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Abstract: In financial markets, Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory 

(BiLSTM) models have been proved to achieve high “accuracy” in predicting the next closing price. However, 

such “accuracy” is commonly referred to price value accuracy-how close the predicted and real prices are. 

Many prediction models neglect the directional accuracy of predicted prices due to the natural characteristic 

of Mean Square Error (MSE) as loss function. A predicted price with accurate value can potentially be in the 

wrong direction which causes significant loss to investors and traders’ wealth. Instead, a useful prediction 

requires both the correct direction and a value close to real prices. To achieve such a combination and improve 

directional accuracy, a novel loss function Direction-Integrated Mean Square Error (DI-MSE) is introduced 

by incorporating directional loss information to conventional MSE. Among 28 stocks including both single 

stock and stock indices, such as Apple or SP500, DI-MSE is shown to increase the average directional 

accuracy to nearly 60%. At the same time, the average value accuracy of predicted price remains around 98%. 

1 INTRODUCTION 

Stock price prediction has been a prominent challenge 
in contemporary financial markets due to high 
proficiency by stock trading. With an accurate 
prediction of the next closing price in certain stocks, 
investors can decide whether to sell shares or keep 
their shares in order to increase their wealth. Indeed, 
such a prediction requires two pieces of accurate 
information: what is the value of the next closing price 
and the movement’s direction of next closing price. In 
other words, the stock price prediction can be divided 
into two components: price value prediction and price 
direction prediction. Researchers have achieved 
significant success in those components: Liu achieves 
around 78% accuracy on price direction (Liu et al 
2018). Ding’s associated network model of Long 
Short-Term Memory can predict multiple price value 
at the same time with 95% accuracy (Ding and Qin 
2022). And Roondiwala minimizes the testing Root 
Mean Square Error (RMSE) to 0.00859 when 
predicting price value for stock NIFTY 50 
(Roondiwala et al 2017). In fact, those two individual 
components are always done distinctly: while the 
direction predictions concentrate on solely predicting 
a correct direction without predicting a price value, the 
price value predictions focus on minimize the residual 
between predicted and true values without considering 
the correctness of the prediction’s direction. Such lack 

of consideration on direction is the main disadvantage 
of Mean Square Error (MSE), a common loss function 
used for model training. By training with MSE, a 
model may predict prices with high accurate value but 
instead in the wrong direction, which causes loss of 
investors. This is the primary challenge faced by price 
value prediction: poor directional accuracy. This 
paper introduces a novel loss function, Direction-
Integrated Mean Square Error (DI-MSE), as a try to 
address such a challenge. 

A few researchers also implemented specific loss 

function to enhance the performance of prediction on 

stock related fields. For example, Dessian 

implemented a custom loss function which computed 

loss of predicted value depending on its directional 

correctness to improve the prediction of assets returns 

(Dessain 2022). Moreover, Yun designed a joint lost 

function which takes account of the direction of return 

in certain periods to improve the prediction 

performance on maximize the return in asset portfolio 

(Yun et al 2020). Zhou also introduced directional 

error to improve value predictions in Generative 

Adversarial Nets algorithm (Zhou et al 2018). For 

stock price predictions, Doshi noticed the poor 

directional accuracy for models trained by MSE and 

designed a custom loss function by assigning different 

weights based on directional correctness (Doshi et al 

2020). However, some of those custom loss functions 
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are difficult to generalize predicting next closing price 

in more stocks. 

DI-MSE, on the other hand, goes beyond MSE. 

While calculating how close the predicted value and 

true values are like MSE, DI-MSE incorporates the 

directional information by computing the directional 

loss of predicted values, considering the correctness of 

directions but also the proportion of specific direction 

in real prices. DI-MSE dynamically adjusts its focus 

during the training process, automatically transiting 

from directional correctness to price value accuracy. 

As an expanded version of MSE, DI-MSE aims to 

minimize both the number of wrong directions and the 

difference between predicted and true values. 

Consequently, DI-MSE assists models in training to 

predict accurate closing prices with enhanced 

directional accuracy. 

In this paper, a detailed construction of DI-MSE 

will be introduced, followed by the methodology of 

experiments and analysis of the results to compare 

usage of MSE and DI-MSE in model training for price 

value predictions. 

2 PROBLEM DESCRIPTION 

By using MSE, models are trained by minimizing the 

marginal between predicted and real value in prices. 

However, those models can hardly learn to predict the 

correct direction during training process, as MSE 

provides no directional information for training. 

