boundaries of network capabilities to the 

edge (Liu et al 2016). At its core, ParaDrop leverages 

the capabilities of WLAN access points (APs) and 

wireless gateways through which all end device traffic 

flows. This strategic location provides ParaDrop with 

unique contextual insights into network 

characteristics, including proximity and channel data 

that is typically lost deep within the network. The 

platform addresses key challenges in building 

architecture, programming interfaces, and 

orchestration frameworks that enable developers to 

dynamically create, deploy, and decommission edge 

computing services. Composed of three main 

components - a versatile hosting substrate within the 

Wi-Fi AP, a cloud-based backend for orchestrating 

distributed computing, and a developer-friendly API - 

ParaDrop provides an ecosystem for third-party 

developers to Deploy and manage computing 

capabilities customized to specific needs. With 

ParaDrop, the edge becomes a dynamic stage for 

developing cutting-edge services, optimizing network 

performance and improving user experience in the 

rapidly evolving IoT and edge computing 

environments. 
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2.4 OpenVDAP 

The Open Vehicle Data Analytics Platform 

(OpenVDAP) is a breakthrough solution that will 

change the landscape of Connected and Autonomous 

Vehicles (CAVs) (Zhang et al 2018). OpenVDAP is 

proving to be a key enabler when CAVs are viewed as 

advanced mobile computers equipped with an array of 

integrated sensors. It solves the inherent challenges of 

limited onboard computing resources by leveraging 

the power of edge computing. The full-stack platform 

includes an integrated computer and communications 

engine, a safety-focused vehicle operating system, an 

edge-ready application library, and intelligent 

workload offloading and scheduling policies. 

OpenVDAP enables CAV to dynamically evaluate 

service status, compute requirements, and optimal 

offload targets, ensuring that real-time services run 

with minimal latency and bandwidth consumption. 

Specifically, OpenVDAP is an open-source initiative 

that provides free access to APIs and real vehicle data 

and facilitates collaboration between researchers and 

developers to drive innovation within the CAV 

ecosystem. 

2.5 Vigilia 

Vigilia is a breakthrough system designed to improve 

the security and privacy of the smart home IoT 

ecosystem. In response to the growing popularity of 

these devices and the growing security concerns that 

come with them, Vigilia is taking a proactive approach 

to significantly reduce the attack surface (Trimananda 

et al 2018). This is accomplished by enforcing a 

default access deny policy and establishing fine-

grained control over device access. Unlike closed and 

proprietary systems, Vigilia offers an open 

implementation that allows users to customize 

security measures while maintaining the flexibility 

and convenience of smart home technology. Vigilia 

extends its protection by maximizing restrictions on 

communication between devices based on device 

network permissions, ensuring only authorized 

interactions occur. Additionally, this innovative 

system outperforms other IoT defense solutions while 

minimizing performance overhead. Vigilia enables 

homeowners to enjoy the benefits of smart home IoT 

devices while preserving their privacy and protecting 

their homes from potential security breaches. 

2.6 MUVR 

Multi-User Virtual Reality (MUVR) is an innovative 

system designed to revolutionize the way virtual 

reality experiences are delivered from mobile devices 

via edge cloud rendering (Li and Gao 2018). The 

fundamental challenge it faces is to effectively utilize 

the redundant VR frames generated for different users. 

MUVR achieves this by adaptively reusing redundant 

frames that are dynamically determined by the edge 

cloud. The edge cloud stores previous VR frame 

rendering results for future user sessions, optimizing 

computing resources. Following the creation of a VR 

frame, MUVR optimizes data transfer by efficiently 

reusing redundant pixels from preceding frames, 

transmitting solely the distinctive components to the 

mobile device. MUVR is implemented on the Android 

operating system and the Unity VR engine, which can 

reduce the computing load of the edge cloud by more 

than 90% and reduce the data sent to mobile devices 

by more than 95%. This breakthrough technology 

improves multi-user VR experiences, making them 

more accessible and efficient while ensuring high-

quality immersive interactions. 