Under such circumstances, the trained model tends to 

gain high accuracy of predicting closing price but poor 

directional accuracy. Consider an example: on a 

particular day, stock A has a closing price of 125 

dollars. The next closing price predicted by two 

distinct models is 120 and 140 dollars, and the real 

next closing price is 130 dollars. By computing price 

accuracy (PA) defined by: 

PA = (1 — |ŷ — y|/y) × 100%,            () 

where ŷ represents predicted price and y represents 

real price, it can be noticed that the price accuracies of 

two predictions are the same: 

|120 130 |
1 100% 92.3%,125 120(down direction)

130
.

|140 130 |
1 100% 92.3%,125 140(up direction)

130

 − 
−    

 


−  −     

  () 

However, the directions of both predictions are 
rather opposite. Compared to the current latest closing 
price of 125 dollars, the real next closing price of 130 
dollars shows an increasing trend. The prediction of 

140 dollars also indicates the same increasing trend, 
which is indeed a “correct” direction. Conversely, the 
prediction of 120 dollars indicates a decreasing trend 
in “wrong” direction. For investing stock, both the 
value and direction of the next closing price are 
significant, as the direction is the decisive element of 
selling or buying stock shares. Although one 
prediction of price has a value accuracy of 92.3%, its 
wrong direction may directly cause the loss of 
investors. More precisely, the correctness of direction 
Di of a prediction ŷi is defined by the following: 

( )( )1 11, 0
,

e

ˆ

0, lse

i i i i
i

y y y y
D − − − − 

= 


         () 

where:  
yi represents the real closing price at time i. 
yi-1 represents the real closing price at time i—1. 
ŷi represents the predicted closing price at time i. 
While Di=1 indicates a correct direction, Di=0 

indicates a wrong direction. The model trained by 
MSE is likely to have prediction with wrong directions 
like the example above, because MSE solely focus on 
minimizing the marginal between ŷi and yi without 
considering if the direction is correct or not. To 
enhance the model’s capability of predicting a closing 
price close to real value, more importantly, with a 
correct direction, MSE requires additional directional 
information during model training. 

3 NEW LOSS FUNCTION: 

DIRECTION-INTEGRATED 

MEAN SQUARE ERROR  

(DI-MSE) 

One widely used loss function for predicting stock 
prices is Mean Square Error (MSE). Given predicted 
value set ypred and real value set yreal, MSE computes 
total error by: 

( )
2

1

1
,ˆ

n

i i
i

MSE y y
n =

=  −                 () 

where: 
yi represents the real closing price at time i. 
ŷi represents the predicted closing price at time i. 

n represents the size of ypred. 

 However, MSE only considering the marginal 

difference between yi and ŷi at same time point i 

without distinguishing the directions. To address such 

limitations, Direction-Integrated mean square error 

(DI-MSE) is introduced. DI-MSE is decomposed into 

two distinct parts based on the directional correctness 

of predictions by (5): 
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DI-MSE = DLC + DLW                () 

where: 

 DLC represents the total directional loss for all ŷi 
with correct direction (Di =1) by (3). 

 DLW represents the total directional loss for all ŷi 

with wrong direction (Di =0) by (3). 

Similar to traditional MSE, DLC is computed by 

averaging of squared errors of all ŷi. Differently, DLC 

is computed by only ŷi with the correct direction and 

weights those square errors based on the percentage of 

corresponding direction in yreal. The directional weight 

Wi is computed using (6): 
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where: 

yk represents the price value in time k. 

I (yk ≥ yk-1) represents an indicator function 

outputting value of 1 if the condition yk ≥ yk-1 is true 

otherwise 0.  

Notably, since there is no preceding real closing 

price y0 available for comparison before the first real 

closing price y1 in yreal, it is impossible to ascertain the 

directional correctness of ŷi. As a result, the loss for ŷ1 

is set to 0 to avoid adverse effect on loss computation 

due to an unknown real direction. Consequently, the 

summation begins from i=2 in (6). With directional 

weights in (6), DLC is computed by (7): 

( )
2

1
,ˆ

1

i

i i i
D

DLC W y y
n =

 
= −


 


             () 

where n’ denoting the number of predictions with the 

correct direction. If the directions in a batch of training 

data is mainly upward, it can be referring as closing 

price keeps increasing in this period. (This is 

guaranteed by that the training set is in time order and 

model structure divide batches also in time order) 

With the premise that predictions have correct 

directions, the predictions with upward direction are 

weighted more heavily, help the model to further 

follow the overall increasing trend. DLC is responsible 

for helping models predict closing prices closer to real 

value. 

On the other hand, DLW is responsible for helping 

models predict a closing price with the correct 

direction. By counting the number of predictions with 

wrong direction, DLW is computed by 

0
1

iD
DLW

=
=   () 

 By (7) and (8), the computation of DI-MSE in (5) 
can be reformulated into: 

( )
2

1 0

ˆ
1

- 1.
i i

i i i
D D

DI MSE W y y
n = =

 
=  − +  

 
    () 

After the normalization step, all real closing 

prices, as long as output value, are all in range of [0, 

1]. With Wi, as a percentage in range of [0, 1], the 

individual error Wi (ŷI—yi)2 for predictions with 

correct direction will be small compared to 1, the error 

for predictions with wrong direction. Such difference 

prompts the model to learn that predicting a value with 

correct direction is much more beneficial to minimize 

the loss function. So the model will initially focus on 

predicting correct directions. When the training 

progresses, the less predicted values have wrong 

directions so that more predicted values have their loss 

computed in DLC of (7) instead of DLW of (8). In this 

case, the focus of DI-MSE transits from the directional 

correctness to the accuracy of predicted values. In fact, 

when all predictions are with correct directions, DLW 

equals 0 thus DI-MSE is only composed of DLC, 

almost the same as MSE except for the directional 

weight. Under such circumstances, DI-MSE fully 

focuses on price value accuracy. When combining 

DLC and DLW, DI-MSE can provide how accurate the 

predicted values are and how correct the predicted 

values’ directions are. With incorporated directional 

information, DI-MSE is expected to help models 

improve the directional accuracy on predictions. 

4 DESIGN METHODOLOGY 

4.1 Dataset 

To demonstrate the generalization of modified loss 
function across different stocks, the dataset contains 
historical data of 20 single stocks and 8 stock indices, 
in time order from 2015-09-02 to 2023-08-14. A 
detailed list of all included stocks is presented in 
TABLE I. In the dataset, each stock is presented with 
2000 data points. Each data point contains 6 distinct 
feature values: Open price, High price, Low price, 
Close price, Volume, and 30-Day ROC. At certain 
timestep n, the feature of 30-Day Rate of Change 
ROCn is computed by the formula: 

ROCn = (Closen — Closen—30) / Closen—30,    () 
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where:  
Closen represents the Closing price at timestep n. 
Closen—30 represents the Closing price at timestep 

n—30, which is the Closing price from 30 trade days 
in the past. 

Table 1: Stock Lists in Dataset. 

Single 
Stocks 

AAPL, MSFT, AMZN, META, TSLA, SPY, 
GOOGL, GOOG, BRK-B, JNJ, JPM, NVDA, V, 
DIS, PG, UNH, MA, BAC, NFLX, QQQ 

Stock 
Indices 

000001.ss, 399001.sz, ^HSCE, ^HSCC, ^GSPC, 
^DJI, ^IXIC, ^SP500-20 

 
While the Close Price is set as the output feature to 

be predicted, all features including Closing price are 
set as the input features for model input. 

4.2 Data Preprocessing 

In data preprocessing phase, several steps were 
implemented to prepare the data for model training 
according to the objective of predicting the next 
closing price by utilizing data of the past 30 trade days. 
Initially, the first 1870 data points in the dataset are set 
as the training set and the 130 data points left are set 
as testing set. Particularly, the splitting was based on 
timestep, and the testing set contained the most recent 
130 data points. Consequently, predicted results of the 
testing set directly demonstrated the predictability of 
model in newest stock price trend. 

To avoid the potential bias effect due to scale 
difference among feature values, such as Volume and 
Close Price, a rescaling process was applied to ensure 
the uniformity within dataset. Such a process 
transformed all feature columns, in both training and 
testing set, into a consistent range of [0,1]. For each 
feature, the original value xi in time i was transformed 
by 

xi_normalized = (xi — mini) / (maxi — mini),   () 

where: 
xi_normalized represents the normalized value of xi. 
mini represents the minimum value among feature 

values in training set. 
maxi represents the maximum value among feature 

values in training set. 
 It is essential to underscore that normalization 
process applied to testing set adheres to the minimum 
and maximum values derived from the training set. 
This approach prevented the potential data leaking 
from future values in the testing set. If normalization 
in testing set utilize minimum and maximum values 
derived from the testing set itself, the normalized data 

will obtain the information for future data and 
diminish the effectiveness of evaluating testing set 
results. 