3 DL AT EDGE 

Considering the diversity of edge computing 

networks, the DL architectures employed within edge 

computing networks are equally varied. For instance, 

Chen et al (2019), categorizes the architectures into 

three distinct classes. The first architecture is on-

device computation, which processes the data on the 

end device. The second architecture is edge server 

computation, which uploads the data to one or more 

edge server for computation and download the result 

to the end device. The third architecture is computing 

across edge devices, which refers to jointly using the 

edge server and end device for the computation. In 

addition to these three architectures, private inference 

is also a significant and independent architecture of 

the DL models. This is due to the reason that 

architectures involve uploading user data to edge 

servers. Therefore, in order to prevent the leakage of 

user privacy, it necessitates the implementation of a 

private system. 

3.1 On-Device Computation 

On-Device Computation is an effective approach for 

reducing latency, meanwhile fewer transmissions 

result in lower energy consumption. However, 

addressing resource constraints is imperative, which 

numerous research efforts have contributed solutions 

to this challenge.  

One of the primary approaches involves using 

fewer parameters during the model design phase. 
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Howard et al. (Howard et al) introduces MobileNets 

that leverage depth-separated convolutions and 

provide smaller, faster alternatives through width and 

resolution multipliers, outperforming existing models 

in size, speed, and accuracy across a variety of tasks, 

with plans to use TensorFlow models more broadly to 

share and discover. 

The second approach involves compressing 

existing models, and this specific method can be 

further categorized into three techniques: parameter 

quantization, parameter pruning, and knowledge 

distillation. Additionally, some research combines 

these three techniques for compression purposes. Han 

et al (2017) solve high computation and memory 

demands challenge in LSTM-based speech 

recognition by introducing an efficient solution: load-

balance-aware pruning and quantization techniques, 

parallel processing scheduling, and the hardware 

architecture Efficient Speech Recognition Engine 

(ESE). This architecture outperforming CPUs and 

GPUs by 43x and 3x in speed. 

The third approach involves optimizing through 

hardware co-design. Many mobile device chip 

manufacturers have tailored their products for deep 

learning optimization and provide developers with 

software development kit (SDK). Alzentot et al (2017) 

provides an approach of leveraging heterogeneous 

CPU and GPU resources on standard Android devices 

for deep learning tasks and leverage the RenderScript 

framework to improve TensorFlow. it tightly 

integrated system enables machine learning engineers 

to seamlessly access mobile device resources. They 

analyze the performance trade-offs of different 

Android phone models and compare GPU-accelerated 

neural network operations with CPU-only execution. 

The results show significant speedup improvements 

for models with large matrix multiplications, 

highlighting the significant advantages of GPU 

support on mobile devices. 

3.2 Edge Server Computation 

Despite the performance optimizations offered by the 

aforementioned methods, the computational 

capabilities of end-user devices remain limited. 

Offloading computation to edge servers is a favorable 

choice, as edge servers not only possess greater 

computational power but are also closer to users and 

therefore offer enhanced reliability compared to cloud 

servers. Despite these advantages, latency remains a 

challenge that cannot be overlooked. To mitigate 

latency concerns, prior research have proposed two 

main directions: data preprocessing and edge server 

scheduling optimization. 

Chen et al (2015) have developed a system called 

Glimpse which is a real-time object detection system 

for mobile devices that improves detection accuracy 

by leveraging active video cache, leveraging hardware 

facial recognition support for 1.8-2.5x improvement in 

precision, and continuous, precise road sign 

recognition for coverage from 75% to 80%, which 

would otherwise not be possible without the 

techniques used (precision from 0.2% to 1.9%). 

Jiang et al (2018) have developed Mainstream 

which is a novel video analytics system, optimizes 

concurrent applications on stationary resources by 

leveraging partial sharing of DNN computations 

through transfer learning and dynamically balancing 

specialized DNNs to achieve per-frame accuracy and 

underlying sharing models, resulting in significant 

improvements of up to 47% in averages event 

detection F1 scores compared to static approaches and 

a remarkable 87 times compared to fully independent 

DNNs per application. 