Next, both the training set and testing set were 
processed by time sequence transform with timestep 
of 30. For any closing price yi at time i, the input data 
was constructed by the preceding 30 data points, 
ranging from xi-1 to xi—30. Each x contained 6 feature 
values. In other words, this step constructed the data 
into format such that the model inputs the data of past 
30 days and predicts the next closing price. After 
finishing all data processing, the datasets obtained 
dimensions listed in TABLE II.  

4.3 Model Architecture 

Mootha’s and Shah’s research showed Long Short-
Term Memory (LSTM) and Bidirectional Long Short-
Term Memory (BiLSTM) models obtained a good fit 
for price value predictions with low RMSE (Mootha 
et al 2020 & Shah et al 2021). Thus, LSTM and 
BiLSTM were used for validating the efficiency of DI-
MSE in this study as well. As Sunny’s research on 
hyperparameter tunning suggested that fewer number 
of layers in LSTM and BiLSTM algorithm is likely to 
improve the model fitting, one layer was applied in 
constructing the following model architectures (Sunny 
et al 2020). 

LSTM Architecture: the LSTM model structure 
comprises a single LSTM layer with 200 units. To 
prevent potential overfitting, a L2 regularization with 
a strength of 1×10—6 is applied within the LSTM 
layer. The following layer is a dropout layer using 0.3 
dropout rate. The structure ends with a single dense 
layer. The training set is divided into batches of 32 and 
processes 200 epochs of training based on the Adam 
optimizer. 

BiLSTM Architecture: the BiLSTM model 

structure comprises a single BiLSTM layer. The 

BiLSTM layer is built by one forward LSTM layer 

and one backward LSTM layer. Both LSTM layers are 

consisted with 200 units and applied with a L2 

regularization with a strength of 1×10—6. There is a 

dropout layer using 0.3 dropout rate after the BiLSTM 

layer. This structure ends with a single dense layer. 

The training set also is divided into batches of 32 and 

processes 200 epochs of training based on the Adam 

optimizer. 

4.4 Validation Procedure 

For each stock in the dataset, the validation procedure 
followed these steps: 

1) With the training set, utilized the LSTM 

Architecture to train two models: one using MSE as 

loss function and one using DI-MSE as loss function. 
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2) With the testing set, predicted two groups of 

outputs ŷi from the two models. As the outputs were 

normalized, they were inversely transformed back to 

price values ŷi_unnormalized using the minimum min and 

maximum max of the closing price feature in the 

training set: 

ŷi_unnormalized = ŷi × (max — min) + min.     () 

Table 2: Dimensions of Training and Testing Dataset. 

Training Set Input 1840×30×6 

Training Set Output 1840×1 

Testing Set Input 100×30×6 

Testing Set Output 100×1 

 

3) Compared two models’ performance on their 

predicted closing prices. 

4) Repeated steps 1-3 with BiLSTM Architecture 

4.5 Validation Metrics 

For comparison in each stock, two metrics were 

applied for evaluating the predictions in the testing set: 

mean price accuracy (MPA) and directional accuracy 

(DA). Using the definition of PA in (1), MPA is 

computed by 

1

1
1 100%,

ˆn j j

j j

y y
MPA

n y=

 −
 =  − 
 
 

       () 

where: 
n represents the size of the testing set. 

yj represents the real closing price at time i. 

ŷi represents the predicted closing price at time i. 

A high MPA indicates a small difference between 

the predicted and the real closing price. While MPA 

evaluates averagely how accurate the predictions are, 

DA evaluate how correct the predictions’ direction is, 

by the following formula: 

2

1
100%,

1

n

j
j

DA D
n =

=  
−

             () 

where Dj indicates the direction correctness of 
prediction ŷi as described in (3). 

5 RESULT AND ANALYSIS 

As shown in Figure 1 and Figure 2, DI-MSE had a 

positive impact on directional accuracy DA for most 

stocks in both LSTM and BiLSTM models. On 

average, the use of DI-MSE in LSTM models 

improved a stock’s DA from 52.96% to 60.03%. 

Notably, the HSCE stock had a remarkable 

improvement of 16% in DA. Similarly, BiLSTM 

models trained by DI-MSE show an average increase 

from 52.96% to 59.6% in DA. In other words, 

compared to MSE, LSTM and BiLSTM models 

trained by DI-MSE had an approximate 7% 

improvement in DA. This difference in DA indicates 

that DI-MSE is effective to help models predict 

closing price with more correct direction.  

On the other hand, Figure 3 and Figure 4 show a 

slight reduction in mean price accuracy MPA among 

most stocks in both LSTM and BiLSTM models when 

DI-MSE is applied. LSTM models trained with DI-

MSE have an average decrease in MPA of 0.2%, while 

BiLSTM models trained by DI-MSE have an average 

decrease of 0.35%. Because such a decrease 

consistently appeared in most test stocks, it is not a 

coincidence, but an effect from DI-MSE. In essence, 

the application of DI-MSE as a loss function tends to 

result in a decrease in value accuracy of the predicted 

prices.  

After replacing MSE with DI-MSE, an increased 

DA but a slightly decreased MPA is observed as 

mentioned above. This trade-off may be attributed to 

the characteristics of DI-MSE. For predictions with 

wrong direction, DI-MSE computes their losses by 

DLW in (8), which does not consider the difference 

between ŷi and yi. This lack of information in 

difference potentially limits the models’ ability to 

learn and predict the closing prices closer to real 

values. By construction of DI-MSE, DLW plays a 

crucial role in providing directional information and 

determining the focus of loss function. This feature of 

DI-MSE helps the models to predict closing price with 

more accurate directions and then improve DA. 

Consequently, DI-MSE prioritizes higher DA at the 

expense of MPA, resulting in the trade-off observed in 

results. 
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Figure 1: Comparison of DA in LSTM models trained by 

MSE and DI-MSE. (Picture credit: Original). 

 Theoretically, DI-MSE will fully focus on 

improving DA after every prediction has correct 

direction. However, this case is too difficult to appear 

so that DLW will inevitably exist and DI-MSE will 

neglect the value accuracy on points with wrong 

direction. Thus, the trade-off remains. 

 

Figure 2: Comparison of DA in BiLSTM models trained by 

MSE and DI-MSE. (Picture credit: Original). 

 In another aspect, current input from training data 

maintains the time order without shuffle. Shuffling the 

training data (after time-sequence transforming) can 

possibly help the model to further generalize the price 

pattern and give a more accurate prediction. However, 

if a model struggles to decrease the number of 

predictions with wrong predictions, the focus of 

training will stay at directional correctness and neglect 

to increase the price value accuracy. This model may 

end up with poor accuracy in both direction and value, 

as a potential limit of DI-MSE. One possible 

improvement is to modify the error value for wrong 

direction in DLW or (8). DI-MSE adjusts the focus by 
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considering the difference of error magnitude in 

direction correctness. By modifying DLW, such 

difference can be enlarged or diminished and change 

the degree of priority on directional accuracy in DI-

MSE. 

 

Figure 3: Comparison of MPA in LSTM models trained by 

MSE and DI-MSE. (Picture credit: Original). 

 

Figure 4: Comparison of MPA in BiLSTM models trained 

by MSE and DI-MSE. (Picture credit: Original). 

6 CONCLUSION 

In both LSTM and BiLSTM models, by applying DI-
MSE, the price value accuracy (the average of MPA 
in all stocks) has a diminutive decrease of 0.2% and 
0.35%, respectively. However, in exchange, the mean 
of directional accuracy in test stocks has an increase 
of nearly 7% compared to using MSE. The result 
demonstrates that DI-MSE can promote the 
directional accuracy of predictions up to nearly 60%, 
while maintaining nearly same price value accuracy. 
With such directional accuracy, it is proved that the 
models trained by DI-MSE have predictability on 
direction instead of solely following the past 
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directions or randomly guessing. To a certain degree, 
the combination of price value and directional 
prediction is achieved by DI-MSE. 
 Based on the validation, the results show LSTM 
and BiLSTM models trained by DI-MSE can make 
prediction of next closing price in average nearly 98% 
value accuracy and nearly 60% directional accuracy. 
With such predictions, the investors are able to make 
more appropriate decisions and earn more profits. 
 DI-MSE has shown an enhancement in the LSTM 
and BiLSTM, two fundamental algorithms for price 
value predictions. By generalizing and applying DI-
MSE in more advanced algorithms derived from 
LSTM, the models may achieve better value and 
directional accuracy among predictions. In addition, 
DI-MSE can be further generalized to all machine 
learning problems in various fields which consider 
accuracy of both value and direction, such as future 
temperature or humidity. In a novel path for machine 
learning, more custom loss functions will appear for 
various model training tasks. 
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