3.3 Collaborative Computation 

Following the discussion of both end device and edge 

server computation, it is natural that many studies 

have explored collaborative computation between 

edge servers and terminal devices. Collaborative 

computation can be further categorized into four 

approaches: performing all computations on either 

edge servers or terminal devices, offloading partial 

computations to edge servers, end-cloud-edge 

collaboration, and distributing computations across 

different edge servers. 

Binary computation using either edge servers or 

terminal devices is an approach that determines 

whether to offload computation to edge servers based 

on factors such as latency, energy consumption, 

resource utilization, and others. For instance, this 

approach is exemplified by MCDNN (Multi-Column 

Deep Neural Networks). Han et al (2016) introduce 

approximate model scheduling, a method to 

efficiently process heterogeneous requests by trade-

off between classification accuracy and resource 

utilization and on-device/cloud execution 

optimization. The research optimizes resulting in 

significant reductions in resource consumption while 

maintaining effective performance under various 

operating conditions. 

Partial offloading is a method that involves 

offloading specific layers or portions of a neural 

network to edge computing resources. An example of 

this approach is MAUI. MAUI (Eduardo et al 2010) 

achieves balance by leveraging managed code 

environments to minimize developer involvement 
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while optimizing runtime energy savings. This 

provides tangible benefits such as orders of magnitude 

lower power consumption for resource-intensive 

applications, improved refresh rates for latency-

sensitive games, and overcoming smartphone 

limitations in voice-based language translation 

applications by remotely triggering unsupported 

components. 

While cloud servers may be farther from the end-

users, potentially increasing latency, their abundant 

computational resources can still effectively reduce 

the overall processing time if resource allocation is 

done optimally. An example illustrating this concept 

is Distributed Deep Neural Networks (DDNN). 

DDNNs (Teerapittayanon et al 2017) can scale neural 

network size and geographic coverage, improving 

sensor fusion, fault tolerance, and data protection. By 

assigning DNN sections to this hierarchy and training 

them together, DDNNs minimize communication and 

resource consumption and support automatic sensor 

coupling and fault tolerance. As a proof of concept, 

DDNNs leverage the geographic diversity of sensors, 

improving object detection accuracy and reducing 

communication costs by more than twenty times 

compared to traditional processing of raw sensor data 

in the cloud. 

The final approach involves distributing 

computations across different edge servers, and a 

representative study demonstrating this concept is 

DeepThings (Zhao et al 2018). it optimizes memory 

utilization through scalable Fused Tile Partitioning 

convolutional layers, provides dynamic load 

balancing through distributed work stealing, and 

improves data reuse and latency reduction through 

innovative work scheduling and achieves a scalable 

CNN inference speed of 1.7 to 3.5 times on 2 to 6 edge 

devices with less than 23 MB of memory each, which 

outperforms existing methods. 

3.4 Private Inference 

When performing computations on servers with user 

data, privacy concerns become paramount. 

GAZELLE (Chiraag et al 2018) and DeepSecure 

(Darvish et al 2018) are two effective methods for 

encrypting user privacy data without impeding the 

inference process of deep learning networks. 

4 CONCLUSION 

In summary, this research has underscored the pivotal 

role played by deep learning in augmenting the 

potential of edge computing networks. It has 

responded to the pressing demand for streamlined, 

real-time processing capabilities at the edge and 

examined the viability of incorporating deep learning 

models into established edge computing frameworks. 

The research has introduced novel approaches, 

including fine-tuned neural network designs and 

resource-efficient training methodologies, which have 

yielded substantial enhancements in performance 

across various edge applications. 

  These findings have profound implications for 

areas such as autonomous systems, the Internet of 

Things and healthcare, where low-latency decision-

making is paramount. 
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